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Abstract. The increase of e-bikes has raised traffic conflict concerns over past decade. Numerous conflict indicators are 
applied to measure traffic conflicts by detecting differences in temporal or spatial proximity between users. However, for 
traffic environment with plenty of e-bikes, these separate space-time approaching indicators may not be applicable. Thus, 
this study aims to propose a multi-variable conflict indicator and build a conflict identification method for e-bikes mov-
ing in the same direction. In particular, by analysing the conflict characteristics from e-bikes trajectories, a multi-variable 
conflict indicator utilizing change of forecast post encroachment time, change of relative speed and change of distance is 
derived. Mathematical statistics and cluster discriminant analyses are applied to identify types of conflict, including conflict 
existence identification and conflict severity identification. The experimental results show: in mixed traffic environments 
with many e-bikes, compared with time-to-collision and deceleration, accuracy of identifying e-bike conflict types based 
on proposed method is the highest and can reach more than 90%; that is, multi-variable indicator based on time and space 
are more suitable for identifying e-bike conflicts than separate space-time approaching indicators. Furthermore, setting of 
dividing strip between motor vehicle and non-motorized vehicle has significant influence on number and change trend of 
conflict types. The proposed method can not only provide a theoretical basis and technical support for automated conflict 
detection in mixed transportation, but also give the safety optimization sequence of e-bikes at different types of intersec-
tions.

Keywords: traffic safety, conflict identification, cluster discriminant analysis, e-bikes, trajectory extraction, signalized  
intersection.

Notations 

ANOVA – analysis of variance;
AUC – area under the ROC curve;
BMV – bicycle – motor vehicle;
CAS – collision avoidance system;

FPET – forecast post encroachment time;
MSDG – minimum safety distance gap;

PDF – probability density function;
PET – post encroachment time;

ROC – receiver operating characteristic;
TCT – traffic conflict technique;
TET – time exposed TTC;
TIT – time integrated TTC;

TTA – time-to-accident;
TTC – time-to-collision.

Introduction 

E-bikes have been increasingly popular and become an 
important part of transportation system in many cities 
around the world. Unlike ordinary bike, e-bike has greater 
acceleration and speed, which may partly explain its rapid 
growth in recent years. Take China as an example, there 
were 200 million e-bikes in China by January 2018 (MIIT 
2018). E-bike refers to a special bike with two wheels that 
operates on human (pedal) and battery-electric power. It 
constitutes a spectrum of designs from pedal style e-bike 
to scooter style e-bike. Both types of e-bikes have high 
travel speeds. Specifically, although the Safety Technical 
Specification for Electric Bicyle (MIIT 2018) stipulated that 
the maximum speed of e-bikes was 20 km/h, in the actual 
traffic environment, most pedal style e-bikes can run over 
25 km/h and the scooter-like ones can even reach over 
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40 km/h. Obviously, increased mobility brings greater se-
curity risks. What followed is that mixed traffic conflicts 
have become increasingly prominent.

Traffic conflict is the interaction result of two par-
ticipants or participants with facilities in the movement 
space. The traffic conflict identification method is a key 
component of traffic conflict technology. Therefore, it is 
necessary to study conflict indicators and conflict identi-
fication methods of e-bikes to improve road traffic safety.

At the First Workshop on Traffic Conflicts, the defini-
tion of traffic conflict was formally proposed as “… an 
observable situation in which two or more road users ap-
proach each other in space and time to such an extent 
that there is a risk of collision if their movements remain 
unchanged” (Amundsen 1977). Then, the TCT had arisen; 
it could efficiently evaluate the current situation of traffic 
safety and provide effective and safe improvement meas-
ures.

There are different conflict indicators for the traffic 
safety evaluation. From the aspect of difficulty of meas-
uring indicators, time-based measures are easier because 
they are the result of combined effect for road users’ 
speeds and distances. One of the most frequently used 
indicators is TTC. TTC is defined as “the time until a col-
lision between the vehicles would occur if they continued 
on their present course at their present rates” (Hayward 
1972). In the Swedish TCT, the TTC value at the start time 
of the evasive action (TTA) together with the travel speed 
are defined as an indicator of traffic conflict (Hyden 1987); 
while during the process of encounter, the minimum value 
of TTC (TTCmin) is used as a part of the Dutch conflict 
observation technique; in many studies on the automatic 
identification of traffic conflicts (Autey et al. 2012; Sayed 
et al. 2013), TTCmin has also been commonly used as a 
traffic conflict indicator.

TTC is applicable to identify a rear-end conflict; it re-
flects the time series that the vehicles reach at the potential 
conflict point. PET is another frequently used indicator 
applying to the angle conflict events. It is defined as the 
time between the first road user leaving the “conflict zone” 
and the second one arriving at it (Allen et al. 1978). How-
ever, for road users without conflict zone (such as bicy-
cles), this type of conflict indicator is no longer applicable. 
In addition, although these indicators could describe the 
possibility of whether a conflict occurred, they cannot di-
rectly reflect the severity of the conflict.

Therefore, many researchers began to establish new 
conflict indicators to describe conflict severity. Sharizli 
et al. (2015) had promoted the MSDG to describe conflict 
severity. Laureshyn et al. (2017) extended the meaning of 
delta-V and created the extended delta-V indicator. Then, 
by utilizing the extended delta-V conflict measure method, 
the proximity to a crash as well as the outcome severity in 
the event were integrated to determine severity of a traffic 
event. However, using single-variable judgement indicator 
could not reflect the overall safety performance of vehicles 
including crash probability and severity simultaneously.

