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Abstract. To improve the service quality and convenience of bus travel services, this paper proposes the Intelligent Bus 
Travel Service Model (IBTSM). The IBTSM makes it possible to provide a travel strategy considering every aspect of bus 
travel, specifically, delay in the peak period arising from limited carrying-capacities of buses. A three-step approach was ex-
ecuted toward implementing the IBTSM. First, the bus travel-time was predicted using Long Short-Term Memory (LSTM). 
Next, the crowding level in the bus was evaluated using a fuzzy expert system, based on which a reasonable start-off time 
was planned, and the delay caused by large passenger flow was circumvented. The k-Nearest Neighbours (k-NN) algorithm 
was used to provide input data of passenger flow. In this study, the correlation between passenger flow variation and bus 
services was investigated to extend the provisions of the travel strategy to include start-off time scheduling and target bus 
selection, rather than only bus running-time estimation. The proposed model was evaluated using a bus in China as a case 
study, and its reliability and positive impact on promoting both the quality of bus services and development of intelligent 
travel were demonstrated.

Keywords: intelligent bus travel service, urban travel, advanced public transportation system, passenger flow, travel-time 
prediction, fuzzy expert system inference.

Introduction

With increased urbanization in China, the urban bus has 
become a very important mean of transportation. Its ad-
vantages include low charges, wide coverage, and large 
capacity. However, some shortcomings of the urban bus, 
such as unstable travel-time and uncertainty of time in-
terval between buses, are significant bottlenecks. The 
conception of the Intelligent Transportation System (ITS) 
(Gerland 1993; Chen 2017) is a good solution for these 
problems. As a subset of the ITS, the Advanced Public 
Transportation System (APTS) deserves further examina-
tion, because of the prevalence of bus travel (Kumar et al. 
2018). The APTS provides bus passengers with useful in-
formation such as travel-time, vehicle positioning, transfer 
information, and route planning. However, it is necessary 
to develop an approach to utilizing this information to 
make the urban bus more attractive and convenient for 
bus passengers. In contemporary China, it is not only the 
traffic situation that can affect bus travel, the passenger 
flow is also a key factor (Mazloumi et al. 2010). Although 
it is rather common for passengers to get stranded in the 
peak periods, scant study has focused on reducing time 

uncertainty to improve travel experiences. Therefore, it is 
necessary to improve the comprehensiveness and effec-
tiveness of the ITS and the APTS.

This study establishes an integrated model named In-
telligent Bus Travel Service Model (IBTSM) to make the 
entire bus trip a smooth one for passengers, especially 
those who travel at peak period. The IBTSM aims to en-
hance bus travel experience by accurate bus travel-time 
estimation incorporating the evaluation of the dynamic 
variation in passenger flow. Although the traffic predic-
tion and passenger flow received much attention, the 
integrated systems have hardly been applied for improv-
ing bus travel service. It means that the topic of traffic 
prediction and passenger flow are always discussed indi-
vidually. While, the travel service information provided 
by the IBTSM takes both the bus travel-time and vari-
ation of passenger flow into account. In relation to the 
travel-time, the accuracy of the travel service informa-
tion can be enhanced by a more suitable approach; and 
on the basis of passenger flow, this paper proposes a new 
method that improves APTS integrity for bus passengers’ 
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start-off time decision. Most passengers highly desire to 
arrive their destination before a specific time. However, 
the delay in peak period, arising from the limited load 
capacity, disturbs the plans to different extent (Dimitrov 
et al. 2017). The IBTSM, being capable of travel strategy 
formulation, can fulfil this requirement. The service is in-
tended to ensure that passengers arrive on time and save 
them unnecessary waiting time. The content of a travel 
strategy includes start-off time, route planning, target bus 
selection, and Estimated Time of Arrival (ETA), mak-
ing it possible for the passengers to receive these above-
mentioned instructions in advance. Therefore, the IBTSM 
devotes to improve the bus passengers’ travel experiences, 
provides visualized bus travel-planning, and motivates 
further development of the ITS.

The rest of this paper is organized as follows: Section 1  
reviews previous studies on bus travel service. Section 2 
describes the characteristics of the IBTSM. In Section 3, 
the IBTSM framework is established. Section 4 demon-
strates the reliability and universality of the IBTSM. The 
conclusions are drawn in the final section.

1. Literature review

One of the most popular applications of the ITS is in the 
bus system. As the basis of the ITS, the provision of trav-
el-time is an important issue (Chen 2017; Yu et al. 2006; 
Yang et al. 2016). Because of the overall dynamics of the 
transportation system, there is often a disparity between 
the actual bus travel-time and the scheduled time (Hua 
et al. 2018). Bus travel-time prediction has attracted exten-
sive scholarly attention. Early related studies were always 
implemented through statistical-based methods. Patnaik 
et al. (2004) establish a multivariate regression model for 
estimating the bus arrival time at all downstream stops 
using the automatic passenger counting system. Sun et al. 
(2007) developed a historical average algorithm to deter-
mine the bus arrival time. They also applied time-series 
analysis to predict travel-time based on the correlation be-
tween time-series and travel-time among historical data. 
Williams and Hoel (2003) implemented a seasonal Au-
toRegressive Integrated Moving Average (ARIMA) model 
aimed at predicting short-term traffic based on the inter-
nal relationship taken from historical data. However, al-
though the above-mentioned models are easy to calibrate, 
establish, and understand, their prediction accuracy is 
relatively low (Chang et al. 2010).

