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Abstract. In container terminals, the planned berth schedules often have to be revised because of disruptions caused 
by severe weather, equipment failures, technical problems and other unforeseen events. In this paper, the problem of 
berth schedule recovery is addressed to reduce the influences caused by disruptions. A multi-objective, multi-stage 
model is developed considering the characteristics of different customers and the trade-off of all parties involved. An 
approach based on the lexicographic optimization is designed to solve the model. Numerical experiments are provided 
to illustrate the validity of the proposed Model A and algorithms. Results indicate that the designed Model A and algo-
rithm can tackle the berth plan recovery problem efficiently because the beneficial trade-off among all parties involved 
are considered. In addition, it is more flexible and feasible with the aspect of practical applications considering that the 
objective order can be adjusted by decision makers.
Keywords: container terminals; berth schedule; disruption management; lexicographic optimization.

Introduction

Berths are important resource of container terminals 
and good scheduling of berths can improve operation 
efficiency, decrease the vessel turnaround time and lead 
to higher competitive of container terminals. How-
ever, during operation, irregular disruptions caused by 
unforeseen events such as severe weather, equipment 
failures and technical problems etc. often occur. These 
events may cause tremendous disruption, and thus de-
crease the operation efficiency and service level of con-
tainer terminals. Once these disruptions happen, the ini-
tial plan may be infeasible, and modification of current 
or future schedule should be undertaken to minimize 
the negative impacts of the disruption. 

Disruption management is a methodology that 
copes with disruptions in real time (Yu, Qi 2004). The 
main difference between disruption management and 
rescheduling is that rescheduling focuses on minimiz-
ing of the original objective function while disruption 
management aims to minimize the deviation of the 
new schedule from the original one (Kuster et al. 2008). 
Disruption management is a research field received an 
increasing attention, and the successful applications in-
clude airline management, supply chain and machine 
scheduling etc.

Comparing existed studies on disruption manage-
ment, the disruption management of berth schedule has 
following characteristics: 

 – Complex constraints. The operation in container 
terminals consists of many interrelated sub-pro-
cesses. When optimizing the recovery scheme 
of berth schedule, the relation of berth schedule 
with quay crane schedule and other sub-process-
es should be considered. 

 – Benefit trade-off and customer priorities. The 
modification of berth schedule influences the 
benefits of ship-owners, terminal operators, port 
authorities and trailer companies etc. Moreover, 
the sensitivity to ship delay differs according to 
different customers. Beneficial trade-off and cus-
tomer characteristics should be considered when 
modelling the problem of berth schedule reco-
very. 

 – Computation complexity. Berth schedule is an 
NP-hard problem (Kim, Moon 2003), and the 
characteristics of disruption management re-
quire the high speed and efficiency of solution 
algorithms.

This paper addresses the problem of berth schedule 
recovery based on disruption management methodol-
ogy. A multi-objective, multi-stage model is developed 
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considering the characteristics of different customers 
and the benefit trade-off of all parties involved in the 
container terminal system. The paper is organized as fol-
lows. In Section 1, a literature review on berth schedule 
is provided. In Section 2, a model for berth schedule 
recovery is developed. Lexicographic optimization ap-
proach is presented in Section 3. Solution algorithms are 
designed in Section 4. Numerical experiments are pro-
vided to illustrate the validity of the proposed method in 
Section 5. Conclusions are given in last section. 

1. Literature Review

Issues related to berth schedule have been receiving 
much attention recently. Many models and algorithms 
have been developed to optimize the berth allocation 
plan. Nishimura et al. (2001) developed a discrete berth 
schedule model and designed a solution method based 
on genetic algorithm. Imai et al. (2003) further devel-
oped a berth schedule model considering the docking 
priorities of different shipping companies. Kim and 
Moon (2003) solved the discrete berth schedule model 
with Simulated Annealing (SA). Imai et al. (2005, 2007) 
developed models for continuous berth schedule prob-
lem and designed heuristics algorithms to solve the 
models. Wang and Lim (2007) treated the berth allo-
cation problem as a multi-stage decision problem and 
solved the problem with a stochastic beam-searching 
algorithm.

