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Abstract. The aim of this article is to enhance performance monitoring of a two-stroke electronically controlled ship pro-
pulsion engine on the operating envelope. This is achieved by setting up a machine learning model capable of monitoring 
influential operating parameters and predicting the fuel consumption. Model is tested with different machine learning 
algorithms, namely linear regression, multilayer perceptron, Support Vector Machines (SVM) and Random Forests (RF). 
Upon verification of modelling framework and analysing the results in order to improve the prediction accuracy, the best 
algorithm is selected based on standard evaluation metrics, i.e. Root Mean Square Error (RMSE) and Relative Absolute 
Error (RAE). Experimental results show that, by taking an adequate combination and processing of relevant sensory data, 
SVM exhibit the lowest RMSE 7.1032 and RAE 0.5313%. RF achieve the lowest RMSE 22.6137 and RAE 3.8545% in a set-
ting when minimal number of input variables is considered, i.e. cylinder indicated pressures and propulsion engine revolu-
tions. Further, article deals with the detection of anomalies of operating parameters, which enables the evaluation of the 
propulsion engine condition and the early identification of failures and deterioration. Such a time-dependent, self-adopting 
anomaly detection model can be used for comparison with the initial condition recorded during the test and sea run or 
after survey and docking. Finally, we propose a unified model structure, incorporating fuel consumption prediction and 
anomaly detection model with on-board decision-making process regarding navigation and maintenance.

Keywords: energy efficient shipping, propulsion engine, condition based maintenance, sensory data, machine learning, 
regression estimation, anomaly detection.

Notations

AIC – Akaike information criterion;
CBM – condition-based maintenance;
CFD – computational fluid dynamic;

CoCoS-EDS – computer controlled surveillance engine 
diagnostic system;

CRISP-DM – cross-industry standard process for data 
mining;

CV – cross validation;
DELM – deep extreme learning method;
DWT – deadweight tonnage;

ECS – engine control system;
ELM – extreme learning machine;
EVF – extreme value factor

FCM – fuzzy c-means
FOC – fuel oil consumption

GKNN – generalized k-nearest neighbour classifica-
tion;

GLM – generalized linear model;

IMO – International Maritime Organization;
IoT – internet of things;
ISO – International Organization for Standardi-

zation;
IQR – interquartile range

LS – logarithmic transformation;
LS-SVM – least-squares support vector machines

MCR – maximum continuous rating;
MEP – mean effective pressure;

MEPC – Marine Environment Protection Commit-
tee;

MLP – multilayer perceptron;
NCR – normal continuous rating;
PMI – pressure mean indicator;
PSO – particle swarm optimization;
RAE – relative absolute error [%]; 

RBFNN – radial-basis function neural network;
RF – random forest;
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Introduction

With the development of technology, the volume of data 
generated by the ship’s alarm and monitoring system is 
rapidly growing (Rødseth et al. 2016), even with its basic 
functionality of providing the ship’s officers the principal 
alarm and status information to maintain safe and effi-
cient operation of the machinery and related equipment. 
Data collected on-board, provide more information than 
human operator can comprehend; hence those data need 
to be fast and accurately processed and transformed into 
useful information and knowledge. Analytical tools enable 
the analysis of gathered sensory data in order to gain the 
insights that supports the decision-making process in ship 
operations (Murphy 2006; Kelleher et al. 2015). 

IMO, through its MEPC recognize the most appropri-
ate, efficient and feasible plans for energy savings and en-
courage goal setting and actions to reduce energy use on 
seagoing ships. Setting achievable goals creates an incentive 
and increases the commitment of participants in the pro-
cess to improve energy efficiency. Regardless of the specif-
ics of the goal, the process must be measurable and easy to 
understand (MEPC 2016). Fuel consumption non-linearly 
depends on ship navigating speed and propulsion engine 
load and technologies and procedures used in the mari-
time industry to, in some way, achieve energy goals mainly 
rely on that assumption (OCIMF 2011; Faber et al. 2011). 

Preventive CBM is maintenance strategy that triggers 
maintenance activities when necessitated by the condition 
of the asset system. This approach enables, by continuous 
gathering of relevant data, determining the conditions of 
in-service assets to predict potential degradations and to 
plan, consequently, when maintenance activities will be 
needed and should be performed to minimize potential 
disruptions. CBM thus imposes the diagnosis of the po-
tential problems and accurate, and timely identification of 
countermeasures and adjustment of time between main-
tenance by exploiting the collected data (Vorkapić et al. 
2017). The purpose of monitoring the internal combustion 
engine indicator diagrams is to provide feedback on how 
the engine performs in the ship’s life enabling optimum 
combustion and early detection of possible abnormalities 
that may cause the down performance. 