Based on computer techniques, some complex algo-
rithms, such as Kalman filtering (Cathey, Dailey 2003; 
Shalaby, Farhan 2004), Support Vector Machine (SVM) 
(Yu et  al. 2006, 2010; Huang, Ran 2003), and Artificial 
Neural Network (ANN) (Chen et  al. 2004; Wang et  al. 
2014; Huang, Ran 2003; Yu et  al. 2011), have been de-
veloped and applied to the area of travel-time prediction. 
Among all, the ANN has proven to be one of the most 
widely used and efficient prediction algorithm, because of 
its good prediction accuracy and strong capacity to deal 
with complex non-linear problems (Patnaik et  al. 2004; 

Lin et  al. 2013); however, some internal parameters and 
transfer functions in the ANN model are determined 
empirically. The easily implemented and commonly used 
multi-layer perceptron-type ANN was selected to con-
duct travel-time prediction based on the time-of-day, 
day-of-week, and weather conditions. The results gen-
erally demonstrated better indication of the bus-arrival 
time between two adjacent time points, compared with 
the timetable (Chen et al. 2004). A radial basis function 
neural network model was established by Wang et  al. 
(2014) to learn the historical bus travel data that was con-
sidered the basis of the subsequent online adjustment. 
This approach achieved better predicting performance, 
compared to the linear regression and Back-Propagation 
(BP) neural networks. A more sophisticated ANN ap-
proach that considers passenger flow was developed by 
Amita et al. (2016); this approach outperforms the tradi-
tional method. Xu et al. (2019) presented an ANN-based 
travel-time prediction method that incorporates spatial-
temporal relevancy to infer the travel-time distribution; 
they achieve relatively high prediction accuracy with low 
expenditure. To improve the prediction accuracy, some 
revised algorithms, such as the Bayesian inference theory 
(Van Hinsbergen et al. 2009) and particle swarm optimi-
zation (Ji et al. 2016), are combined with the ANN. These 
combined algorithms achieve vastly better prediction 
performance than the separate ones. However, although 
these methods considerably improve the accuracy of the 
original models, they do not overcome the fundamental 
drawback of various types of the ANN algorithm that as-
sumes that the sample data is independent (Zhou et  al. 
2017). As a result, the prediction accuracy was decreased 
as the data-to-data relationship was neglected. 

Generally, previous studies on bus travel-time focused 
solely on bus driving. Moreover, a majority of them were 
described from the perspective of technological progress. 
However, receiving accurate bus arrival information is 
also important to passengers to reduce their anxieties and 
waiting time at the bus stop (Yu et al. 2011). One of the 
most critical problems is the delay caused by a large num-
ber of passengers. Previous studies on bus passenger flow 
mainly focused on providing a reasonable schedule (Zhao 
et al. 2011; Zhang et al. 2017), and improving the efficien-
cy of the public transportation service (Liu et  al. 2017; 
Bai et  al. 2017) from the perspective of bus companies. 
Gradually, some scholars began to consider the influence 
of huge crowds on traffic and passenger delay. Nagatani 
(2001) explores the interaction between buses and pas-
sengers, and stresses that scant attention has been paid 
the necessity of devising measures to minimize passenger 
delay, a matter of great significance to the public. Dim-
itrov et al. (2017) conclude that the load does not impact 
average passenger waiting time at bus stops when the pub-
lic transport passenger load was not close to bus capacity. 
Ding and Xu (2016) constructed a forecasting method 
for passenger flow based on the theory of angle expenses 
to obtain the waiting-passenger distribution. The results 
indicate that delay to the passenger would disrupt travel 
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plans, and lead to changes in transportation modes. Al-
though bus scheduling can solve the problem of passen-
ger delay, no effective method has been proposed consid-
ering the passengers. Therefore, this study aims to explore 
the problem of passenger delay from the perspective of 
bus passengers. This is achieved by guiding passengers on 
planning their start-off time and itinerary via the IBTSM 
to minimize the difference between the actual arrival 
time and the expected arrival time as much as possible. 

2. Model description

2.1. Research scope

This study covers the entire process of traveling by bus. 
This process is divided into four parts: “walking to the 
bus stop”, “waiting for the bus”, “bus driving”, and “walk-
ing to the terminal”. The process is illustrated in Figure 1. 
In this figure, Busi is the target bus recommended by the 
IBTSM for the passengers. Busi–1 is the bus immediately 
before Busi. Similarly, Busi–2 is the bus preceding Busi–1. 
“Bus driving” in this study refers to the bus running-time 
from Stopm to Stopn, in which, Stopm represents a bus 
station located between the origin stop and the terminal 
stop of a bus line. Therefore, Stopm is defined as the pas-
senger’s departure bus stop, while Stopn is the passenger’s 
arrival stop. The goal of the IBTSM is for the passengers 
to board the target bus, and not be stranded at the station. 
The earlier they arrive at the station, the higher the pos-
sibility of boarding the target bus in an orderly manner. 
“Departure” refers to the departure of buses, and “start-
off ” refers to the moment the passengers set out. With the 
objective of reducing the uncertainties of bus travel, the 
characteristics of the four components are systematically 
analysed. “Walking to bus stop” and “walking to terminal” 
refer to the process of walking to the bus stop and walking 
to the destination, respectively. To simplify the model, it 
is assumed that the speed of walking to the bus stop and 
walking to the terminal is constant at 1.2 m/s. Therefore, 
the walking time tw was assumed to be prone to few un-
certainties and be easily measured by Equation (1):

w
St
v

= ,  (1)

where: v  represents the constant speed; S is the walking 
distance between the start-off position and Stopm.