There is an inherent interrelationship between the 
allocation and scheduling of berth and quay cranes. In-
creasing studies are focused on simultaneous berth and 
quay crane scheduling. Park and Kim (2003) developed 
a mixed integer program to determine the berthing posi-
tions, berthing times, and the quay crane assignments. 
Imai et al. (2008) developed a model to optimize berth 
schedule and quay crane allocation simultaneously, and 
a heuristic algorithm was designed to solve the problem. 
Meisel and Bierwirth (2009) also studied the simultane-
ous berth allocation and quay crane assignment problem. 
A local refinement procedure and two meta-heuristics 
are presented. Moreover, in the model of simultaneous 
berth and quay crane scheduling problem developed by 
Liang et al. (2009), the influence of quay crane quantity 
on average operation efficiency was considered. 

The above studies were based on the supposition of 
certain environment, and no impact of uncertainty fac-
tors on berth schedule was considered in these studies. 
However, uncertainty (e.g. vessel arrival and loading/un-
loading time) and disruption events widely exist in ter-
minal operation system and influence the performance 
of terminal operation. Researchers begin to address the 
issues of terminal scheduling with uncertainty. Han 
et al. (2010) studied the berth and quay crane scheduling 
problems with uncertainties of vessel arrival time and 
container handling time. A mixed integer-programming 
model was proposed to generate robust berth and quay 
crane schedule. Angeloudis and Bell (2010) studied job 
assignments under uncertainty for Automated Guided 
Vehicle (AGV) in automated container terminals. A new 
AGV dispatching approach was developed, which can 

operate under uncertain conditions within a detailed 
container terminal model.

Disruption management is another method to 
tackle scheduling problem with uncertainties. Models 
and algorithms have been developed to tackle disrup-
tions in supply chain, machine scheduling and airline 
operation etc. Yu and Qi (2004) developed a disruption 
management model for airline scheduling and designed 
a solution system called Crew-Solver. Liu et al. (2008), 
Abdelghany et al. (2008), and Clausen et al. (2010) fur-
ther analysed the main problems in airline disruption 
management and developed disruption recovery mod-
els. Oke and Gopalakrishnan (2009), Xiao et al. (2007) 
studied the coordination and recovery of supply chain 
after disruptions. Petrovic and Duenas (2006), Qi et al. 
(2006) developed disruption recovery models for ma-
chine scheduling and designed solution algorithms. 
Walker et al. (2005) developed a disruption management 
model for recovery of rail timetable schedule and crew 
assignment. 

Based on the existed studies, this paper proposed 
a multi-objective and multi-stage disruption recovery 
model for berth schedule. The model considers the sen-
sitivity of different customers to vessel delay and the 
benefit trade-off of different parties. The contributions 
of this paper are:

 – Despite the increasing importance of uncertain-
ty and disruptions in container terminals, lim-
ited research is focused on the berth reschedule 
method. This paper fills the gap by developing 
Model A and algorithms for berth schedule re-
covery model.

 – A multi-stage and multi-objective model is pro-
posed to minimize the negative impacts of dis-
ruptions on berth schedule. This model consid-
ers the characteristics of different customers and 
benefit trade-off of all parties involved, thus can 
improve the scientific of berth schedule recovery. 

 – A method based on lexicographic optimization is 
designed to solve the model. Lexicographic opti-
mization establishes a hierarchical order among 
all the optimization objectives. Comparing to 
Pareto optimality method, it is more flexible and 
feasible with the aspect of practical applications 
as the objective order can be adjusted by decision 
makers.

2. Model for Berth Schedule Recovery

2.1. Model Assumptions
Berth schedule is used to determine the berth time and 
position of each vessel within a given planning horizon 
considering priority, length, arrival and handling time of 
each vessel. In this paper, the continuous berth sched-
ule method is used, and the quay crane assignment is 
considered. The berthing position, time and number of 
quay craned assigned to each vessel are optimized. The 
objective of berth schedule is to minimize the penalty 
cost resulting from vessel delays and the additional cost 
resulting from no-optimal berthing location of vessels.
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We formulate the model for berth schedule recovery 
considering that the berth schedule is pre-determined. 
Berth schedule is represented by a two-dimension axis, 
with horizontal axis representing the berth position and 
vertical axis representing the berth time, and the follow-
ing assumptions are made:

 – there are no physical restrictions, i.e., the water 
depth of terminal berth can meet all vessels;

 – vessel operation time is inverse proportion to the 
number of quay cranes assigned;

 – there is a minimum number of quay cranes as-
signed to a vessel;

 – vessel operation lasts from its berthing time to 
departure time.

