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Abstract. This paper proposes a multi-objective Green Vehicle Routing Problem (G-VRP) considering two types of vehi-
cles likely company-owned vehicle and third-party logistics in the imprecise environment. Focusing only on one objective, 
especially the distance in the VRP is not always right in the sustainability point of view. Here we present a bi-objective 
model for the G-VRP that can address the issue of the emission of GreenHouse Gases (GHGs). We also consider the 
demand as a rough variable. This paper uses the Non-Dominated Sorting Genetic Algorithm II (NSGA-II) to solve the 
proposed model. Finally, it uses Multicriteria Optimization and Compromise Solution (abbreviation in Serbian – VIKOR) 
method to determine the best alternative from the Pareto front.

Keywords: green VRP, multi-objective VRP, evolutionary methods, NSGA-II, VIKOR, sustainability.

Notations

ACO – ant colony optimization;
ACVRP – asymmetrical CVRP;

ALNS – adaptive large neighbourhood search;
CO2 – carbon dioxide;

CVRP – capacitated VRP;
FCR – fuel consumption rate;

G-VRP – green VRP;
GHG – greenhouse gas;

GPS– global positioning system;
NSGA-II – non-dominated sorting genetic algorithm II;

PAES – Pareto archived evolution strategy;
PMX – partially mapped crossover;

SCVRP – symmetrical CVRP;
SPEA – strength Pareto evolutionary algorithm;

TOPSIS – technique for order of preference by similar-
ity to ideal solution;

TSP – travelling salesman problem;

VIKOR – multicriteria optimization and compromise 
solution (in Serbian: Višekriterijumska opti-
mizacija I KOmpromisno Rešenje);

VRP – vehicle routing problem;
VRPTW – VRP with time windows.

Introduction 

One of the essential requirements for living beings is air. 
Nevertheless, it should be fresh as the polluted air can be 
the source of several diseases. Air pollution becomes the 
biggest threat to human beings. There are several sources 
of air pollution. One of the vital sources is transporta-
tion. Most of the developed cities are facing this problem, 
which increases day by day. This fact leads us to this re-
search work. Generally, the transportation agencies focus 
their viewpoint on the profit based on shortest distance or 
time. They are not bothering about the pollution that the 
vehicles generate in nature. So the time has come to look 
at this particular issue; otherwise, the question will arise 
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on the existence of our next generation. In EU, more than 
0.4 million early deaths are recorded in 2016 because of 
this polluted air as per the report published by Ekblom 
(2019). Due to this air pollution, our society suffers several 
adverse impacts like the decrease of agricultural lands and 
yields, a detrimental effect on our ecosystems and threat 
to biodiversity, deterioration of historic buildings. The re-
sult of transport in the environment is a burning issue as 
it is the primary user of energy and it burns petroleum. It 
produces nitrous oxides, particulates and CO2 that are a 
significant contributor to global warming. So road trans-
port has to be appropriately planned with a vision to keep 
our environment green as much as possible. The govern-
ment passed several environmental regulations to reduce 
the air pollution caused by the personal vehicle’s emission. 
We need to study the potential pathways to reduce the car-
bon emissions of road vehicles. The transportation sector 
is the primary source of GHG semissions. In 2017, 28.9% 
of US GHG emissions were from transportation as per 
the report published in report by the EPA (2019b). 14% of 
global CO2 emissions was because of the transport sector 
as per the report published in report by the EPA (2019a). 
Besides, the emissions also depend on the driving quality 
as well as the load of the vehicle. In this scenario, research-
ers need to consider both the energy and environmental 
issues while designing the transport route.

The VRP is a topic associated with the transportation 
sector that plans how to distribute the products to differ-
ent customers placed in different geographical locations. 
The VRP has a similarity with the TSP as here instead 
of one salesman it deals with more than one salesman or 
vehicles. TSP finds the shortest possible route to cover 
all the cities of the system visited by a single sales rep-
resentative. In the 1930s, Merrill Flood first introduced 
the concept of TSP while solving a problem of school bus 
routing (Lawler et al. 1985). Hassler Whitney first coined 
the term of TSP (Schrijver 2002). The VRP, in its most 
straightforward form CVRP, finds the shortest possible 
route to cover all the cities of the system served by several 
vehicles started from a central depot to supply products 
to the different customers. Here each vehicle will have 
some limited capacity. The term CVRP was first coined 
by Dantzig and Ramser (1959), when they published a 
paper on the dispatching problem of trucks. Then on-
wards several works published in this field, and gradu-
ally researchers introduced different variants of VRP in 
literature. The variety of VRP comes based on different 
needs like the type of goods to carry the service quality, 
the customer type and the vehicle type. The VRP can be 
static where the demands of customers are fixed and are 
known a priori, or it can be dynamic where the demands 
may become known after the vehicles start their journey. 
The CVRP can be either SCVRP or ACVRP based on their 
cost matrix or distance matrix. There are several types of 
VRP (Braekers et al. 2016). These are VRP with backhauls, 
VRP with both pickup and delivery, multi-depot VRP, 
stochastic VRP, periodic VRP, multi-compartment VRP, 

site-dependent VRP, VRP with splitting of delivery, fuzzy 
VRP, multi-echelon VRP, VRPTW, etc. All the VRPs can 
be closed or open depending on whether the vehicles are 
returned to the central depot or not respectively. Most of 
the papers on VRP have focused on the minimization of 
distance or time. However, we should also consider some 
other important issues while solving the VRP. These are 
like maximization of profit, maximization of customer sat-
isfaction, minimization of CO2 emissions, minimization 
of employee workload and others. In the global scenario, 
we need to take the minimization of emissions of CO2 
and other pollutants as one of the essential factors while 
solving the VRP. The models that consider these environ-
mental issues are called G-VRP. So instead of thinking 
only one objective while solving VRP, it is always better 
to consider more than one objectives and one of the goals 
must be related to the environmental issue so that our 
mother nature sustains. 