Compared with the two walking processes, bus travel 
period is characterized by great uncertainty, because the 
transportation system, with people involved and its time 
variability, is a complex system. It is subject to timing, 
multiple influencing factors, and non-linearity (Marfia, 
Roccetti 2011; Chan et  al. 2012). Therefore, a bus travel 
prediction approach was applied to explore its underly-
ing rule.

With increasing attention on APTS construction, 
on-board Global Positioning System (GPS) positioning 
facility for urban buses has become a standard configura-
tion in many cities in China. Although this significantly 
eliminates waiting time uncertainty, large passenger flow 
during peak period increases the degree of congestion, 
and might even result in the passenger failing to get on 
the approaching bus. Thus, with the aim of providing a 
practical travel strategy, the dynamic passenger flow was 
taken into consideration as well. The framework of the 
IBTSM, according to the scope of the study, is presented 
in the next section.

2.2. The IBTSM description

The goal of the IBTSM is to enable bus passengers to get 
on the target bus. There are two key problems to be solved. 
The first is identifying the target bus. The second is deter-
mining how the passenger can board the target bus suc-
cessfully. The target bus can be identified by the bus travel-
time prediction. However, the second problem depends on 
the dynamic influence of the passenger flow. Because it is 
hard to change the bus schedule to minimize the delay at 
a bus stop, the desired effect can be achieved by guiding 
the passengers’ behaviour. Therefore, the framework of 
the IBTSM is designed to solve these two key problems. 
The IBTSM is a data-driven model. The function of the 
IBTSM is realized by analysing large amounts of historical 
data. The function realization process of the entire model 
decomposes the bus travel process, and runs it step-by-
step according to the goals of each stage. Generally, the 
boarding time is initially deduced through the ETA. Next, 
the start-off time is determined based on the influence 
of dynamic passenger flow. Then, the simplified walking 
time is calculated. Ultimately, the acquired information 
is published, and travellers are provided with travelling 
strategies.

Figure 1. Overall process of bus travel
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Figure 2 illustrates the detailed implementation pro-
cess of the IBTSM. First, historical bus running data are 
collected. Second, Long Short-Term Memory (LSTM)-
based travel-time prediction is implemented to deter-
mine the target bus. This step solves the first problem and 
generates Travel Plan 1 in the context where there is no 
dynamic influence of passenger flow. However, the peak 
period presents more complications. In this situation, 
the k-Nearest Neighbours (k-NN) algorithm is applied to 
predict the passenger flow. Based on the k-NN prediction 
results, the fuzzy expert system infers a reasonable start-
off decision strategy. Thus, Travel Plan 2 is generated, and 
the second problem is thereby solved. Finally, the travel 
plans are presented to the passengers.

The critical uncertain problems in the overall travel-
ling process are considered in the IBTSM. Considering 
the limitation of the LSTM model, the IBTSM, with the 
goal of devising convenient bus travel for passengers, 
tackles the uncertainty caused by dynamic passenger flow. 
Therefore, the fuzzy expert system, through proper user 
instruction, eliminates the negative impact of dynamic 
passenger flow to the greatest possible extent. Because the 
input of the fuzzy expert system relates to situations in 
the near future, the k-NN, a stable prediction approach, 
is employed for providing the predicted passenger flow 
data. 

2.3. The LSTM

The transportation system is subject to uncertainty, tim-
ing, and multi-factorial characteristics. Thus, traffic pre-
diction is a thorny issue. Travel-time prediction is at the 
basis of providing travel services. Therefore, the establish-
ment of a time-variant, non-linear, and multi-input pre-
diction model is the key to ensuring accurate and reliable 
traffic prediction.

The ANN has powerful information-processing capa-
bility that has been amply demonstrated in many different 
areas. In this paper, the LSTM, a special Recurrent Neu-
ral Network (RNN), is applied for travel-time prediction. 
The LSTM enables to solve the prediction problem in the 
near future, which greatly satisfies the research objective 
of travel-time prediction. Depending on its capability of 

dealing with the time-series and non-linearity and reflect-
ing the changing status or degree of things over time, the 
LSTM can overcome the disadvantages of the RNN gra-
dient diffusion and gradient explosion by replacing the 
RNN’s hidden layer with a memory module (Gers et  al. 
2000). It has been applied for short-term traffic forecast 
for road traffic control (Zhao et  al. 2017). Similarly, Pe-
tersen et  al. (2019) propose an LSTM-based bus travel-
time prediction model that can detect irregular peaks in 
bus travel-time and provide satisfactory prediction. The 
realization of the LSTM’s “long-term memory” relies on 
the transformation of memory cells, and most important-
ly, the control of the “cell state”.