Since the condition of the propulsion engine, hull and 
propeller deteriorate over time, it is necessary to distin-
guish the fraction of degradation of the propulsion en-
gine from the degradation of hull and propeller, in which 
propulsion engine fuel consumption real-time monitoring 
and performance benchmarking can be of great benefit. 
The need for fast, reliable and adaptable analytical tool is 

increasing with novel legal requirements for energy con-
sumption optimization and reduction of the carbon di-
oxide emissions from marine ships. Predictive model can 
help designers to gain insights into performance results 
already during design phase, avoiding long and expensive 
experimenting with the ship’s engines. In order to build 
up the effective operational behaviour model of the diesel 
engine, it is critical to employ a suitable monitoring algo-
rithm. This article aims at solving the problem of preven-
tive monitoring by employing the machine learning model 
that integrates the propulsion engine fuel consumption 
prediction, operational parameters monitoring and out-
liers and extreme values detection aligned with existing 
ship-based decision-making processes, thus enabling sup-
port with navigation and maintenance. In short, we will 
show that proposed model efficiently supports decisions 
during ship’s operations and maintenance.

The article is structured as follows: Introduction pre-
sents the problem; Section 1 provides review of the pre-
vious research and presents the research goals; Section 2 
presents data source and data preparation, machine learn-
ing algorithms and evaluation metrics; Section 3 validates 
machine learning methods and illustrates the results ob-
tained, followed by Conclusions section, which discusses 
the results and sets guidelines for future research plans.

1. Related works

In the previous research, engine modelling methods are 
broadly classified into two groups: white-box and black-
box methods. The white-box identification technique 
derives the engine models by resorting to physical laws. 
Examples of white-box identification on a diesel engine 
include CFD models (Reitz, Rutland 1995; Payri et  al. 
2004), chemical kinetic models (Westbrook et  al. 2006; 
Ra, Reitz 2008) and analytical multi-zone models (Benajes 
et al. 2016; Neshat et al. 2017). These mathematical mod-
els are difficult to exploit due to numerous physical pa-
rameters and complex assumptions, which are demanding 
for estimation, particularly for engine operators. There-
fore, black-box methods are preferable nowadays because 
they model the systems in terms of its inputs and outputs 
(or transfer characteristics), without deep knowledge of 
its internal structure. Data mining, as an example of a 
black-box method, learns the relations between the input 
signals (variables) in the form of the trained model. In 
predictive modelling the main ability of the model is to 
provide accurate prediction for situations, which are not 
identical, yet similar to previously recorded and observed 
situations included in the training data (Gori 2017). Ad-
ditional benefit of the utilization of data mining models in 
ship’s operations modelling stems from its ability to solve 
demanding problems that require continuous adaptation 
to the real (current) situation of the ship. Several recent 
studies have investigated various data mining approaches 
to create an engine model for various purposes. Wong 
et  al. (2013a, 2013b) create the model to determine the 
optimal biodiesel ratio that can achieve the goals of fewer 
emissions and improved fuel economy by using optimiza-

RMSE – root mean square error;
RPM – revolutions per minute
RVM – relevance vector machine;

SA – simulated annealing;
SMO – sequential minimal optimization;

SMOreg – sequential minimal optimization (regression);
SOM – self-organizing map;
SVM – support vector machine.
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tion methods SA and PSO based on advanced machine 
learning techniques, namely ELM, LS-SVM and RBFNN. 
For training, 60 instances of the engine data with installed 
dynamometer from four-cylinder, four-stroke direct-
injection diesel engine Isuzu 4HF1, 88 kW/3200 RPM, 
285 Nm/1800 RPM, naturally aspirated and water-cooled, 
are used. Experimental results show that, in terms of the 
model accuracy and training time, ELM with the LS is 
preferable over LS-SVM and RBFNN, regardless if it is 
with or without the LS. The results also indicate that PSO 
outperforms SA in terms of fitness and standard deviation, 
within acceptable computational time. The same authors 
present a model of diesel engine performance and emis-
sion characteristics performance using LS-SVM, RVM, 
basic ELM and kernel-based ELM on 24 instances of 
four-stroke diesel engine sensor data (dynamo measured 
torque, various engine sensor data and gas analyser data). 
The evaluation results show that kernel-based ELM with 
the LS and hybrid inference is better than other machine 
learning algorithms, in terms of prediction accuracy and 
training time (Wong et al. 2013a, 2013b). Machine learn-
ing is the core methodology used for prediction of the 
four-stroke engine torque by training the artificial neural 
network model from 60 instances of sensor data collected 
from the diesel engine and dynamometer (Cirak, Demir-
tas 2014). Namely, collected variables are engine speed, 
exhaust gas temperature, coolant temperature, torque and 
fuel mixing data (ratio between biofuel and euro-diesel 
fuel). The engine is four-stroke, four-cylinder, with a di-
ameter of 79.5 mm with maximum power of 72 kW and 
maximum torque of 165 Nm. Authors report the high pre-
diction results for engine torque with correlation coeffi-
cient of 0.99. Chan and Chin (2016) present the predictive 
model of marine engine performance by employing neural 
networks, multiple linear regression and bagged regres-
sion tree model. FCM clustering and SOM are reported as 
beneficial in reducing the RMSE of the predicted model. 
Operational data were collected from a containership with 
principal dimensions of 328 × 46 × 9.7 m. The data is con-
sisted of twenty- four inputs and five output variables with 
a total of 732 instances (reduced to 491 instances after 
removing the negative values), measured at an interval of 
four-hours for the period 1 July – 30 October 2014. The 
five output variables, i.e. shaft power, shaft RPM, shaft 
torque, engine power and turbocharger RPM were used 
as prediction output targets. Results indicated that neu-
ral network predictor performed better for shaft power, 
shaft revolutions and shaft torque with the necessity for a 
certain level of human intervention during analyses and 
data clustering. Coraddu et al. (2017, 2019) in their works 
address the problems of early detection of speed loss and 
hulls fouling employing OCVM, GKNN and ISO 19030-
1:2016, ISO 19030-2:2016, ISO 19030-3:2016 methods and 
DELM using sensory, meteorological and oceanographic 
data of available vessels (research vessel Princess Royal and 
two Handymax chemical/product tankers). Results show 
the effectiveness of the proposal and its better prediction 
of the accuracy and reliability, with respect to the ISO 
19030-1:2016, ISO 19030-2:2016, ISO 19030-3:2016.