In this paper, we have considered two objectives. One 
is the minimization of distance, and the other is the mini-
mization of carbon emission. The main reason behind 
these is to find such a solution set that gives a trade-off 
between these two objectives rather than concentrating on 
a particular goal. We can refer the model as multi-objec-
tive mixed G-VRP. Here both the features of open VRP 
and closed VRP have been considered. We describe the 
concepts of closed, open and mixed VRP in Figures 1–3.  
The vehicles used in this model are of the same capac-
ity. The model has been solved using NSGA-II (Deb 
et  al. 2002), a multi-objective type algorithm. There are 
several other methods, which can also be applied in this 
type of multi-objective type Problem. These are like PAES 
(Knowles, Corne 1999), improved SPEA (SPEA2) (Zitzler 
et al. 2001), etc. But in most of the cases, NSGA-II is per-
forming better as it selects a good range of output and 
good convergence near the non-dominated results. Here 
also it shows a satisfactory result. Finally, the VIKOR 
method (Mardani et al. 2016) is used to get the decision-
maker’s choice from many alternatives that are very close 
to each other, and this will produce the best-optimized 
solution among all the Pareto front solutions in terms of 
sustainability.

The contribution of this paper is given below:
 – the multi-objective mixed G-VRP is introduced in 
this paper;

 – the demand is considered a rough variable to manage 
the imprecise nature;

 – this work proposes an application of the NSGA-II 
and the VIKOR method to get the most suitable al-
ternative solution from the approximate front as per 
the decision-maker’s choice.

In the remaining portion of the paper, we have briefly 
discussed the literature review on the existing VRP in Sec-
tion 1. The motivation of the work is discussed in Section 2.  
Then, the problem definition and modelling of the pro-
posed multi-objective mixed G-VRP is presented in Sec-
tion 3. While in Section 4, the brief discussion on NSGA-II  
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algorithm and its implementation are discussed. Section 5 
offers a numerical illustration of the work. Section 6 pre-
sents the simulation results of the proposed work and its 
analysis. Finally, we have concluded the paper in the last 
section.

1. Literature review

A vast number of papers already published on VRP con-
sidering single-objectives. In multi-objective case of VRP, 
the literature does not have much research works in com-
parison with the single-objective type. Gambardella et al. 
(1999) proposed multi-objective VRPTW where one of 
the targets is to minimize the count of vehicles used, and 
the other is to minimize the time of travelling. Ribeiro 
and Lourenço (2001) introduced a multi-objective type of 
model on a multi-period kind of VRP. The author tried 
to reduce the travelled distance as minimum as possible 
along with an attempt to optimize the number of visited 
customers. Murata and Itai (2005) also proposed a multi-

objective type VRP. Then Murata and Itai (2007) also pub-
lished a paper on local search applied in the earlier version 
of VRPs. Tan et al. (2006) published a paper on VRPTW 
having two objectives like minimization of the count of 
vehicles, and the distance travelled. In the same year, Om-
buki et al. (2006) presented a multi-objective type of ge-
netic algorithm for VRPTW concept having the same two 
objectives as the previous one. Pacheco and Martí (2006) 
published one more paper in the same year on multi-
objective routing problem where the authors used tabu 
search to resolve the issue. Jozefowiez et al. (2008) pub-
lished a review paper on different research work on multi-
objective VRP. Jozefowiez et al. (2009) also developed an 
evolutionary algorithm for the problem with two objec-
tives that will minimize both distances travelled and route 
imbalanced. Liu and Jiang (2012) proposed a new version 
of the VRP by considering the concepts of both close and 
open VRP. The aim of this work is to minimize the cost 
of delivering the products. The authors’ used mix integer 
programming and memetic algorithm to solve the model. 
Demir et al. (2014) published a paper on pollution-routing 
problem with two objectives to reduce fuel consumption 
and travelled time. They use a hybrid method combin-
ing ALNS algorithm with speed optimization procedure 
to find the result. Matl et al. (2018) provide an analysis 
of classical and other equity functions for multi-objective 
VRP models. Matl et  al. (2019a) present e‐constraint-
based frameworks to leverage directly on single‐objective 
VRP heuristics in new multi-objective settings. Matl et al. 
(2019b) also present a paper on the classification of work-
load resources and equity functions. The G-VRP is a par-
ticular form of VRP with eco-friendly motive. The study 
on G-VRP was started in 2006. Erdoğan and Miller-Hooks 
(2012) have formulated a G-VRP model and solved the 
model by considering various types of fuel for the vehicles. 
It has used the mixed integer programming for modelling 
and solved using heuristics. Lin et  al. (2014) published 
a survey paper on the types of VRP and highlighted the 
focus on the G-VRP. Qian and Eglese (2014) present time-
dependent network model to minimize GHG emissions. 
Wen and Eglese (2016) publish a paper on bi-level pricing 
model that tries to minimize the CO2 emissions and the 
total travel time in case of small network. Qian and Eglese 
(2016) present a paper on G-VRP using column genera-
tion based tabu search algorithm. Montoya et al. (2016) 
developed a heuristic using two different phases to solve 
the G-VRP, which consider various types of fuels and hav-
ing different kinds of tank capacity. Kancharla and Rama-
durai (2018) developed a variety of G-VRP by introducing 
the concept of fuel consumption estimation based on driv-
ing cycle from the GPS’s data. Granada-Echeverri et  al. 
(2019) publish a paper on VRP with backhauls. Granada 
et al. (2019) also develop a model on the open location‐
routing problem. They consider the topological attribute 
of the tour‐paths.