In modelling berth schedule recovery problem, the 
theory of disruption management is used. Disruption 
management is a methodology to tackle disruptions in 
real time (Yu, Qi 2004). The main difference between 
disruption management and rescheduling is that re-
scheduling focuses on finding a schedule which is opti-
mal in terms of the original objective function whereas 
disruption management aims to minimize the deviation 
of the new schedule from original one (Qi et al. 2006). 
Thus, the disruption management problem for berth 
schedule recovery in this paper considers two types of 
objectives. The first type relates the original objective 
function, such as minimization of operation cost and 
vessel delay cost, and the second type is to minimize 
the deviation from the original schedule.

2.2. Variables and Parameters
To formulate the disruption recovery model, the follow-
ing parameters and variables are defined:
Parameters:

L – total length of a berth line which is denoted by 
the number of 10 m segments;
the number of unfinished vessels when disrup-
tions happen;

Q – the number of quay cranes;
T – set of time points represented by hour;
ai – expected arrival time of vessel i;
di – expected departure time of vessel i, which is 

usually determined by the contracts between 
shipping companies and terminal operators;

li – the length of vessel i, which is represented by 
the number of 10 m segments; 

bi – the optimal berthing location of vessel i, where 
yard trailers have the minimum transport cost;

min
iQ  – the minimum number of quay cranes required 

to serve vessel i simultaneously;
max
iQ  – the maximum number of quay cranes allowed 

to serve vessel i simultaneously;
wi – the number of quay crane hours needed to fin-

ish the operation of vessel i;
c1i – the unit additional cost (yard trailers transport 

cost) of vessel i, resulting from non-optimal 
berthing location, which is given as USD/m;

c2i – the unit delay penalty cost of vessel i, which is 
given as USD/h;

c3 – unit operation cost rate of quay cranes, which 
is given as USD/h;

M – a sufficient large constant;
0
ix  – the berthing position of vessel i in initial berth 

schedule;
0
iy  – the berthing time (operation starting) of vessel i in 

initial berth schedule.
Variables:

xi – integer, the berthing position of vessel i in recov-
ery schedule; 

yi – integer, the berthing time of vessel i in recovery 
schedule; 

ei – integer, the time that the operation of vessel i is 
completed according to recovery schedule;

qit – number of quay cranes assigned to vessel i at time 
point t; 

x
ijZ  – binary, set to 1 if vessel i is located to the left of 

vessel j in the recovery schedule, and 0 otherwise;
y
ijZ  – binary, set to 1 if vessel i is berthed before vessel j 

in the recovery schedule, and 0 otherwise.

2.3. Model Formulation
When disruptions happen, recovery scheme is searched 
based on current resources, constraints and operation 
states. The berth schedule recovery influences the ben-
efit of terminal operators and liner companies. To reflect 
the benefit trade-off and decrease disruptions to all par-
ties involved, a multi-objective programming method is 
used. The objective is to minimize the deviation between 
initial and recovery schedules, vessel delay and operation 
cost etc. Thus, the model can be formulated as follows:
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Eq. (1) is used to minimize the operation cost in-
cluding additional costs resulting from non-optimal 
berth locations of vessels and the operation cost of 
quay cranes. Eq. (2) is used to minimize the vessel de-
lay. Eq.  (3) used is to minimize the deviation between 
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recovery and initial schedule, namely to minimize the 
modifications and thus decrease the disruptions. 

Constraints are represented by Eqs (4–13). Eq. (4) 
denotes the maximum of simultaneously used quay 
cranes. Eqs (5–6) defines the operation starting and end-
ing time for each vessel. Eq. (7) shows the maximum 
and minimum quay cranes can be assigned to a vessel. 
Eq. (8) shows the relation of berthing location between 
two vessels. For example, if vessel i is berthed to the left 
of vessel j, x

ijZ = 1. Then, j i ix x l≥ + , which means that 
the berthing position of vessel j should be larger than 
the position of vessel i plus the length of vessel i. Eq. (9) 
shows the relation of berthing time between two vessels. 
For example, if vessel i is berthed before vessel j, y

ijZ = 1. 
Then, j iy e≥ , which means that the berthing time of 
vessel j should be larger than the time that the opera-
tion of vessel i is completed. Eq. (10) ensures there are 
no conflicts between two vessels with respect to berth-
ing time and location. Eq. (11) ensures that each vessel 
berths after its expected arrival time. Eq. (12) ensures 
that each vessel berths within the quay line. Eq. (13) is 
binary constraints.