It is apparent that aforementioned publications do not 
use cylinder pressure input necessary for an evaluation 
of the operational efficiency of the internal combustion 
engine. Furthermore, methodologies for the estimation 
of fuel consumption of diesel engines with data mining 
approach process utilize limited number of training and 
testing instances. None of the reported studies is related 
to the two-stroke engines of the new generation nor deals 
with machinery maintenance. Finally, listed publications 
do not provide single stop solution, i.e. from the initial 
data collection to on-board application and system inte-
gration. This detected gaps, are addressed in this study, 
where we present the model that integrates the propulsion 
engine fuel consumption prediction, operational param-
eters monitoring and outliers and extreme values detec-
tion aligned with existing ship-based decision-making 
processes. The goals are therefore set as follows:

 – to create the model that may be used for accurate 
determining the propulsion engine fuel consump-
tion and operational parameters monitoring in real 
environment;

 – recognize the propulsion engine degradation 
throughout the exploratory time;

 – propose structure that may be incorporated into the 
existing on-board decision-making process regarding 
navigation and maintenance.

2. Material and methods

Machine learning methods are data driven, so experimen-
tal data and data process analytics standardization is re-
quired for model training and verification. In this study, 
standard open process CRISP-DM 1.0 (Figure 1) is used 
(Chapman et al. 2000). 

In this study, we address data mining goals in follow-
ing steps (objectives): 

 – collection and understanding of sensory data from 
the prime move engine running in real environment; 

 – data preparation for machine learning; 
 – creation of data mining model employing linear 
regression (GLM), MLP, SVM1 and RF capable of 
predicting the fuel consumption based on the input 
sensory data;

 – selecting the best model based on the standard evalu-
ation metrics with testing the model behaviour at a 
different number of input parameters (variables);

 – establishing the method for engine parameters moni-
toring and evaluation. 

Within the processing model, it is required to move 
back and for between the individual steps. The outcome 
of each step determines which phase, or phase task, shall 
be performed by the next. Arrows indicate the most im-
portant dependencies between the steps.

1 Weka (https://www.cs.waikato.ac.nz/ml/weka) SVM implemen-
tation is using SMOreg algorithm (invented by John Platt) for 
solving the quadratic programming problems that arise during 
the training of support vector machines.

https://www.cs.waikato.ac.nz/ml/weka
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2.1. Data source and data preparation

In this study, propulsion engine sensory data from lique-
fied petroleum carrier similar to the recent series of the 
South Korean shipbuilder with a capacity of 54340 DWT, 
length 225 m, and width 37 m has been used for train-
ing and testing. The type and size of the ship was selected 
based on the fact, that its size was close to the average size 
of the ships commonly used on ocean-going voyages and 
that results may be applied on any similar ship. The main 
engine is a two-stroke marine diesel engine with one tur-
bocharger unit. The maximum output power is 12400 kW, 
considering 15% sea margin and 10% engine margin for 
fouled ship hull and heavy weather, in order to satisfy the 
guaranteed speed of 16.8 knots at the design draft. Engine 
specifications are listed in Table 1. 

Single four-blade fixed pitch propeller of 7400 m is di-
rectly connected to the main engine via shafting system. 
Propeller specifications are listed in Table 2.

Table 3 shows the input variables (collected sensory 
data): from 1 to 20 are the data from the main propul-
sion diesel engine MAN B&W 6G60ME-C9.2, PMI and 
CoCoS-EDS downloaded in a 7 s interval, while variables 
21–31 have been collected from Kongsberg’s K-Chief 600 
alarm, monitoring and control system at a 4 min interval 
(Kongsberg Gruppen 2020). The 7 s interval is the dens-
est interval that can be retrieved by capturing the per-
formance diagrams. The idea behind the 4 min interval 
dataset from the monitoring system is to provide the en-
richment to the data collected in 7 s interval.