If we focus on both the multi-objective and the green 
logistics, there are very limited papers in the literature. 
Siu et  al. (2012) proposed a paper on a multi-objective 

Figure 1. Closed VRP

Figure 2. Open VRP

Figure 3. Mixed VRP
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VRP, which tries to make optimization on the emissions 
of CO2 and the path reduction. Molina et al. (2014) pro-
posed a paper on G-VRP that considered multi-objective 
and heterogeneous fleet. It used Tchebycheff method. The 
three objectives are the minimization of costs, minimi-
zation of CO2 emission and minimization of NOx. Jabir 
et al. (2015) published a paper on multi-objective optimi-
zation of G-VRP. It has solved the model using ACO to 
get the paths for the vehicles. It has also used a variable 
neighbourhood search to reduce the emission of CO2. 
Very recently, Poonthalir and Nadarajan (2018) published 
a paper on fuel efficient G-VRP, which has two objectives. 
These are cost and fuel minimization. They have used 
goal programming and PSO algorithm to solve the model. 
Turkson et al. (2016) applied NSGA-II in a multi-objective 
optimization problem in the automobile domain to sort 
out a trade-off between engine performance and hydro-
carbon emissions. Zhou et al. (2016) also applied NSGA-II 
to solve a multi-objective problem in the automobile do-
main. VRP is such an important area that requires a lot of 
research even in the coming future. Recently, Huang et al. 
(2017) published a paper on sustainable process planning 
in the manufacturing domain by considering two objec-
tives namely minimization of costs and carbon emission. 
They have applied a hybrid NSGA-II to solve the problem 
and finally used TOPSIS method to get the best solution 
among several Pareto optimal solutions. Mohammed et al. 
(2017) published a paper on VRP using an improved ver-
sion of the nearest neighbour method. Toro et al. (2017a) 
proposed a new Multi-Objective model on capacitated 
location-routing problem. They also focused on the mini-
mization of fuel consumption. In the same year, they also 
published another paper on green open location-routing 
problem Toro et al. (2017b). They considered economic 
and environmental costs in this model. 

2. Motivation

VRP is one of the significant problems in the field of com-
binatorial optimization. Most of the papers published ear-
lier are based on a single-objective function. In the last 
decade, the multi-objective version of VRP is also pub-
lished. Recently, the G-VRP gets a high focus for the re-
searchers because of the increasing level of air pollution 
due to transportation. Global warming becomes a signifi-
cant threat to society, and we are focusing more and more 
on a sustainable environment. In this regards, the model 
of G-VRP is the perfect solution for transportation. Most 
of the papers on G-VRP are single-objective based. Very 
few works are there on multi-objective G-VRP, which fo-
cus on both the environment as well as the profit of the 
organization. All the papers considered the demand of 
the customers as exact quantity and known a priory. In 
reality, demand is generally imprecise. Not only this, all 
the works on G-VRP have considered only the company-
owned vehicles that is the closed model of VRP. Whereas 
in the real-life scenario, the demands of the customers 

are always neither known a priory nor the companies are 
continually using their owned vehicles. As in most of the 
time, companies are using third-party logistics. That is the 
reason we need to consider both types of vehicles. This 
limitation becomes the motivation of this work. This pa-
per considers both types of vehicles like company-owned 
and third-party vehicles. Because of the imprecise nature 
of the demand, here the demand is considered as a rough 
variable. This work reflects more real-life scenarios.

3. Problem definition and mathematical model

The travelling cost in VRP problem depends on many pa-
rameters. These are the distance between a pair of cities, 
travelling time from a city to another, load carried by a ve-
hicle, type of vehicle, speed of the vehicles, types of road, 
the rate of fuel consumed per kilometre, price of fuel per 
litre and others. Out of all the parameters, distance and 
load are the prime factors. Fuel consumption is mainly 
dependent on distance and load. If two vehicles run at 
the same speed the vehicle having more loads will con-
sume more fuel. The expense of fuel is a significant issue 
in any vehicle. That is VRP problem can be modelled in 
two different aspects. One is the distance or travelling time 
and another is the fuel consumption that considers the 
parameter load. Now based on travelling time, the VRP 
problem is a minimization problem that tries to get a solu-
tion, which will take the least time to complete its task. So, 
mathematically it is like the below equation:

( )1
0 0 1

min   
N N M

C ijk ij
i j k

Z M P F C x t
= = =

= − ⋅ + ⋅ ⋅∑∑∑ ,  (1)

where: N – the total count of customers; M – total count 
of vehicles required to serve all the customers; k is used 
as the index in the equation to represent vehicle number, 
where the range of k is 1, 2, 3, 4, …, P, …, M; P – total 
count of owned vehicles of the company that have to re-
turn to the company after the end of service; (M – P) ve-
hicles are hired vehicles, these will not return to the depot; 
FC is the fixed cost per hired vehicle; C is the unit freight 
of a vehicle per unit time and can be designed as:

1 
2 

when  ;
otherwi

,
, se,

C k PC C
≤= 



where: C1 is the unit freight of an owned vehicle per unit 
time; C2 is the unit freight of a hired vehicle per unit time;

1, when th vehicle moves
from point  to ;

0, otherwise,
ijk

k
x i j


= 


where: dij – distance between node i and j; tij – travel time 
from point i to j.