3. Lexicographic Optimization Approach

3.1. Lexicographic Optimization
Usually, the concept of Pareto optimality is used for the 
multi-objective optimization problem. A solution *z



 of 
the multi-objective optimization problem presented in 
Eqs (1–13) is said to be Pareto optimal if there is not 
another z Z∈



 that ( ) ( )*
i if z f z≤
 

 for all i N∈  and 
( ) ( )*

j jf z f z≤
 

 for at least one index j. According to 
the definition of Pareto optimality, moving from one 
Pareto solution to another needs trading off. Weight-
ing methodology is a widely used trading off approach, 
in which priority of the objectives are reflected by the 
weights. However, the most obvious problem with 
weighting methodology is the difficulty of choosing the 
weight as it is based either on vague intuition or error 
experimentation with different weighting values of users 
(Miettinen 1998). Moreover, it involves a linear combi-
nation of different criteria thus has the limitation that 
can not find solutions in a non-convex region of the Pa-
reto front (Li 1996).

The lexicographic optimization is another approach 
to solve multi-objective problem. In this method, a hier-
archical order among all the optimization objectives is 
established (Prats et al. 2010). If priority exists, a unique 
solution would exist on the Pareto hyper-surface (Ker-
rigan, Maciejowski 2002). 

A standard process of lexicographic optimization 
approach is to solve a sequential order of single objective 
optimization problems. The objective functions are ar-
ranged from the most important f1 to the least important 
fn. The most important objective function is minimized 

first ( )( )*
1 1min

z
f f z

∈℘

 = 
 

, subject to the original con-

straints. If there is only one solution, it is the solution of 
the whole multi-objective problem. Otherwise, the sec-
ond most important objective function is minimized. 

A new constraint is added to ensure that the most im-
portant objective function preserves its optimal value. 
The process goes on iteratively until all the objectives 
are considered. In this approach, a solution obtained ac-
cording to a more important objective serves as an ad-
ditional constraint of a less important objective, which 
can be represented by:

( )* mini if f z=   (14)

s. t. ( ) *
j jf z f≤ , 1, , 1j i= − , 1i > .               (15)

Eq. (16) represents constraint relaxation, in which 
dj is tolerance percentage determined by decision-mak-
er. With the increase of dj, the feasible region dictated 
by the objective functions expands. Different Pareto op-
timal points can be generated by varying dj to tighten or 
relax the constraints:

( ) ( ) *1j j jf z f≤ + δ , 1, , 1j i= − , 1i > .  (16)

Lexicographic optimization has several advantages 
over weighting methodology (Marler, Arora 2004), and 
has been started to be widely used in engineering ap-
plications (Ocampo-Martinez et al. 2008). However, one 
disadvantage is that it is difficult to establish an absolute 
hierarchical order among all the optimization objectives 
in some applications. Furthermore, in some cases, the 
less important objectives are not considered at all if there 
are not enough degrees of freedom in the subsequent 
optimization stages (optimizing according to the less im-
portant objectives) after the prior stages. To reduce the 
sensitivity of the final solution to the objective ranking, 
a variation of the lexicographic approach is proposed, 
which the constraints are formulated as Eq. (17). 

3.2. Lexicographic Optimization Approach  
to Berth Schedule Recovery
Usually, the contracts between terminal operators and 
shipping companies specify the details of vessel opera-
tion time, thus different vessels have different sensitiv-
ity to operation delay. Furthermore, the importance of 
different shipping companies to terminal operators is 
also different. Therefore, in the berth schedule recovery, 
the objective hierarchical order is different for different 
kinds of vessels. 

According to customer importance and delay sen-
sitivity, vessels are segmented to three types, namely, 
key line vessels, trunk line vessels and feeder line ves-
sels. (the segmentation criterion is shown in Table 1). 
Based on this segmentation, the berth schedule recovery 
is solved by three stages, namely, rescheduling key line 
vessels first, then, trunk line vessels, and finally feeder 
line vessels.

The first stage: recovery model for key line vessels
Key line vessels are most sensitive to delay, and 

there are strict constraints to vessel turnaround time in 
contracts between terminal operator and shipping com-
panies. Therefore, key line vessels should be considered 
first in berth schedule recovery, and vessel delay f2 is the 
most important objective. Meanwhile, f3 is also impor-
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tant objective as the changing of berthing location and 
time may result in increasing of system adjust time and 
decreasing of system reliability:

Lex min(f2, f3, f1)  (17)

s. t. (4)–(13);
             (16).