Shaft power (Item 2) is measured by the MetaPower’s 
torque meter, while temperature (Items 21–30) and revo-
lutions sensors (Item 1) are engine-maker originally fitted 
sensors integrated into K-Chief 600 alarm and monitoring 
system architecture (Kongsberg Gruppen 2020. In order 
to analyse the combustion process and measure the pres-

sure in the cylinder (Items 3–20) ECS is using Kistler’s 
6613EQ13-C online combustion control piezoelectric 
sensors mounted directly at each cylinder indicator cock. 
The online sensors were calibrated prior to collecting the 
data according to requirements stated in the IMO NOx 
regulations and according to the manufacturer’s recom-
mendation (IMO 2011). Calibration is done using a dedi-
cated, certified reference sensor, thus making it traceable 
to standards recognized by the classification society. The 
reference sensor is a hand-held sensor attached to the PMI 
calibration box. Measurement event log did not indicate a 
difference between measurements made online and refer-
ence sensors. Fuel oil mass flow (Item 31) is measured by 
Endress + Hauser’s Proline Promass 80, Coriolis Mass Flow 
Measuring System made as per ISO 11631:1998 with total 
error of 0.15%. Two flow meters of the same type have 
been installed, one at the engine fuel inlet, the other at the 
fuel outlet line, and the difference between the readings 
presents the consumed fuel oil. 

The readings of sensory data were conducted at engine 
speeds of 89 min–1 (NCR), 85 min–1 (requested speed set-
ting during sailing) and 75 min–1 (economic speed above 
auxiliary blowers cut in pressure), with different engine 
loads ranging between 5712…10164 kW measured at the 
shaft, resulting in 1018 instances of sample data at a time 
interval of 7…8 s. To ensure the repeatability and com-
parability of the measurements, the engine outlet cooling 
water temperature was automatically controlled by a tem-
perature controller to 89 °C, while the engine outlet lu-
bricating oil temperature was automatically controlled by 
a temperature controller between 45…47 °C. Additional 
details about sampling are in the Table 4.

Table 1. Specifications of the marine diesel engine 

Engine model MAN B&W 6G60ME-C9.2

Engine type

Electronically controlled, 
two-stroke, direct reversible, 
crosshead-type diesel engine 
with constant pressure turbo 
charging, compliant with IMO 
Tier II requirements

Bore 600 mm
Stroke 2790 mm
Number of cylinders 6

MCR

output 12400 kW
revolution 92.2 min–1

MEP 17.0 kg/cm2

peak maximum 
cylinder pressure 
(pmax)

185 kg/cm2

mean piston speed 8.6 m/s
fuel consumption  
(42700 kJ/kg) 161.3 g/kWh

NCR
output 11160 kW
revolution 89 min–1

MEP 15.9 kg/cm2

Turbocharger model  
and type Hyundai-ABB A175 × 1 set

Figure 1. CRISP-DM 1.0 data mining process standardization

Setting goals

(l)
Data collection 

and understanding

(2) 
Data 
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(3) 
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(4) 
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Applications
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Table 2. Specifications of the propeller

Propeller model and type HHI Keyless, FPP
Diameter 7400 mm
Number of blades 4
Mean pitch 5971.06 mm

Table 3. Input variables list (sensor data)

No Description Unit
1 RPM min–1

2 Shaft power kW
3 pcomp (compression pressure), cylinder 1 bar
4 pcomp, cylinder 2 bar
5 pcomp, cylinder 3 bar
6 pcomp, cylinder 4 bar
7 pcomp, cylinder 5 bar
8 pcomp, cylinder 6 bar
9 pmax (peak maximum cylinder pressure), 

cylinder 1
bar

10 pmax, cylinder 2 bar
11 pmax, cylinder 3 bar
12 pmax, cylinder 4 bar
13 pmax, cylinder 5 bar
14 pmax, cylinder 6 bar
15 pi (indicated pressure), cylinder 1 bar
16 pi, cylinder 2 bar
17 pi, cylinder 3 bar
18 pi, cylinder 4 bar
19 pi, cylinder 5 bar
20 pi, cylinder 6 bar
21 MS114 ER ambient air temperature °C
22 MA007 ME exhaust gas temperature, cylinder 1 °C
23 MA008 ME exhaust gas temperature, cylinder 2 °C
24 MA009 ME exhaust gas temperature, cylinder 3 °C
25 MA010 ME exhaust gas temperature, cylinder 4 °C
26 MA011 ME exhaust gas temperature, cylinder 5 °C
27 MA012 ME exhaust gas temperature, cylinder 6 °C
28 MA013 ME TC out temperature °C
29 MA014 ME TC in temperature °C
30 AB018 EGE exhaust gas outlet temperature °C
31 ME_tot_FL kg