So, here the problem will be the mixed type of prob-
lem. That is closed VRP and Open VRP both.

Again based on fuel consumption, the VRP is a mini-
mization problem where the challenge is to find a solu-
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tion that will consume the least amount of fuel. Xiao et al. 
(2012) proposed a load-dependent function named FCR 
using the below model.

Let Q0 be the vehicle’s no-load weight and Q1 be the 
carried load. FCR, r(Q1) is designed as a linear function 
dependent on load Q1. Using:

( ) ( )1 0 1   Q Q Q br =a ⋅ + + ,  (2)

where: a, b – constants.
Let, Q be the maximum limit the vehicle can carry. 

Let, r* be the FCR on fully loaded condition and r0 be 
the FCR of the empty vehicle. Therefore:

0 0Q br = a ⋅ + ;  (3)

( )*
0  Q Q br = a ⋅ + + .  (4)

From the Equations (3) and (4):
*

0
Q

r −r
a = .

So, Equation (2) can be written as:

( )
*

0
1 0 1   Q FCR Q

Q
r −r

r = =r + ⋅ .  (5)

The Equation (5) indicates the linear relationship be-
tween FCR and the load the vehicle carry where the inter-

section point is at r0 and slope is 
*

0 
Q

r −r
.  

Consider, C0 – cost of unit amount of fuel; rij – FCR 
on the path from i to j; dij – distance between i and j; r – 
the count of the customers on the path; Cfuel – cost of fuel 
for one vehicle:

1
1

 
r r ij

fuel ijFuelj
i

C C x
=

=

= ⋅ =∑∑
 
01

1

r r
ij ij ijj

i

C d x
=

=

r⋅ ⋅⋅∑∑ ,  (6)

where: xij will be 1 if a vehicle moves from i to j else 0.
Let, yij be the weight of the goods over the vehicle that 

moves from point i to point j.
So, from Equation (2): 

0ij ijyr = r +a ⋅ , , 1, ,i j n= … . 

Let rijk is the FCR on the path from i to j for kth ve-
hicle.

Now, the VRP problem can be mathematically repre-
sented in terms of FCR as:

2
0 10

min 
N N M

ij ijk ijk
j ki

Z d x
= ==

= r =⋅ ⋅∑∑∑

( )0
0 10

 
N N M

ij ijk ijk
j ki

d y x
= ==

⋅ ⋅r +a ⋅∑∑∑ ,  (7)

where: yijk  – the weight of the goods over the vehicle k 
that moves from point i to point j. Furthermore, we can 
refine the above objective from minimization of fuel con-
sumption to the minimization of CO2 emission as given 

below. Let, dkw will be 1 if kth vehicle consumes the fuel 
of category w and 2 ,CO wef  be the factor for CO2 emission 
that is the quantity of CO2 released per unit of w category 
fuel burned. 

Now,

2CO ,
2

0 0 1 1

min  
N N M W

wkw

i j k w

Z ef
= = = =

= d ⋅ ×∑∑∑∑
( )0 ij ijk ijkd y x⋅ r + a ⋅ ⋅ .  (8)

Therefore considering the two objectives of VRP, Z1 
and Z2 the VRP may be designed as multi-objective prob-
lem that consider both closed and open VRP and by in-
volving both the aspect of consumption of fuel and CO2 
released, it also includes future of G-VRP. The model 
(Equations (1) and (9)) is given below:

( )1
0 0 1

min   
N N M

C ijk ij
i j k

Z M P F C x t
= = =

= − ⋅ + ⋅ ⋅∑∑∑ ;

2CO ,
2

0 0 1 1

min  
N N M W

wkw

i j k w

Z ef
= = = =

= d ⋅ ×∑∑∑∑
( )0 ij ijk ijkd y x⋅ r + a ⋅ ⋅ .

subject to:

1 0

1 
M N

ijk
k i

x
= =

=∑∑ , 1, 2, ,  j N= … ;  (9)

0
1

1 
N

jk
j

x
=

=∑ , 1, 2, ,  k M= … ;  (10)

0
1

 1
N

i k
i

x
=

=∑ , 1, 2, ,k P= … ;  (11)

0 1

1 
N M

ijk
j k

x
= =

=∑∑ , 1, 2, ,  i N= … ;  (12)

0 1

1 
N M

ijk
i k

x
= =

=∑∑ , 1, 2, ,  j N= … ;  (13)

0 1

N N

j ijk
i j

q x Q
= =

⋅ ≤∑∑ , 1, 2, ,k M= … ;  (14)

{ }0,1ijkx ∈ , 1, 2, ,k M= … , ( ), 0 1i j N= ;  (15)

1 , 

1
K

ijk
k i S j S i j

x S
= ∈ ∈ ≠

≤ −∑∑ ∑ , { }\ 0S V∀ ⊆ .  (16)

Constraint  – Equation (9)  – guarantees that exactly 
one route will visit every customer where 0 denotes de-
pot. Constraint – Equation (10) – refers that each vehi-
cle leaves the depot. Constraint – Equation (11) – refers 
that each owned vehicle returned to depot. Constraints – 
Equations (12) and (13)  – refer that every customer is 
served by a single vehicle. The carrying limit of vehicle is 
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presented by constraint – Equation (14) – where qj is the 
demand for city j and Q – vehicle capacity. Constraint – 
Equation (15) – defines whether vehicle k is travelled from 
city i to city j. The sub-tour elimination is defined using 
constraint – Equation (16).