The second stage: recovery model for trunk line vessels
Vessels of international trunk lines are important 

customers for terminal operators and also have high 
sensitivity to delay. When modifying berth plan for this 
kind of vessel, vessel delay is the most important objec-
tive, then the operation cost and finally the deviation of 
berthing location and time: 

Lex min(f2, f1, f3)  (18)

s. t. (4)–(13);
             (16).

The third stage: recovery model for feeder line vessels
Comparing to vessels of key and trunk lines, feeder 

line vessels are more flexible in operation and are less 
sensitive to vessel delay in terminals. Therefore, for berth 
schedule recovery of this kind of vessels, the objective 
order is operation cost, schedule deviation and vessel 
delay: 

Lex min(f1, f3, f2)  (19)

s. t. (4)–(13);
             (16).

4. Solution Algorithms

The design of solution algorithms is based on vessel seg-
mentation and objective sequential optimization. The 
process of berth schedule recovery is divided into three 
stages (as shown in Fig. 1), namely, rescheduling key line 
vessels first, then, trunk line vessels, and finally feeder 
line vessels. In each stage, the lexicographic optimization 
approach is used. 

In the first stage, the algorithms are iterated three 
times. In the first iteration, the berth schedule is opti-
mized according to objective f2, and an optimal value 

*
2f is obtained. In the second iteration, the objective 

function is f3, and ( ) *
2 21f f≤ + δ  is added to constraints. 

At the end of the second iteration, the optimal value 
*

3f for f3 is obtained. In the third iteration, the objec-
tive function is f1, and ( ) *

2 21f f≤ + δ , ( ) *
3 31f f≤ + δ  is 

added to constraints. 
The processes of the second and third stages are 

similar to the first stage. The objective sequential orders 

are given by Eqs (19–20). In iterations of each stage, SA 
is used to search the optimal solution. 

SA is based on the simulation of the annealing of 
solids and applied to solving large-scale combinatorial 
optimization problems. A standard SA procedure begins 
by generating an initial solution randomly. In each itera-
tions of computing process, the new solution taken from 
the neighbour of the current solution is accepted as the 
new current solution if it has a lower or equal cost; if it 
has a higher cost it is accepted with a probability that 
decreases as the difference in the costs increases and as 
the temperature of the method decreases. The tempera-
ture is periodically reduced by a temperature scheme, 
it moves gradually from a relatively high value to near 
zero as the method progresses. The main operations of 
SA are as follows.

Encoding and decoding of solutions. To use SA al-
gorithm solving the scheduling problem, an encoding 
method to represent the feasible solutions is used. The 
feasible solutions for the problem are coded into strings 
of integer numbers. Each string represents a berthing 
position scheme, and its length is equal to the number 
of vessels.

Generation mechanism of neighbour solution. To 
implement the SA algorithm, we need to generate a 
sequence of iterations, of which each is composed of 
changing the current solution in a designed way to cre-
ate a neighbour solution. Here, two methods, namely 
swapping moves and varying moves are used to obtain 
neighbour solutions. ‘Swapping’ moves are to exchange 
the berthing position of two vessels. ‘Varying’ moves 
change berth location by moving one unite each time 
(10 m/move). In neighbour space searching, each ‘swap-
ping’ move includes multiple ‘varying’ moves.

Table 1. Customer segmentation criterion

Criterion Key line vessels Trunk line vessels Feeder line vessels

Type of shipping lines key lines international trunk lines short or feeder lines
Sensitivity to delay very sensitive sensitive not sensitive
Importance to terminal operators very important very important important
Penalty cost to delay very high high normal

Fig. 1. Process of the proposed algorithm

Initial schedule

Stage1 : rescheduling
of key line vessels

Stage2: rescheduling
of trunk line vessels

Stage3: rescheduling
of feeder line vessels

End

Optimizing berth schedule
according to objective f2

Optimizing berth schedule
according to objective f3, with

Optimizing berth schedule
according to objective f1, with

f f2 2� �( )1 + *

f f2 2� �( )1 + * f f3 3� �( )1 + *,

Search the
optimal
solution

by SA
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Acceptance criterion for the neighbour solution. 
Once a neighbour solution is generated, the following 
criterion is adopted to judge whether to accept it or not:

Let ( ) ( )0f s f s∆ = − ,  (20)

where: s0 denotes the current solution and s denotes the 
neighbour solution generated from current solution; 
( )*f denotes the objective function value.