Table 4. Sampling series with time stamp intervals

Sampling 
series No

RPM setting
[min-1]

Number of 
instances % Time interval

1a 85 400 39.29 May 2016
1b 85 4 0.39 November 2016
1c 85 10 0.98 December 2016
2a 89 199 19.55 January 2017
2b 89 10 0.98 January 2017
2c 89 162 15.92 February 2017
3 75 233 22.89 February 2017

Summary – 1018 100 –

In the first series of retrieving the sensor data, the en-
gine was tested with high sulphur heavy fuel oil, compliant 
to ISO 8217:2017 standard, whose main properties are as 
follows: density @15 °C (ISO 12185:1996) 985.5  kg/m3,  
viscosity @50°C (ASTM D7042-20) 346.2 mm2/s, sulphur 
(ISO 8754:2003) 2.42% m/m, and net specific energy 
(ISO 8217:2017) 40.33 MJ/kg, while in the series 2–3, the 
fuel had density @15°C (ISO 12185:1996) 985.3  kg/m3, 
viscosity @50°C (ASTM D7042-20) 345.2 mm2/s, sul-
phur (ISO 8754:2003) 2.41% m/m, and net specific en-
ergy (ISO 8217:2017) 40.33 MJ/kg. Since both fuels have 
similar characteristics, no correction was found necessary. 

In order to minimize errors, eliminate noise, faulty or 
non-existing signals, the data set has to be filtered before 
further analysing (Rødseth et al. 2016; Mirović et al. 2018). 
However, employment of various solutions may also cause 
loss of valuable information (Vlahogianni 2015). In some 
cases, additional and possibly unavailable information is 
needed for correct interpretation. Finally, our approach is 
to use raw data and rely on measures that are already built 
in the existing systems; in the event of sensor failure, the 
same is triggering the alarm. In the future similar inter-
connection will be included in the signal pre-processing 
architecture thus marking such signals as invalid.

2.2. Machine learning algorithms

For the training of models, a software toolkit Weka (ver-
sion 3.8.2)2 is used employing following algorithms with 
highlights on the distinguishing features from standard 
implementations (Witten et al. 2017). 

GLM (o linear regression) is a numerical prediction 
algorithm that works by estimating the coefficients for the 
line or hyper-plane that best fits the learning data. It is 
a simple regression algorithm, fast to build, and achiev-
ing good prediction results, especially when the output 
variable is a linear combination of input variables. If the 
data shows lack of a linear dependence, then the process 
will find the best straight line (linear direction) so that 
the RMSE is interpreted as the best result. Linear models, 
despite modelling simple linearity, serve as blocks or start-
ing points for more complex learning methods. In Weka, 
the linear regression algorithm uses the AIC for selecting 
the best model. The AIC is an estimator of the relative 
quality of statistical models for a given dataset. Given the 
set of models for the data, the AIC evaluates the quality 
of each model relative to every other model. Accordingly, 
AIC provides the means to select a model, and it is calcu-
lated by the expression:

AICresult = –LL + N,  (1)

where: AICresult – resulting Akaike information criterion; 
N is the number of parameters; LL is the logarithm of the 

2 Weka is an open access software toolkit developed at the Uni-
versity of Waikato (New Zealand) and written in the Java pro-
gramming language. It is designed to solve data mining tasks 
using integrated tools for preparation, classification, regression, 
grouping, association mining, and data visualization.
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probability with a negative sign to minimize the result 
(Witten et al. 2017). 

MLP is a supervised feedforward neural network that 
simulates the structure of the human brain using a net-
work of artificial neurons with at least three layers of neu-
rons (Buhmann 2003). Each neuron, except the one in the 
first layer, has a non-linear activation function. The first 
layer is an input layer, and it contains as many neurons 
as there are features (input variables) in the training data. 
The layers are fully connected, which means that each 
neuron in one layer is connected to each neuron in the 
next layer. During the regression in a neural network, the 
input signals travel through neural connections, multiply-
ing with weights before entering the next neuron, where 
all the values are summed up and added to bias. The cal-
culated value is then passed to the activation function. For 
the training of neural network, a backpropagation algo-
rithm is used, which, taking into account the loss function 
gradient, adjusts weights factors in order to obtain better 
predictions. A common function for the hidden layers is 
the sigmoid function (Haykin 2009; Shalev-Shwartz, Ben-
David 2014). 

SVM implements for regression. Considering a data 
set {(x1, y1), ..., (xn, yn)} with x ∈ Rd (d-dimensional input 
space) and y ∈ R, support vector tries to find the func-
tion f(x), which relates the measured input object to the 
desired output property of an object (Gunn 1998; Shalev-
Shwartz, Ben-David 2014). The parameters are learned 
using modifications to the Smola and Schölkopf ’s SMO 
algorithm (Smola, Schölkopf 2004), which demand that 
the kernel matrix is computed and stored in memory. This 
requires large memory and involve expensive matrix op-
erations such as Cholesky decomposition of a large sub-
matrix of the kernel matrix (Dereniowski, Kubale 2004). 
Third, coding of these algorithms is difficult. Therefore, 
used modifications to the SMO introduced by Shevade 
et al. (2000) significantly speed up the SMO algorithm in 
most of the situations. 