Mathematical model for rough demand
In real-life scenario, most of the time the exact demand of 
a city is not available a priory. Because of this uncertain 
nature of demand of the city, this paper has considered qj, 
the demand for jth city as the rough variable, where:

( )1 2 3 4, , ,j j j j jq q q q q   =     ,

where: 3 1 2 4   j j j jq q q q≤ < ≤ .
Then using the trust-measure the Equation (14) of the 

above crisp model can be transformed as follows:

0 1

Tr  
N N

j ijk
i j

q x Q
= =

 
 ≤ ≥ b

 

⋅
∑∑ ,  (17)

where: b is the trust value.
Now using the lemma proposed by Kundu et al. (2017), 

the above equation can be transformed into: 

( ) 3 4

0 0

1 2 2  
N N

ijk j j
i j

x q q Q
= =

− ⋅b ⋅ + ⋅b ⋅⋅ ≤∑∑ , 

when 
( )

1 3

4 32
j j

j j

q q

q q

−
b ≤

⋅ −
;                                      (18a)

( ) ( )( )3 4

0 0

1 2 1
N N

ijk j j
i j

x q q Q
= =

−b ⋅⋅ + ⋅b − ⋅ ≤∑∑ , 

when 
( )

2 4 3

4 3

2

2
j j j

j j

q q q

q q

+ −
b ≤

⋅ −
;                                    (18b)

( ) ( )2 1 4 3
0 0

N N
ijk

j j j ji j

x
Q

q q

p

q q= =

≤
− + −

⋅
∑∑ , otherwise,           (18c)

where:

( ) ( )3 2 1 1 4 3
j j j j j jq q q qp q q− + −= ⋅ ⋅ +

( ) ( )2 1 4 32 j j j jq q q q⋅b ⋅ − ⋅ − .

4. Multi-objective evolutionary algorithm  
for the proposed model 

There are some specific real-life problems where opti-
mization of one objective is not enough to solve those 
problems. Multi-objective evolutionary algorithms are 
suitable to solve such kind of problems. There are several 
multi-objective algorithms in the literature. One of such 
algorithms is NSGA-II, which is used here to solve the 
above-mentioned model. 

4.1. NSGA-II

Genetic search is a highly successful bio-inspired meta-
heuristic algorithms based on natural selection and ge-
netics. It can be applied in combinatorial optimization 

problems. Generally, it can be used in problems where 
the number of objectives is one. Here, this paper has de-
signed multi-objective G-VRP problem, which can be 
solved successfully using the multi-objective variant of 
GA, NSGA-II. It is already a stable and widely used al-
gorithm. The Pareto optimality concept is applied in the 
entire multi-objective GAs. Instead of exhaustive search, 
this method will produce Pareto optimal fonts, which are 
very useful to get a set of optimal solutions. Compared to 
its earlier methods the NSGA-II (Deb et al. 2002) is ca-
pable of producing the fastest non-dominated output. To 
get a non-dominated region this is the quickest method. 
To keep the diversity in the solutions it does not need to 
fix any parameter, and this becomes the superiority of this 
method. That is why we have decided to adopt this algo-
rithm to this problem of G-VRP. In this method, the par-
ent population is first randomly filled, and then the child 
population is generated from the parent. After that, both 
the parent and child population is accumulated and a new 
population of double size is generated. Then the new dou-
ble-sized population is sorted according to the principle of 
dominance. Now in the next step, all the non-dominated 
solutions are collected and removed from the population, 
and they become the first front solutions. These solutions 
are assigned a fitness value of 1. Then after with the re-
maining population once again, the same steps have to be 
done, and we will get the second-front solutions. These so-
lutions are assigned a fitness value of 2. Here a concept of 
crowding distance is used to select the set of solutions that 
will be stored in the population to preserve diversity in 
the solutions. Several times the NSGA-II is compared with 
other parallel strategies in reference (Deb et al. 2002), and 
they found it is showing far better results. That encourages 
applying the NSGA-II into several hard and time-critical 
real-world multi-objective type problems.