If:
/ iTr e−∆≤ ,  (21)

where: a random number r in (0, 1) is generated from 
a uniform distribution; Ti represents the current tem-
perature.

Then the neighborhood will be accepted as the 
current solution, else, the current solution will remain 
unchanged.

Temperature updating scheme. The temperature is 
updated by the following formula:

1 1
i

i
i

T
T

T+ =
+β

, 1, ..., 1i K= − ,  (22)

where: b is the rate parameter in terms of the initial 
temperature Ti, stopping temperature TK and iteration 
number K:

( )
1

11
K

K

T T
K TT

−
β =

−
.  (23)

Stopping criterion. After a pre-determined iteration 
is reached, algorithm stops. The minimum iterations for 
‘swapping’ and ‘varying’ moves are 50, 20 respectively. 

5. Numerical Experiments

Numerical examples are given to illustrate the validity of 
proposed Model A and algorithms. Data of a container 
terminal in Dalian Port are used. Vessel arrival data 
from July 4 to July 11 in 2010 are selected. The length of 
berth line is 1200 meters, and the number of quay cranes 
is12. The unit efficiency of quay cranes is 30 moves/h. 
c1i, c2i and c3 are set to 11li/23 USD/m, 210li/23 USD/h 
and 210 USD respectively.

There are 23 vessels which are considered in the 
plan horizon. The numbers of key line vessels, trunk line 
vessels and feeder line vessels are supposed to be 8, 10 
and 7 respectively. Supposing that operation of vessel 2 
is delayed for 12 hours. MatLab is used to code the pro-

gram and computer with Intel Core i5 (2.50GHz) CPU 
(Central Processing Unit) is used to run the program. 
The results for different d are shown in Table 2. The aver-
age CPU time is 860 seconds.

Results indicate that vessel delay and additional 
cost for yard trailers are influenced by d. For key line 
and trunk line vessels, vessel delay increases and addi-
tional yard trailer cost decrease with the increase of d, 
and it is opposite for feeder line vessels. With the in-
crease of d, the total vessel delay increase and the total 
additional cost for yard trailer decrease. Therefore, dif-
ferent Pareto optimal points can be generated by varying 
d to tighten or relax the constraints. E.g., the benefit for 
key and trunk line vessel is more addressed by decreas-
ing tolerance percentage d.

Furthermore, 8 scenarios are set supposing vessels 
2, 6, 8, 10, 12, 14, 15, 19 are delayed 12 hours separately. 
The lexicographic optimization method proposed in 
this paper (we call it Model A) is compared with the 
method converting the problem into a single objective 
optimisation problem (we call it Model B). In Model B, 
the objective function is the sum of cost of vessel delay, 
additional costs resulting from non-optimal berth loca-

Fig. 2. The process of SA

Table 2. Results for lexicographic optimization method

δ
Vessel delay [h] Additional cost for yard trailers [USD]

Total Key line 
vessels 

Trunk line 
vessels

Feeder line 
vessels Total Key line 

vessels 
Trunk line 

vessels
Feeder line 

vessels

0 287.6 6.7 86.7 196.5 3720.4 1822.0 1214.2 642.0
0.02 301.1 12.4 103.6 175.4 3574.7 1614.1 1075.3 874.7
0.04 306.4 21.2 119.7 167.3 3534.5 1587.2 1043.7 929.4
0.06 310.0 22.7 131.0 157.4 3372.9 1344.7 984.3 1063.1
0.08 316.2 32.8 136.9 148.0 3294.3 1282.0 924.2 1085.8
0.10 319.4 34.9 147.5 137.3 3164.0 1174.8 875.0 1130.5
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tions of vessels, operation cost of quay cranes, and the 
penalty resulting from deviation between recovery and 
initial schedule:

1 3
1
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N

i i i it
i t T

c x b c r
= ∈

 
− + +  
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i i

c e d c x x
++

= =
− + −∑ ∑

 
 (24)

s. t. (4)–(13).