As shown in Figure 3, controlling the cell state is a 
three-step operation involving the forgetting gate, input 
gate, and output gate. The forgetting gate produces a 
number ft (between 0 and 1) to control the forgetting-
level of the previous unit state, according to the previous 
output ht–1 and current input xt. The input gate generates 
a candidate vector tC  to control the inclusion of new in-
formation in updating the cell state Ct. The output gate 
generates a number ot (between 0 and 1) to control the 
degree of participation through the sigmoid function in 
the current cell state. Based on the LSTM-based travel 
prediction, the IBTSM can capture the short-term bus 
running rules. Thus, it provides the possibility of deter-
mining the passenger’s travel plan in relation to a specific 
bus. This study defines this specific bus as the target bus. 
Bus arrival is a discrete process; hence, it is necessary for 
passengers to transform the timespan of their travel plan 
according to an accurate vehicle selection.

Figure 2. Flow diagram of the IBTSM
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2.4. k-NN algorithm

However, bus passenger flow conforms to a certain rule of 
change with time. Accurate passenger flow information in 
the near future can be obtained through systematic data 
analysis. Because the non-parametric method has proven 
to be effective in many studies (Lin et al. 2013), a widely 
used non-parametric regression method, the k-NN al-
gorithm (Hu et al. 2008), is adopted to predict the pas-
senger flow. The estimated passenger flow is used as an 
input variable in the fuzzy expert system for deciding the 
start-off time.

The execution process of the k-NN algorithm requires 
a training dataset (including both features and labels) 
and prediction dataset (including features only). In the 
training dataset, the closest k samples to the features of 
the prediction data are determined. These k samples are 
composed of several labels that represent different char-
acteristics waiting for distinguishing. Therefore, the pre-
diction data can be labelled based on majority of the label 
category in these k samples. “The nearest neighbour” is 
measured according to the Euclidean distance, as shown 
in Equation (2):

( ) ( ) ( ) ( )2 2 2 21 1 2 2 3 3 ,n n
i i i i id x x x x x x x x= − + − + − + + −   


 

(2)

where: di represents the distance between the predicted 
data and the ith training data; 1

ix  is the first feature of the 
ith training data; 1x  represents the first feature of the pre-
dicted data; n is the total number of features of the dataset.

2.5. Fuzzy expert system

The fuzzy expert system is formed by combining the ex-
pert system and fuzzy logic. The expert system has the 
capacity of intelligent information-processing, and can 
make imprecise reasoning using symbolic reasoning en-
gines (Azadeh et  al. 2008). The fuzzy logic provides an 
inference mechanism for the expert system. In the fuzzy 
expert system, the entire process includes four sub-pro-
cesses: fuzzification, inference, composition, and defuzzi-
fication (Hornik, Ruf 1997). Fuzzy inference is the core of 
the fuzzy expert system. It is a process of logical reasoning 
for uncertain and fuzzy problems using knowledge base 
and reasoning rules. The fuzzy reasoning completes the 
non-linear mapping from the input space to the output 
space that is denoted as follows: “if a is X , then b is Y”. 
The fuzzy expert system demonstrates its superiority in 
the study of complex systems, and finally realizes the goal 
of enabling the computer make decisions according to hu-
man’s will (Azadeh et al. 2008).

Based on the current situation of bus scheduling, the 
fuzzy expert system helps determine the behavioural de-
cision of passengers (how long ahead of time to start-off). 
It should meet the following assumption that the passen-
gers wait in line after arriving at Stopm to ensure orderly 
boarding.

3. Modelling

The IBTSM is composed of multi-stage processes as shown 
in Section 2. Detailed information on every step in each 
stage is illustrated in Figure 4 and explained in the follow-
ing subsections. 

3.1. The LSTM-based travel-time prediction
In this study, historical bus running data were acquired 
using GPS positioning, and hourly weather data issued by 
the meteorological bureau were collected. Meanwhile, bus 
passenger flow data for two weeks were obtained using a 
field survey. The bus of No 976 in Shanghai was chosen 
as a case study. Some basic information of bus No 976 is 
as follows. The entire length of the route is approximately 
14 km and there are 25 stops along it. The operating time 
is from 5:30 to 22:30 every day. On-board GPS position-
ing is installed on each bus. The Lingzhao road, Shangnan 
road station, was chosen as Stopm, and the Longyang road 
metro station was defined as Stopn. The total length of the 
route is 12.7 km.

In a two week timespan, 1332 effective operation data 
from Stopm to Stopn was obtained, including departure 
and arrival time. Considering the influence of external 
factors on bus travel, a total of 10 variables were identified 
as the input variables of the LSTM. These 10 variables can 
be divided into two categories according to their proper-
ties. Three of them were labelled time-related factors, in-
cluding month, week, and day. Variables in this category 
did not only reflect specific days; they also reflected some 
underlying information, such as different traffic laws and 
characteristics on different working days and legal holi-
day information. Another category was weather-related 
factors, including dry-bulb temperature, dew-point tem-
perature, humidity, air pressure, visibility, wind speed, 
and precipitation intensity. They were all obtained from 
the hourly meteorological data issued by the meteorologi-
cal station. As indicated in a previous study (Chen et al. 
2004), not considering the weather condition may result 
in inaccurate prediction results. With the participation of 
hourly temperature, precipitation and sky condition, they 
obtained the desirable traffic prediction result. In addi-
tion, as shown in the correlation analysis, the traffic flow 
is proved influenced by weather information including 
temperature, humidity, visibility, wind speed and gust, 
dew-point, cloud layer height, and general weather condi-
tions. Different weather conditions also cause the changes 
of free flow speed, capacity and trip-maker decision (Akin 
et al. 2011). For example, the wet road surface is reflected 
through index of air humidity and the various air temper-
ature may lead to different driver behaviours. The factors 
in this category impact travel-time prediction to varying 
extents. Therefore, the decision was made to retain all as 
the input variables. All the input variables in the LSTM 
are primary data that have not been pre-processed. 