4.2. Implementation

An integer string is used as a solution chromosome, which 
is a collection of customer numbers. The set of customer 
numbers between two zeros represents that these custom-
ers will be served by a single vehicle. For example, (0, 4, 
7, 0, 5, 3, 9, 0, 1, 3, 6, 8, 0, 2, 0) is a solution chromosome. 
It indicates the solution involves 4 vehicles and their cor-
responding routes are (0 → 4 → 7 → 0), (0 → 5 → 3 → 
9 → 0), (0 → 1 → 3 → 6 → 8 → 0) and (0 → 2 → 0). 
Now each sub-routes may end in 0 or not. Here 0 indicates 
the central depot. Here the central depot may have some 
owned vehicle and some hired vehicle. As per the pro-
posed model first, the depot will use their owned vehicles 
and after that, if required they will hire other vehicles. So 
if it is owned vehicle then the sub-route will end in 0 as 
the vehicle has to return to the depot otherwise it will 
end in –1. For better understanding, an example is given 
here. For a solution chromosome like (0, 4, 7, 0, 5, 3, 9, 0, 
1, 3, 6, 8, –1, 2, –1), the sub-routes will be (0 → 4 → 7 → 
0), (0 → 5 → 3 → 9 → 0), (0 → 1 → 3 → 6 → 8) and  
(0 → 2). So here the total number of vehicles used will be 4,  
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and out of these four vehicles the first two vehicles are 
company-owned and the remaining two are hired vehicles. 
For first two vehicles, it will be the case of closed VRP 
where the sub-routes end at the depot, and for the last 
two vehicles it will be the case of open VRP where sub-
routes end at the last customer point. This result section 
considers all the three cases separately namely fully open 
VRP, fully closed VRP and the mixed VRP. In the above-
mentioned model, P is used for the number of company-
owned vehicles and M is used for the total number of 
vehicles used. For fully open VRP, it is considered that P-
value is zero and for the fully closed VRP, it is considered 
that P-value is greater than or equal to M. For the mixed 
case P is greater than zero but is less than M. The size of 
the population used here is 100. At the very beginning, 
we have generated 100 chromosomes randomly keeping 
given vehicle capacity. Then in the selection step, we have 
used the tournament selection to select the parents. Then 
we have used the PMX, a standard crossover technique. 
The first step of PMX is to identify randomly, a substring 
having an equal length from both the parents. In the fol-
lowing step, we swap these two substrings between the 
two parents and generate a partial offspring. Then in the 
next step, based on the mapping relationship the numbers 
those are not present in the substrings are placed into the 
offspring. Finally, we balance the partial offspring with the 
mapping relationship. We have used 0.85 as the crossover 
probability. To do the mutation, we have used simply the 
swapping method. Any two numbers are selected random-
ly from any two different sub-routes. We then swapped 
those numbers if they satisfy the capacity constraint. After 
the swapping, we continue to insert customers one after 
another from any particular sub-route until it follows the 
capacity constraint. We do this to reduce the count of ve-
hicle used. We have used 0.15 as the mutation probability.

5. Numerical illustration 

Some of the benchmark problems of VRP collected from 
VRP Library (NEO 2013; Ralphs 2003; VRP-REP 2018) 
have been tested to judge the performance of the new 
model. Here the NSGA-II method is applied to solve two 
objectives G-VRP instances. The proposed model was 
tested with the help of Augerat et al. (1995) Set P dataset. 
The performance of the proposed method is judged by 
applying the different instances of the above-mentioned 
dataset. The instances that we have used are having nodes 
between 23 and 101. These instances are P-n23-k8, P-n40-
k5, P-n45-k5, P-n50-k10, P-n51-k10, P-n55-k10, P-n60-
k15, P-n70-k10, P-n76-k5 and P-n101-k4. The numbers in 
the middle and end of the instances are the count of ve-
hicles used and the count of customers respectively. There 
is no benchmark data available for the rough model in 
the literature. That is why we have considered the coordi-
nates of the cities of some benchmark dataset from VRP 
library. For the value of rough demands corresponding to 

the coordinates of the different cities, we have generated 
randomly. These data can be found from the Google Drive 
(Barma 2018). 

6. Results and discussion

This method is coded using C language on Intel Core 2 
DUO CPU T6500 at 2.10 GHz, running Windows XP Pro-
fessional. The number of generations used as the stopping 
criteria for every test is 300. The proposed model is solved 
for all three types of cases. These are fully closed G-VRP, 
where all the vehicles used, are company-owned, fully 
opened G-VRP where all the vehicle used are third-party 
logistics and mixed G-VRP where both types of vehicles 
are used. There is no reference Pareto optimal front avail-
able for the proposed multi-objective model. Therefore, to 
generate the reference approximate front for the instances, 
we conducted 20 independent runs on each instance. The 
solutions of the first non-dominated front of each run are 
stored in an external archive. Finally, a non-dominated 
sorting is performed on the archive and the members in 
the first front are considered as the approximate front. The 
results of the first front of an independent run for each 
instance for all the different models (viz., closed, open 
and mixed) are presented in Table 1–3, respectively. The 
results of the model considering rough demand for dif-
ferent levels of b (trust level) for an independent run is 
presented below. 

The approximate front and first non-dominated front 
of an independent run for the instance P-n45-k5 of Ta-
ble 1 is depicted in Figure 4. The approximate front and 
first non-dominated front of an independent run for the 
instance P-n23-k8 of Table 2 is depicted in Figure 5. The 
approximate front and first non-dominated front of an 
independent run for the instance P-n23-k8 of Table 3 is 
depicted in Figure 6.

Here we have presented only the solutions found in 
the first front. That is all the non-dominated solutions are 
enlisted here. As per the definition of dominance, if we 
collect two solutions i and j of first front, if the value of 
objective 1 of i is greater than the value of objective 1 of 
j, then definitely the value of objective 2 of i is not more 
than that of the value of objective 2 of j. 