The Pearson VII universal kernel (Puk) function was 
developed by Karl Pearson in 1895 and it is used as a 
vector support function. The basic form of the Pearson 
VII function for curve fitting purposes is in the equation 
(Üstün et al. 2006):
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where: H is the peak height at the center x0 of the peak; 
x represents the independent variable. The parameters s 
and w control the half-width (also named Pearson width) 
and the tailing factor of the peak. The main reason to use 
the Pearson VII function for curve fitting is its flexibility 
to change, by varying the parameter w, from a Gaussian 
shape (w approximates infinity). Compared to the com-
monly applied kernel functions, the use of the Puk has 

two main advantages: on the one hand, it does not require 
making a selection out of the kernel functions, which sim-
plifies the model building process and saves computing 
time, and on the other hand, it has a stronger mapping 
power, through which it can properly deal with a large 
variety of mapping problems.

RF is an algorithm used for constructing a forest of 
random trees by using bagging sampling techniques 
(Breiman 1994; Dietterich 2000). The trees in RF are con-
structed in parallel and there is no interaction between the 
trees during building process. RF employed for regression 
learning operates by constructing a set of decision trees at 
training time and outputting the class that is the mode of 
mean prediction of the individual trees. A RF combines 
the results of multiple predictions, which aggregates pre-
diction of individual decision trees and with modification 
that prevents trees from being highly correlated. The RF 
algorithm ensures that the ensemble model does not rely 
too heavily on any individual feature, and makes fair use 
of all potentially predictive features. Each tree draws a 
random sample from the original set of instances when 
generating its splits, adding a further element of random-
ness that prevents overfitting.

2.3. Evaluation metrics

Standardly the data set is split into two independent sets: 
training and testing set. k-fold CV technique partitions the 
training dataset into k subsets and rotates them k times for 
the validation thus expanding the initial quantity of data 
k times. Usually k = 10 (Figure 2) and each of 10 subsets 
is systematically applied for training and validation of the 
models. The set used for training is not used for validating 
nor the validating set is used for algorithm training. Final 
accuracy is an average of each round validation result. k-
fold CV is preferred method with smaller datasets as data 
is expanded by the number of rotations (Kelleher et  al. 
2015; Witten et al. 2017). 

In order to test the performance of the trained mod-
els in every possible scenario, we employed a 10-fold CV 
method within Weka toolkit on 80% of instances on com-
puter with 1.4 GHz processor and 4 GB 1600 MHz DDR3 
memory. Upon selection of the best algorithm, results are 
confirmed on remaining 20% of instances reserved for 
testing.

Next, we use following evaluation measures imple-
mented in Weka as well: 

 – RMSE is commonly used measure calculated using 
the expression:
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 – RAE is using relative values and calculated according 
to the following expression:
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The correlation coefficient Cc measures the statistical 
correlation between the predicted values of y1, y2, ..., yn 
and the true values of a1, a2, ..., an. The correlation coef-
ficient ranges from 1, for perfectly correlated results, to 
0, when there is no correlation, and –1, when the results 
are perfectly negatively correlated. The correlation cap-
tures slightly different information then other evaluation 
measures because it depends on the scale in the following 
sense: if a given set of predictions is taken, the error re-
mains unchanged if all the predictions are multiplied by 
a constant factor and the true values remain unchanged. 
This factor appears in every Sya expression in the numera-
tor and in every Sy and Sa expressions in the denominator, 
thus invalidating it. The correlation coefficient is calcu-
lated according to the following expression:

ya
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S S
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⋅
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where: y  represents the mean over the predicted values; a  
represents the mean over the true values.

The results visualization provides an overview of re-
gression modelling by selecting the true values of a1, a2, ..., 
an on the x axis, and predicted values of y1, y2, ..., yn on the 
y axis. Outliers and extreme values (anomaly detection) 
recognition in Weka is based on the interquartile range 
(Witten et al. 2017): 

3 3  Q OF IQR x Q EVF IQR+ ⋅ < ≤ + ⋅ ,
or

1 1  Q EVF IQR x Q OF IQR− ⋅ ≤ < − ⋅                          (9)

and extreme values are in:

3  x Q EVF IQR> + ⋅ ,
or

1  x Q EVF IQR< − ⋅ ,                                            (10)

where: Q1 is 25% quartile; Q3 is 75% quartile; OF is outlier 
factor; 

IQR 3 1  QR Q Q= − .  (11)

3. Results and discussion

In this study, the propulsion engine fuel consumption 
was selected as the output variable on recorded 1018 in-
stances per three RPM settings (Table 4) and in different 
setups and weather conditions, enabling better captioning 
of standard seagoing scenarios. Measurements with fewer 
instances, i.e. 1b, 1c and 2b represent conditions of the 
calm sea that are significantly different from those of the 
basic measurements in rough sea conditions and a large 
number of instances at the same propulsion engine revolu-
tions. The exception is data set 3 for the set RPM without 
rough sea recordings.