The departure time and arrival time are determined 
as two output variables. Similar to the travel-time, these 
two output variables can reflect the time-series charac-
teristic, and provide possibilities for target bus selection.  
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Figure 4. Implementation process of the IBTSM
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Thus, 10 input features and two prediction objects were 
incorporated into the initial dataset. Details on the vari-
ables and their units are given in Table 1. Following Table 
1, the initial dataset was converted into the time-series 
dataset, which is adapted to supervised learning. Of this 
time-series dataset, 99% of the data (1318) were used for 
the training set, and the last 1% (14), as the test set. By 
means of trial and error, the hidden layer was determined 
using six neurons. The batch size was 128, and the maxi-
mum number of iterations was 1000. The optimizer of 
Adam’s algorithm was employed and the LSTM program 
was executed in Python (https://www.python.org).

Table 1. Input and output data information of the LSTM

Variable Data field Unit
Dry-bulb temperature 8…29 °C
Dew-point 
temperature

–6…19 °C

Humidity 12…94 %
Air pressure 1002…1023 hPa
Visibility 2…10 km
Wind speed 3.6…39.6 km/h
Precipitation intensity 0…19 mm/h
Month 4 –
Week 3…4 –
Day Monday…Friday –
Departure time 5:32…22:36 –
Arrival time 6:03…23:13 –

3.2. Fuzzy expert system inference

3.2.1. Variables definition
Identifying the proper influential factors is an important 
task for establishing the fuzzy expert system. Considering 
the correlation of the bus running rules and the passenger 
flow variation, the degree-of-peak A, time headway B, and 
number of people waiting at Stopm when Busi comes C are 
regarded as three influential factors of behavioural deci-
sion D. The variable A does not refer to traffic flow but 
number of passengers. Variable B is the key indicator of 
behavioural decision, because the number of passengers 
waiting at the station gradually increases with the exten-
sion in time headway. In fact, it reflects the relative num-
ber of passengers, because time headway extension hap-
pens with the process of passengers’ accumulation. Vari-
able C is specifically referenced, because a long queue may 
contribute to a crowd of delayed passengers. Variable D is 
the start-off strategy via catching the target bus provided 
by the LSTM. Therefore, the discussion of the behavioural 
decision exists as an independent stage in this study. 

To convert this practical issue into a fuzzy set prob-
lem, A, B, and C are each divided into three affairs in their 
own fuzzy sets to represent the degree, tagged High (H),  
Medium (M), Low (L). Likewise, D is composed of four 
affairs in the entire fuzzy sets: Very Early (VE), Early (E), 
Little Early (LE), and Regular (R).

3.2.2. Variable validation
To verify that A, B and C have an impact on D, the Ordi-
nary Least Square (OLS) is used to conduct multivariate 
regression analysis. In this regression analysis, A, B, and 
C are respectively represented by numerical variables, x1, 
x2, x3. x1 is the total number of people riding in the bus 
and waiting at the stop when a bus arrives Stopm. x2 is 
the crisp value of time headway, and x3 is the number of 
people waiting at Stopm when the bus arrives Stopm. D is 
regarded as the explanation of variable y. y is a relative 
value in the regression equation, not the crisp value of 
time. When y > 1, passengers are to prepare for start-off in 
advance. On the contrary, when y < 1, the bus is not fully-
loaded, thus eliminating the need to start-off early. Hence, 
y = 1 is defined as the condition of the bus being fully-
loaded without stranded passengers. y is determined by 
Equation (3). According to Equation (3), the fully-loaded 
state refers to the existence of delayed passengers when 
the bus leaves Stopm. When there are 85 people aboard 
the bus, it is defined as the state of fully-loaded. At that 
time, it is considered no passenger delay based on statisti-
cal average data. The linear regression equation is shown 
in Equation (4).

number of people boarding + number of passenger delaying
;

number of definedfully-loaded
=y

 (3)

0 1 1 2 2 3 3y x x x= b +b ⋅ +b ⋅ +b ⋅ .  (4)

By collecting the field data of the bus arrival at Stopm, 
the bus arrival time and passenger number data from 7:00 
to 9:00 on work days over the course of two weeks were 
obtained. The regression-equation-fitting explanatory 
variables and explained variables were obtained by run-
ning the STATA software (https://www.stata.com). Then, 
the overall reliability of the equation and the accuracy 
of each parameter were tested. The regression result is 
shown in Table 2, where the judgment coefficient of R2 
equals 0.8814, for 232 effective statistical samples. The ex-
planatory variables – x1, x2, x3, are statistically significant 
at the 1, 5, and 10% levels, respectively, which shows good 

Table 2. Regression results checklist

OLS form 0 1 1 2 2 3 3y x x x=b +b ⋅ +b ⋅ +b ⋅

b0 –0.393 (0.119)
b1 0.0123** (0.000)
b2 0.091* (0.037)
b3 0.0027** (0.003)
n 232
F (3, 228) 564.93
DW test 1.82
R2 0.8814
Mean VIF 1.38
Probability > c2 0.2679

Note: **, * mean 1 and 5% are statistically significant.

https://www.python.org
https://www.stata.com
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explaining results to y. Furthermore, the regression equa-
tion meets the requirements of the F-test. The White test, 
Durbin–Watson (DW) test, and Variance Inflation Factor 
(VIF) test indicated that there was no heteroscedasticity, 
sequence autocorrelation, and multicollinearity in the re-
gression analysis. From the perspective of realistic signifi-
cance, the increase of x1, x2, x3 contributes to the rising of 
y. The result coincides with the physical truth. Therefore, 
the reasonability of the variable setting of the fuzzy expert 
system is established.