After getting the first front solutions using the above 
method, most of the time, it is very difficult to choose 
a particular solution among a set of Pareto optimal so-
lutions. Here the VIKOR method is adopted to get the 
closest solution to the ideal solution. Some of the best so-
lution corresponding to the different instance of problem 
and the particular case whether full open or full closed or 
mixed are enlisted in Table 4. It can be seen from Table 2,  
which is the case of the full open model the instance 
P-n23-k8 has five non-dominated solutions. After apply-
ing the VIKOR method, decision-maker will choose the 
second solution that is (305.896423, 1753.271484). The 
parameters w1, w2, v of the VIKOR method are set as 0.5.
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Table 1. Results of independent runs of the multi-objective fully closed G-VRP

Slope 
No Instance Total No of 

vehicles used
No of owned 

vehicles
Vehicle 
capacity

Objective 1, 
distance [km]

Objective 2,
CO2 emission [kg] Time [s]

1 P-n23-k8 9 9 40
533.634155 2439.176758

10.78430541.566589 2415.676270
537.756348 2419.952148

2 P-n40-k5 5 5 140
456.633453 2365.712891

17.69812445.661011 2445.344727
452.368530 2391.379150

3 P-n45-k5 5 5 150

550.467651 2773.997070

21.99761
535.032776 2839.370361
544.120117 2786.631836
536.167969 2813.621338
547.509644 2774.844238

4 P-n50-k10 10 10 100

807.088379 4019.036377

34.72134
787.672729 4028.653809
788.374390 4022.514893
795.563965 4019.529053
794.753052 4020.481934

5 P-n51-k10 10 10 80
1020.386475 5702.314941

36.78896
1019.386470 5706.199707

6 P-n55-k10 10 10 115
867.991028 4353.755371 

52.23107846.152283 4382.785645
857.002991 4360.377441

7 P-n60-k15 15 15 80
1166.716431 5526.352539

57.998011153.111084 5572.475098
1160.749023 5542.501465

8 P-n70-k10 10 10 135
1043.324219 5325.773926

64.733891044.250854 5320.470215
1046.774170 5266.271973

9 P-n76-k5 5 5 280
829.649231 4673.174805

69.00678
831.018127 4666.365234

10 P-n101-k4 4 4 400
1168.274048 6028.094727

81.30921168.786377 6025.255859
1169.205688 6005.471680

Table 2. Results of independent runs of the multi-objective fully open G-VRP

Slope 
No Instance Total No of 

vehicles used
No of owned 

vehicles
Vehicle 
capacity

Objective 1,
distance [km]

Objective 2,
CO2 emission [kg] Time [s]

1 P-n23-k8 8 0 40

309.717590 1751.187500

8.62890
305.896423 1753.271484
307.873322 1751.760254
303.933533 1758.559692
302.127136 1760.312378

2 P-n40-k5 5 0 140
375.901764 2136.007568

15.31002372.088654 2146.454590
374.212433 2141.201416

3 P-n45-k5 5 0 150
513.039856 2743.869873

17.87012504.378754 2790.049561
510.222351 2750.608398

4 P-n50-k10 10 0 100
601.817200 3464.385742 

24.22510
599.112427 3487.923096
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Table 3. Results of independent runs of the multi-objective mixed G-VRP

Slope 
No Instance Total No of 

vehicles used
No of owned 

vehicles
Vehicle 
capacity

Objective 1,
distance [km]

Objective 2,
CO2 emission [kg] Time [s]

1 P-n23-k8 8 4 40

386.759003 1995.332031

9.72660
389.995514 1990.418091
391.842102 1986.246582
384.912415 1999.503662

2 P-n40-k5 5 3 140
443.188782 2342.264893

16.49023437.617767 2377.966309
441.155487 2346.647949

3 P-n45-k5 5 2 150
533.550781 2799.590088

19.94491529.882324 2804.781250
531.193237 2800.432129

4 P-n50-k10 10 5 100
701.724365 3705.358398

30.60901695.228455 3719.603271
698.218445 3708.154053

5 P-n51-k10 10 5 80
894.975525 5345.306152

32.98000892.920837 5376.732910
893.308350 5372.028320

6 P-n55-k10 10 5 115
688.032349 3852.808838

45.11901682.803589 3866.145752
684.589600 3856.329346

7 P-n60-k15 15 8 80
959.418091 4964.879883

55.95671
968.792603 5004.875488

8 P-n70-k10 10 5 135
1017.865417 5343.324707

59.701121012.755432 5355.051270
1016.856140 5348.973145

9 P-n76-k5 5 3 280
874.226929 4875.469727

66.27169
844.664001 4683.958984

10 P-n101-k4 4 2 400

1100.233521 5733.073242

78.50237
1101.224609 5718.858398
1096.201904 5741.236328
1099.468506 5740.473633

Slope 
No Instance Total No of 

vehicles used
No of owned 

vehicles
Vehicle 
capacity

Objective 1,
distance [km]

Objective 2,
CO2 emission [kg] Time [s]

5 P-n51-k10 10 0 80
744.487000 4897.581055

26.40236
740.822327 4913.603516

6 P-n55-k10 10 0 115
602.078735 3579.873779

35.99121
600.427368 3604.896973

7 P-n60-k15 15 0 80
812.449097 4540.724609

44.39017
811.343018 4542.951172

8 P-n70-k10 10 0 135

861.279053 4836.739258

51.00678
857.637939 4838.102539
861.279053 4836.739258
860.599731 4837.003906
858.317261 4837.837891

9 P-n76-k5 5 0 280
807.335510 4598.143555 

61.91205
807.008362 4625.926270

10 P-n101-k4 4 0 400
1109.738403 5865.573242

75.82014
1102.859741 5867.583008

End of Table 2
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Table 4. Results of VIKOR method after applying on some set of Pareto optimal solutions

Slope No Instance Model Alternatives Decision-maker’s choice

1 P-n23-k8 full open

309.717590 1751.187500

305.896423 1753.271484
305.896423 1753.271484
307.873322 1751.760254
303.933533 1758.559692
302.127136 1760.312378

2 P-n50-k10 full closed

804.219543 3983.710205

800.364502 4018.805420
797.731384 4025.704346
803.688049 3989.494873
802.937073 4011.796143
800.364502 4018.805420

3 P-n23-k8 mixed

386.759003 1995.332031

386.759003 1995.332031
389.995514 1990.418091
391.842102 1986.246582
384.912415 1999.503662
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Figure 4. Instance P-n45-k5

Figure 5. Instance P-n23-k8

Figure 6. Instance P-n23-k8
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Result of rough model
For the different trust values of b like 0.7, 0.8, 0.9 and 0.95, 
we have solved the proposed rough model for the rough 
dataset mentioned earlier and the result is presented in 
Table 5. 