GLM achieved the result of RMSE 12.9081, RAE 
3.6001% and Cc 0.9991. 

MLP with initial setup with one hidden layer with 
5 no des, momentum 0.2, learning rate 0.3 and 500 epochs 
achieves RMSE 13.6072, RAE 3.6068% and Cc 0.9991. In-
creasing the number of hidden layers to 2 improves the 
model because adding layers enables modelling of non-
linear complexity: the setup with 2 hidden layers and 
10 no des achieves the best result with RMSE 12.475, RAE 
3.3824% and Cc 0.9992. 

SVM by using the polynomial kernel performs with 
RMSE 1.3873, RAE 0.3663% and Cc 0.9989. Since the best 
result can only be achieved if suitable kernel function is 
applied, the Puk function was chosen. Changing support 
vector to Puk, predication improved to RMSE 7.1032, 
RAE 0.5313% and Cc 0.9997. 

RF trained the model in 0.1 s with the RMSE 10.1746, 
RAE 2.1769% and Cc 0.9994. By reducing the number of 
input variables to the number of revolutions of the propul-
sion engine (RPM) and the indicated cylinder pressures pi, 
the RF algorithm achieves RMSE 22.6137, RAE 3.8545% 
and Cc 0.9973. Reducing the number of variables accord-
ing to the variable importance is a well-known character-
istic of RF algorithm used for the construction of smaller 
and yet not inferior model, which is more appropriate for 
the use in praxis (Breiman 2001; Breiman, Cutler 2004). 

Visual presentation of results shown on Figure 3 veri-
fies SVM’s the smallest dispersion of fuel consumption 
prediction results over measured consumption.

The final decision on a suitable algorithm depends on 
the end use, namely fewer variables required for quality pre-
diction (such as RF) can be prevalent, especially for mod-
els that work with many instances and large data amount 
and require longer processing time and more demanding 
platforms. Conversely, if high prediction accuracy is a 
priority, then the choice falls on the SVM driven model.

Furthermore, it is possible to set up a model on the 
same dataset by applying an unsupervised filter (weka.
filters.unsupervised.attribute.InterquartileRange), based 
on the IQR, for detecting outliers and extreme values 
(anomaly detection). This model may evaluate the run-
ning conditions and recognize unusual states (marked 
in red colour) of the engine or early engine performance 
degradations as presented in Figure 4. The value of the 
deviation (factor) can be adjusted to accommodate the 
actual needs and recommendations of the manufacturer, 
namely the minor deviation may be within tolerable lim-

Figure 2. 10-fold CV

training set

Round 1 Round 2 Round 3 Round 4 Round 10

..  ..  ..

validation set
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its, and therefore the value of such information is small. 
In the presented case, since it is a newly build ship with 
clean hull and propeller, according to the diagrams there 
is no indication of engine degradation, but on the contrary 
increase of cylinder pressures and pmax/pcomp ratio over 
maker’s maximum recommended 35 kg/cm2 is a conse-
quence of the short-term over-response of the ESC while 
sailing in the bad sea conditions in tropical areas. Such 
deviations could easily be mitigated by changing the en-
gine control from speed (engine revolutions) to rough sea 
mode, i.e. by distributing the load evenly across the cylin-
ders and slowing down the governing response. 

Standardly, elevated fuel consumption to deliver equal 
power to the shaft indicates an incorrect adjustment of 
the control system (engine out of tune), fuel injection 
equipment failure or excessive wear of the moving parts 
or issue with quality and calorific value of the fuel. The 
detected change in pressures inside the cylinder can assist 
the operator in the further diagnosis of failures and early 
warning of irregularities. By monitoring the combustion 
pressures, it is possible to recognize the booster pumps 
or fuel injectors failures, while compression pressures 
monitoring makes it possible to assess the condition of 
the piston rings or perceive leaking exhaust valves. In each 
case, visual anomaly monitoring can assist the operator in 
detecting early faults and in deciding regarding upcoming 
maintenance.

The proposed model integration for installation on-
board (presented in Figure 5) shows data handling frame-
work with key elements (components) that share common 

attributes at the same resolution level and implemented on 
the respective layers of the data flow.

Model is directly integrated with existing ship’s sensors 
and data acquisition system (A1) and using the existing op-
erating condition (A3) and ship maintenance system (A4) 
with added component, i.e. data storage and processing 
unit (A2). Data storage and processing unit is consisted of 
pre-processing layer and parameter reduction, data driven 
models (i.e. digital models), storage drives. Although this 
study deals solely with main propulsion engine, vessel op-
erating condition (and navigation condition) is included 
in this structure to obtain a meaningful data flow. 