3.2.3. Defining the membership function
According to the statistical data of the samples in the 
established regression equation, the ranges of the crisp 
value of A, B, and C are defined, and the corresponding 
fuzzy description, which is clarified in the Section 3.2.1, is 
shown in Table 3. Specifically, the normalization is based 
on the linear interpolation. For behavioural decision, D 
the earlier the bus arrives at Stopm, the higher probabil-
ity of the passenger boarding the target bus in an orderly 
fashion. Supposing that Hi,i–1 is the time headway of Busi 
and Busi–1, Ni,i–1 is the number of passengers coming to 
Stopm between Busi–1 departing and Busi arriving, Li,i–1 of 
Ni,i–1 delay after Busi departing Stopm, the crisp value of 
the start-off time T in advance can be calculated via Equa-
tion (5). Considering the phenomenon of delay may hap-
pen with Busi–1, Busi–2, … the modified T ′ is determined 
by Equation (6). Thus, the detailed fuzzy classification in-
formation of D, which is pre-defined in the Section 3.2.1, 
is shown in Table 4.

, 1
, 1

, 1

i i
i i

i i
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T H

N
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= ⋅ ;  (5)
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According to the fuzzy classification of each variable, 
the triangle function and trapezoid function are jointly 
used to construct the membership functions of A, B, C, 
and D, as shown in Figure 5. For improving the integ-
rity of the system, the coverage degree of the membership 
function e is as close as possible to 0.5.

3.2.4. Setting fuzzy rules

The establishment of the fuzzy rule base is the core of the 
fuzzy expert system. It is also the basis for fuzzy inference. 
The establishment of the fuzzy rule base mainly depends 
on extracting some useful information from the statisti-
cal samples. The variables in the original multivariate re-
gression equation vary in the different units. Therefore, 
the degree of influence on the explained variable cannot 
be measured. The Standardized Regression Coefficients 
(SRCs) are used for providing a quantitative measure of 
the variable sensitivity. It is an intuitive indicator of vari-
able sensitivity. The method of calculating the SRCs is 
shown in Equation (7), where si is the estimated standard 
deviation of xi, and sy is the estimated standard deviation 
of y. Equation (8) is the standardized regression equation. 
Same variation degree of x1 causes y to vary widely:

( ), i i
SRC i

y

s
U x y

s
b ⋅

= ;  (7)

0 1 2 30.89 0.53 0.08 .y x x x= b + ⋅ + ⋅ + ⋅   (8)

By combining the preset fuzzy sets and variable sen-
sitivity, 27 fuzzy rules are established. The fuzzy rule base 
is shown in Table 5.

3.3. k-NN-based passenger flow prediction

The k-NN is used to provide input data for the fuzzy ex-
pert system, because the passenger flow-related variables 
also need to be known ahead. Whether the k-NN shows 
good performance determines the availability of the en-
tire model. There are two objects in the k-NN prediction, 
variables A and C. Considering the characteristic of time-
series, five variables, including Hi,i–1, number of people 
riding on Busi–1, Hi–1,i–2, number of people riding on 
Busi–2 and departure time of Busi, are determined as the 
k-NN inputs for A. According to the measured range of 
the crisp value – [50, 100], five intervals are demarcated 
equally to reflect different peak periods and are defined 
as labels. In the prediction of C, the variable number of 
people getting on Busi–1 at Stopm is regarded as the 6th 
characteristic variable. Meanwhile, C is also divided into 
five groups represented by five labels covering the entire 
range of the crisp value – [0, 30]. 

Table 3. Fuzzy classification of variables A, B, C 

Variable Fuzzy 
description

Range of 
crisp value Unit

Range after 
normaliza-

tion

A
H [80, 100]

Person
[0.6, 1]

M [70, 90] [0.4, 0.8]
L [50, 80] [0, 0.6]

B
H [2, 4]

Hundred 
second

[0.5, 1]
M [1, 3] [0.25, 0.75]
L [0, 2] [0, 0.5]

C
H [15, 30]

Person
[0.5, 1]

M [10, 20] [0.25, 0.75]
L [0, 15] [0, 0.5]

Table 4. Fuzzy classification of D

Fuzzy description Range of crisp value 
[hundred second]

Range of 
normalization

VE [6.9, 11.5] [0.6, 1]
E [3.45, 9.20] [0.3, 0.8]

LE [0, 5.75] [0, 0.5]
R [0, 1.15] [0, 0.1]
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4. Result and discussion

The reliability of the IBTSM mainly depends on the ac-
curacy of the outcomes in each phase. Accurate outcomes 
ensure that the error is propagated within the allowable 
range. In this section, the results of three stages (the 
LSTM-based travel-time prediction, the k-NN-based pas-
senger flow prediction, and the fuzzy expert system infer-
ence) and the effectiveness of the IBTSM are discussed. 