It is observed from Table 5 that the less the trust value, 
the better is the result for both the objectives. Now based 
on the trust value chosen by the decision-maker, one can 
quickly get the particular result. Then we can also apply 
the VIKOR method to get the best alternative from the Pa-
reto front just like the crisp model previously mentioned.

Table 5. Results of the rough model

Instance Objective 1 Objective 2
Trust measure b = 0.7

P-n45-k5
484.481689 2337.624268
482.118500 2359.121094
483.143982 2342.926270

P-n50-k10
501.937195 2397.322510
497.081299 2407.953857

P-n60-k15

832.964478 4164.316406
837.641418 4157.640625
847.383606 4156.848145
848.665527 4129.271484

P-n65-k10
798.739014 4533.956055
802.520386 4404.063477
799.464966 4508.059570

P-n70-k10
876.613647 4397.129395
880.587280 4358.313477

P-n76-k5

898.263977 4468.282227
907.625793 4458.171875
897.247375 4558.739746
905.753113 4463.976074

P-n101-k4

1079.552979 5412.953125
1109.119263 5322.774902
1087.434692 5326.065918
1081.279053 5336.755859
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Instance Objective 1 Objective 2
Trust measure b = 0.8

P-n45-k5

515.412415 2502.558350
508.745026 2547.523926
511.877991 2522.906738
509.610413 2547.459961
514.547058 2502.622314

P-n50-k10
622.121033 3268.045410
629.456829 3247.679000

P-n60-k15
858.760010 4378.023438
865.892021 4321.786534

P-n65-k10
824.451599 4174.082520
819.864075 4264.103027
823.043396 4196.969238

P-n70-k10

881.533936 4610.396973
873.056152 4670.019043
880.718384 4632.261719
873.871704 4648.154297

P-n76-k5
829.830383 4374.750000
824.639771 4429.854492

P-n101-k4

987.691528 5058.370605
981.008484 5058.928223
986.962769 5058.504883
981.737244 5058.793945

Trust measure b = 0.9

P-n45-k5

617.971924 2974.288574
612.886353 2990.145264
610.306824 3033.304688
611.945251 3032.939697

P-n50-k10

703.333313 3655.895996
697.169250 3657.395020
703.333313 3655.895996
702.493103 3656.342285

P-n60-k15
915.187012 4770.350098
914.576599 4787.712402
914.576660 4777.097168

P-n65-k10
898.016357 4596.649414
900.086060 4590.073730

P-n70-k10

983.475464 5187.562988
980.274170 5203.607910
997.431519 5181.672363
998.111938 5158.339355

P-n76-k5
871.165894 4600.433105
872.995178 4592.302734

P-n101-k4

999.851868 5507.668945
1003.014343 5383.280273
1004.869690 5337.218262
1007.323303 5332.721680

Trust measure b = 0.95

P-n45-k5

640.494995 3057.592529
633.739746 3072.136230
634.572021 3060.224854
639.629639 3058.725098

Instance Objective 1 Objective 2

P-n50-k10

760.458313 4070.522461
766.267334 4006.669434
761.545105 4035.631348
668.334595 3757.011963
675.071106 3720.824951
674.810242 3722.839600

P-n60-k15
943.149597 4926.071289
940.469421 4978.479980
940.502625 4928.743652

P-n65-k10
944.543030 4992.268066
944.097961 5003.912109

P-n70-k10

1000.176880 5273.604980
995.476562 5317.383789
996.717407 5279.326172
995.733032 5314.230957
996.973877 5276.172852

P-n76-k5
873.727234 4836.452637
881.062134 4826.465332

P-n101-k4
955.617737 5264.867676
957.585205 5232.495605

Conclusions

In most of the advanced countries, green logistic becomes 
an important area of importance. The G-VRP problem 
focuses on environmental issues so that the emissions 
of GHGs may reduce. The consideration of only the en-
vironmental issue may not give the best output to any 
transportation industry. It has to consider the travelled 
distance or time too. Therefore, instead of considering 
only one objective, it is always better to consider both the 
goals. That is why we have designed the G-VRP as multi-
objective optimization problem where the one target is 
the minimization of the distance, and the other goal is 
the minimization of the quantity of CO2 emissions. Here, 
NSGA-II is used as an evolutionary method to get better 
Pareto fronts for the G-VRP. We have shown the results 
of the first Pareto front for both the crisp and the rough 
model, and finally, the decision-maker will choose the best 
one using the VIKOR method. To implement the above 
model using the NSGA-II, we have used some benchmark 
instances from the literature of CVRP. This model can 
make a positive contribution towards society to maintain 
sustainability and a balance between the financial matter 
of the organization and the environmental issues. In fu-
ture, the more extensive research is required in this field to 
develop better multi-objective optimization models, which 
can resolve the problems of the large problems as well as 
that also consider the NO2 emissions. This work can be 
an excellent reference to further research on G-VRP with 
multi-objectives.

End of Table 5Continue of Table 5
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