Ship’s sensors and data acquisition system (A1) is feed-
ing the Data storage and processing unit (A2) with (c1) 
data x1(i1), x2(i1), …, xn(i1); x1(i2), x2(i2), …, xn(i2); x1(in), 
x2(in), …, xn(in), where n represents number of variables 
and i number of instances (time). A dynamic interaction 
between system components starts from data storage and 
processing unit (A2) wherefrom output (predicted) varia-
bles and detected outliers (c2 and c3) assist in the decision-
making process on the navigation identifying optimal ves-
sel operating conditions to reduce the fuel consumption 
(A3) and main propulsion engine maintenance (A4) in-
creasing the overall reliability. The feedback is embedded 
across the signals measured by associated sensors and col-
lected at data acquisition unit (A1). In shipboard environ-
ment, it is suggested that data is processed on-board to 
avoid the interruptions in data transmission and ensure 
continuous processing of a large number of sensory data, 
thereby providing operator support in real time. The im-

Figure 3. Machine learning results visualisation

GLM MLP

SVM RF
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proved propulsion engine performance and maintenance 
is varying in real time and it is most appropriate to be 
made as visualization layer displaying relative correlation 
value, i.e. s expected value vs. measured value for output 
variables, part of data storage and processing unit and 
supporting decision-making process data regarding navi-
gation and system reliability (maintenance). 

Authors contribution in the proposed methodology 
is in the inclusion of sensory data processed by machine 

learning and anomaly detection mining into existing 
on-board decision-making process regarding navigation 
and maintenance. The introduction of new information 
enables the acquisition of new knowledge on fuel savings 
as well as better management of ship processes. By intro-
ducing distinctive deviations from the normal operating 
mode, it is possible to improve the existing ship’s main-
tenance system and early detection of malfunctions and 
deteriorations. 

Figure 4. Operational parameters anomaly detection

Figure 5. Model structure
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Conclusions

In this study, models based on linear regression, MLP, 
SVM and RF have been applied to the problem of pre-
dicting fuel consumption of a two-stroke electronically 
controlled propulsion engine on the operating envelope. 
The models were trained from 31 sensory data taken from 
the existing alarm and monitoring system and the main 
propulsion ECS. An unsupervised anomaly detection filter 
was then applied to the same dataset with the aim of early 
detection of propulsion engine performance downgrade 
or failures. Finally, the article proposes an improved struc-
ture of the existing decision-making process with incorpo-
rated fuel consumption prediction and anomaly detection 
model.

This study has shown that by selecting an adequate 
combination and processing the relevant sensory data, it is 
possible to create a model that predicts fuel consumption 
of a diesel engine with RMSE 7.1032 and RAE 0.5313%, 
achieved by SVM, and similar by RF, MLP and linear re-
gression. Evaluation results show that the RF achieve the 
best RMSE 22.6137 and RAE 3.8545% with the least in-
put variables (cylinder indicated pressures and propulsion 
engine revolutions), i.e. slightly over performing SVM al-
gorithms. These results confirm that data mining-based 
methods can be successfully used in a real time operation-
al condition of the ship. By employing an unsupervised 
anomaly detection filter, it is possible to set up a method 
of evaluating propulsion engine relevant running param-
eters by comparing with the initial condition recorded 
during the test and sea run or after docking. 

With the promising results obtained in this study, de-
veloped models transformed into exploratory or predictive 
analytical tool and integrated into the existing ship system, 
with minimum of intervention, may be used in establish-
ing performance indicator for fuel consumption reduction 
according to ship’s energy efficiency management plan. 
Results may be used in determining the fuel consump-
tion margins in the charterer’s parties and complement-
ing the existing CBM methods or utilized in pinpointing 
the contribution of prime move engine degradation in 
the overall degradation of the vessel. The application of 
the proposed model adapted to carbon dioxide emission 
footprint can be beneficial in monitoring and estimating 
the emissions. The results can be used by the ship owner 
and operator to establish a system of monitoring and fuel 
consumption forecasting related to the binding require-
ments of the MARPOL 73/78 Annex VI Regulation 22A 
(IMO 2018) and the processes that are used to report the 
data to the ship’s administration. 

It is worth noticing that all data processing and ex-
change is executed on-board while the IoT will be an op-
tion in the near future, when broadband real-time data 
exchange is confirmed in practice. Given that, it is using 
data from main propulsion engine this study has limita-
tions, which we plan to address in the future. We plan 
a thorough input data collection of the whole ship tar-
geting the practical needs for comparison, including the 

addition of exogenous factors and training of additional 
models such as expanding the collected data to new navi-
gational scenarios and testing of data mining algorithms. 
In such an extended model, the proposed model will serve 
to clearly segregate the impact of the propulsion engine 
from the ship as a whole. 
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