4.1. The LSTM

After the calculation of the iteration, the absolute error 
between the LSTM-based simulation results and the actual 
value are shown in Figure 6; it shows the deviation be-
tween the predicted bus departure time, arrival time, and 
the actual data. The prediction error exhibits a gradually 
increasing trend with the passage of time, which reflects 
the recursion characteristic of the LSTM. Consequently, 
the first four groups in the test set demonstrate good 
prediction result, and the absolute error of the predicted 
departure time and arrival time does not exceed 2.5 m,  

indicating that the prediction results are effective for 
the coming hour. To prove the superiority of the LSTM 
method, one frequently used prediction method, the BP 
neural network, is selected for comparison in this study. 
As shown in Figure 7, the results of the BP neural net-
work prediction are relatively unstable. Although part of 
the prediction data shows a large deviation, some exhibit 
good performance. It is difficult to determine which is ac-
curate or imprecise in advance. 

From another point of view, the actual bus travel-time 
can also be considered as a key indicator of the effective-
ness of the LSTM approach. The actual bus travel-time 
can be calculated according to the departure time and 
the arrival time. To measure the accuracy and stability of 
the prediction result, the Mean Absolute Percentage Er-
ror (MAPE) and Root Mean Square Error (RSME) are 
used to evaluate the prediction effect of the LSTM and 
the BP neural network. The MAPE is used to determine 
the prediction accuracy, while the RSME is used to meas-
ure the discrete degree of the sample and stability of the 
prediction. The calculation of these two indicators is rep-
resented in Equations (9) and (10). Table 6 shows the 
bus travel-time prediction performance of the data in the 
test set. The MAPE of the LSTM is 3.56% and is smaller 
than the 5.16% generated by the BP neural network. The 
RSME of the LSTM is 2.35, while the RSME of the BP 
neural network is 3.09. These all indicate that the LSTM 
is much more stable than the BP neural network, and its 
prediction error is smaller.

1

1 100%
N

i i

ii

t t
MAPE

N t=

−
= ⋅ ⋅∑



;  (9)

( )2
1

1 N

i i
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RSME t t
N =

= ⋅ −∑  .  (10)

Figure 5. Membership function of each variable
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Nevertheless, only the prediction result of the near 
future is required for providing the decision basis for pas-
sengers. Because of the unique recursive characteristics of 
the LSTM, the prediction error of the LSTM will gradual-
ly increase with the increase in the number of prediction 
data. Consequently, the error accumulation relating to the 
near future has been controlled to a certain extent, and a 
relatively ideal result can be obtained. However, the BP 
neural network assumes every piece of data is completely 
independent. In this way, the LSTM has stronger ability 
to mine the underlying data link than the BP neural net-
work. The experiment result showed above buttresses this 
point. Therefore, the LSTM is more suitable for travel-
time prediction and selection of target buses.

4.2. Fuzzy expert system inference

Based on the defined membership functions and fuzzy 
rules, the simulation of the fuzzy expert system is im-
plemented using the fuzzy toolbox in MATLAB (https://
www.mathworks.com/products/fuzzy-logic.html). Com-

puter arithmetic can significantly improve the efficiency 
of calculation, while avoiding a mass of matrix iteration, 
and forming a visual interface. The default Mamdani al-
gorithm is deployed for fuzzy inference, and the centroid 
method is used in the defuzzification process. Figure 8 
shows the surface of fuzzy inference among ABD, BCD, 
and ACD. Figure 9 shows the interface of the fuzzy rules 
in the fuzzy toolbox. 

Using pre-set fuzzy rules in the MATLAB, this study 
verifies the validation of the fuzzy expert system. The 
calculated value T ′ is compared with the simulated one, 
and the absolute error is selected as the evaluation index. 
Table 7 presents 13 sets of random data following nor-
malization processing. The mean absolute error is 1.9 m, 
similar to that of the LSTM prediction, and the standard 
deviation is a mere 0.94. Therefore, the fuzzy expert sys-
tem can be considered to satisfy the basic requirement of 
the IBTSM with considerable stability.

Overall, due to the complexity of the transportation 
system and the dynamic variation in passenger flow, it is 
difficult to accurately evaluate the behavioural decision 
of the passengers. Through the validation of the variable, 
it is apparent that the multivariate regression equation 
possesses a goodness of fit. However, this study did not 
choose linear regression as the basis of behavioural de-
cision, because of the following points. Firstly, A, B and 
C do not rigorously comply with the linear relation with 
D, while the least square method is only a linear-fitting 
process. The fuzzy expert system is a non-linear fitting 
process that can better reflect the reality based on fuzzy 
rules. In addition, the value of the behavioural decision 
obtained by linear regression is not stable, which means 
that it is larger or smaller than the real value indetermi-
nately. In the process of fuzzification and defuzzification, 
a conservative algorithm is adopted to leave room for ad-
justing the behavioural decision and responding to emer-
gencies or system inaccuracy. Furthermore, the fuzzy ex-
pert system is closer to the human thought process and 
accords with human cognition. The fuzzy expert system 
furnishes passengers with information on general start-
off time, and possesses great capacity for generalization 
and adaptation.