Results are shown in Table 3. Results indicate that 
the proposed model (Model A) increases the total ves-
sel delay and yard trailer operation cost comparing with 
Model B. The total vessel delay increase 2% and the aver-
age yard trailer operation cost increase 3.5%, while the 
delay for key line vessels decreases greatly. Moreover, 
schedule deviation decreases greatly in proposed Model 
A as the schedule deviation is treated as the second or 
third objective in key line vessels recovery.

Although the proposed model increases total ves-
sel delay, it is more feasible to practical application con-
sidering that the delay costs of key line and trunk line 
vessels are high and have serious impact on terminal de-
velopment. In addition, the proposed model decreases 
the schedule deviation, thus reduces the influence of 
disruption events on operation system.

In addition, experiments are used to find the influ-
ence of vessel configuration. Based on Scenario 1 in Ta-

ble 3, seven scenarios are designed by increasing key line 
vessels, decreasing trunk and feeder line vessels. Results 
are given in Table 4.

With the increase of key line vessels, the total ves-
sel delay increases firstly, and then decreases. When the 
number of key line vessels is more than 15, the total ves-
sel delay of Model A is less than that of Model B. This is 
because that vessel delay is the most important objective 
when recovering schedule for key line vessels, total ves-
sel delay decreases with the increase of key line vessel 
ratio. In addition, the operation cost for yard trailers 
increases with the increase of key line vessels, which in-
dicates that the cost of berth schedule recovery increases 
with the increase of key line vessels.

Conclusions

In this paper, a multi-stage and multi-objective model 
is proposed to minimize the negative impacts of disrup-
tions on berth schedule. Moreover, a method based on 
lexicographic optimization is designed to solve the mod-
el. Numerical experiments indicate the validity of the 
proposed Model A and algorithms. The model considers 
the characteristics of different customers and beneficial 
trade-off of all parties involved, thus can improve the sci-
entific berth schedule recovery. Moreover, it is more flex-
ible and feasible in the aspect of practical applications as 
the objective order can be adjusted by decision makers.

Table 3. Results for different scenarios

Scenarios Model A Model B

No Delayed 
vessel

Total vessel 
delay [h]

Delay for 
key line 

vessels [h]

Cost increase 
for yard 

trailer [USD]

Schedule 
deviation f3 

[m]

Total 
vessel 

delay [h]

Delay for 
key line 

vessels [h]

Cost increase 
for yard trailer 

[USD]

Schedule 
deviation f3 

[m]
1 2 256.0 5.3 3,457 638 279.2 61.0 2,894 713
2 6 231.8 4.5 3,934 510 207.0 39.5 3,382 579
3 8 225.7 6.2 2,878 427 212.7 50.3 2,475 543
4 10 213.3 5.4 3,258 162 213.5 37.2 2,760 307
5 12 204.1 5.2 3,128 96 209.7 36.8 2,735 283
6 14 192.9 4.6 3,076 63 192.0 34.7 2,674 141
7 15 204.3 4.2 3,055 81 195.9 29.0 2,631 165
8 19 258.2 1.6 3,173 68 242.7 24.3 2,762 129

Table 4. Results for different vessel configuration

Scenarios Model A Model B

No

Number 
of key 

line 
vessels

Total vessel 
delay [h]

Delay for 
key line 

vessels [h]

Cost increase 
for yard 

trailer [USD]

Schedule 
deviation f3 

[m]

Total 
vessel 

delay [h]

Delay for 
key line 

vessels [h]

Cost increase 
for yard trailer 

[USD]

Schedule 
deviation f3 

[m]

1 2 260.2 0.0 3,210 406 263 61.7 2,919 713
2 5 261.6 0.0 3,172 602 263 61.7 2,919 713
3 8 270.3 5.7 3,201 659 263 61.7 2,919 713
4 10 289.7 17.3 3,217 673 263 61.7 2,919 713
5 15 251.8 42.0 3,741 739 263 61.7 2,919 713
6 20 244.0 109.3 3,477 712 263 61.7 2,919 713
7 23 230.7 207.4 3,709 718 263 61.7 2,919 713
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The objective of disruption management for berth 
schedule is to obtain modification scheme efficiently af-
ter disruptions happen. In fact, the recovery cost can be 
reduced by improving the schedule robust at the stage 
of berth planning. Moreover, the analysis and evalua-
tion of disruption events are also helpful to forming of 
robust scheduling strategy. Therefore, the combination 
of robust scheduling and disruption management is a 
new and valid method of container terminal schedul-
ing under uncertainty, which is an interesting topic for 
future study.
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