4.3. The k-NN result

Based on the variable preset, the k-NN program is ex-
ecuted in MATLAB. The k value, as a critical parameter, 
should be determined in advance. This process is usually 
based on operating experience. As a result, trial and error 
is deployed for determining the k value. To avoid acciden-
tal fluctuations in the forecast accuracy, cross-validation 
is implemented with the k value varying from 1 to 100. 
All 232 statistical samples used to establish the regres-
sion equation are included in the k-NN model building. 
Of the 232, 222 are utilized as the training data, and the 
remaining 10 samples compose the test set. The result of 
the k-NN with varying k values is shown in Figure 10. The 
blue dash-dot line represents the accuracy rate of predic-

Figure 6. Absolute error of LSTM prediction

Figure 7. Absolute error of the BP neural network prediction
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Table 6. Comparison of the travel-time prediction results

Indicator LSTM BP neural network
MAPE [%] 3.56 5.16
RSME 2.35 3.09

https://www.mathworks.com/products/fuzzy-logic.html
https://www.mathworks.com/products/fuzzy-logic.html
file:///D:/TRANSPORT/%2bTRANSPORT_01_2021/javascript:;
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tion using variable A. The red line represents the accuracy 
rate of prediction using variable C. When k = 18, the pre-
diction accuracy of A is as high as 80%. When k = 38 or 
k = 39, the accuracy rate of C is 80%. The cross-validation 
proves that the k-NN can yield reliable prediction perfor-
mance within a limited sample size.

4.4. Evaluation of the IBTSM

The IBTSM guides passengers to make reasonable deci-
sions based on the influence of the dynamic passenger 
flow. The IBTSM is proven to be capable of completing 
expected tasks. The most important thing is that the 
IBTSM can effectively incorporate the influence of dy-
namic passenger flow. In practice, bus arrival time can be 
determined by incorporating the LSTM prediction into 
real-time GPS positioning. Similarly, through broader 
data collection, the IBTSM can capture the passenger flow 
information more accurately, thereby improving the ac-
curacy of the model.

Conclusions

To improve bus service quality, this study aimed to im-
prove the comprehensiveness and effectiveness of the 
APTS through the IBTSM. The IBTSM integrates these 
improvements and promotes them to form a systematic 
process. In the IBTSM, problems associated with bus travel 
services are explored from unique perspectives to ensure 
the maximum convenience of passengers. At the same 

Figure 8. Surface of fuzzy inference: a – inference of ABD; b – inference of BCD; c – inference of ACD

Figure 9. Fuzzy rules in fuzzy toolbox

Table 7. Verification of the fuzzy expert system result

Number A B C
Calculated 

value 
[min]

Simulated 
result 
[min]

Absolute 
error 
[min]

1 0.68 0.02 0.70 4.2 6.4 2.2
2 0.73 0.38 0.63 5.0 7.6 2.6
3 0.53 0.59 0.23 7.8 6.7 1.1
4 0.70 0.50 0.47 9.0 6.7 2.3
5 0.92 0.42 0.80 10.8 14.0 3.2
6 0.75 0.61 0.53 12.8 9.9 2.9
7 0.52 0.58 0.37 6.0 6.5 0.5
8 0.70 0.31 0.73 7.2 8.3 1.1
9 0.78 0.58 0.63 10.3 9.6 0.7

10 0.73 0.91 0.43 14.4 12.6 1.8
11 0.38 0.44 0.10 2.7 3.7 1.0
12 0.42 0.01 0.50 2.7 0.7 2.0
13 0.75 0.92 0.57 9.5 13.0 3.5
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Figure 10. Prediction accuracy of k-NN with varying k value
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time, the IBTSM considers overall process of bus travel, 
including walking, bus driving, and waiting for bus. The 
consideration of the integral process greatly reduces the 
deviation in the result caused by uncertainty and makes it 
easier to determine the start-off time. An in-depth study is 
conducted on bus travel-time prediction using the LSTM. 
Not only does it do a good job of forecasting, it is also the 
basis for the selection of the target bus, which optimizes 
the effectiveness of the APTS. Meanwhile, a module of 
passenger strategy exploration is incorporated into the 
IBTSM to ensure for convenience of passengers during 
the peak period. In this module, the fuzzy expert system 
inference is applied to guide the start-off time planning 
for passengers to board the target bus. This module is 
regarded as the supplement of the APTS. Generally, the 
IBTSM, through the analysis of the overall process of bus 
travel, furnishes passengers with an intelligent bus travel 
plan, thus enabling them to arrive on time. The intelligent 
bus travel plan is delivered to the passengers in a timely 
manner through a mobile application. 

Studies investigating passenger flow variation are re-
quired to critically to guide passengers through the bus 
travel experience. It is the basis of furnishing passengers 
with the start-off time scheduling and target bus recom-
mendation all day long. As a result-oriented model, the 
IBTSM is capable of satisfying the requirement of arriving 
at the specified time in different scenarios. The IBTSM 
eliminates the need for bus passengers to worry about 
delay or long waiting time, because all the possible situa-
tions are considered in advance. Compared with previous 
studies on bus travel-time prediction, this study gives pri-
ority to the provision of travel service, rather than merely 
exploring traffic laws. Therefore, the IBTSM greatly im-
proves passengers’ bus travel experience, and reduces the 
stress caused by daily travelling. This will also boost bus 
travel services, as the IBTSM makes bus travel an attrac-
tive approach. Moreover, the IBTSM plays a certain role 
in promoting the development of intelligent travel and 
smart life.
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