As the study progresses, scholars have found that using 
different single-variable indicators for conflict identifica-
tion sometimes produce opposite results (Saccomanno 
et  al. 2008; Ismail et  al. 2011). Thus, some researchers 
have started to establish integrated conflict indicators. 
Yang and Ozbay (2011) considered the vehicle confluence 
probability and collision probability, and proposed an in-
tegrated conflict indicator to evaluate the safety of con-
verging section. Behbahani et  al. (2014) combined TET 
with the TIT to apply in the CAS; the method reduced 
driving errors and rear-end collisions effectively. By uti-
lizing the change in the total kinetic energy before and 
after the collision, angle of collision and PET, Alhajyaseen 
(2014, 2015) deduced a new conflict indicator; then, they 
proposed an overall safety measure considering accident 
probability as well as expected severity. Based on these 
analyses, researches on motor vehicle traffic conflict main-
ly focus on the establishment of single-variable indicator 
and the qualitative conflict type division, while there are 
fewer quantitative indicators with multi-variable that can 
simultaneously consider the effects of time and space.

With the popularity of bicycles, conflicts of mixed 
traffic flow are more prominent. Therefore, there is a big 
safety risk for the road traffic. The most familiar bicy-
cle conflicts are the conflicts between right-turn vehicle 
and bicycle (Räsänen, Summala 1998); Kim et al. (2007) 
showed that speed was a key factor leading to bicycle–
vehicle conflicts or even traffic accidents. Therefore, the 
situation of traffic events can be improved by controlling 
speeds of vehicles. Minikel (2012) noted that fast speeds, 
high traffic and heavy vehicles were bad for riders, and 
these factors were more likely to lead to traffic conflicts. 
Wang and Nihan (2004) established the correlation be-
tween BMV accidents and traffic flows for different types, 
and proposed a method to estimate the BMV accident risk 
based on probability theory. Silvano et al. (2016) applied 
discrete selection theory to establish a probability model. 
The model could describe the interaction of bicycles and 
motor vehicles in the proximity of conflict areas. Based 
on the above analysis, in the process of conflict identifica-
tion of mixed traffic flow, speed is the key factor affecting 
the conflict between vehicles, and the interaction between 
vehicles cannot be ignored.

With the increasing congestion of urban traffic, e-bikes 
are gradually replacing traditional bicycles with their flex-
ible, economical and low-carbon features. Gradually they 
have become a more prevalent choice of the short-distance 
traveller. As a result, conflicts have become more promi-
nent. It is shown, that pedestrians, vehicles and bicycles af-
fect the travel safety of e-bikes (Dozza et al. 2016). Driving 
behaviours of non-motorized riders could vary according 
to the type of non-motorized vehicle. For example, e-bike 
cyclists are more likely to run through a red light than 
other types of cyclists at the crossroads (Langford et al. 
2015; Pai, Jou 2014). Comparing the behaviour differenc-
es between e-bike cyclists and traditional cyclists, studies 
show that e-bikes cyclists would gain higher mobility at 
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the expense of more risk behaviour (Bai et al. 2013; Cher-
ry, Cervero 2007). Several scholars found that the factors 
causing behaviour differences are age, gender and stages 
of signal phase (Wu et  al. 2012, 2016; Guo et  al. 2014). 
Xu et al. (2016) identified the interrelationships of these 
factors and proposed a method to evaluate safety of non-
motorized lanes. At present, studies on e-bikes focus on 
characteristics of e-bikes and differences with traditional 
bicycles, and little research has been done on the increas-
ingly serious e-bike conflicts problems. However, research 
on conflicts is important for control of mixed traffic flow, 
so this aspect is urgently needed.

Based on the above analysis, research on conflict in-
dicators and identification method, which is applicable 
for special vehicles such as e-bikes is indispensable. In 
order to improve the safety of mixed-traffic flow at the 
intersection, this study proposes a multi-variable conflict 
indicator and describe a conflict identification method for 
e-bikes. Due to the complexity of mixed traffic, the paper 
only studies the conflict for e-bikes moving in the same 
direction at the separating vehicles and non-motorized 
vehicles signalized intersections.

To summarize, the research mainly has following two 
contributions:

»» utilizing change of FPET, change of relative speed 
and change of distance, a multi-variable conflict in-
dicator suitable for describing conflict of e-bikes is 
proposed;

»» mathematical statistics and cluster discriminant 
analyses are applied to identify types of conflict, in-
cluding conflict existence identification and conflict 
severity identification.

The rest of paper is organized as follows: Section 1 
gives collection and analysis of conflict data for e-bikes. 
Section 2 presents determination process of multi-variable 
conflict indicator and conflict identification method of e-
bikes. Section 3 compares identification results of different 
indicator and discusses experimental result of proposed 
method. The last section concludes the paper.

1. Data description

1.1. Data collection 

In the actual traffic environment, the traffic flow of right-
turn e-bike is small and there is basically no interference 
between e-bikes. So in this paper, we mainly study the 
e-bikes flow moving in through direction and left-turn di-
rection. Specifically, we select the intersections according 
to following criteria:

»» having a separate non-motorized vehicle phase (or 
non-motorized vehicle phase lights in advance);

»» heavy e-bike traffic(the proportion of e-bike flow to 
total traffic at the intersection is greater than 0.3);

»» few pedestrian and vehicle interference;
»» a variety of signalized intersection sizes;

»» effective traffic signs and markers;
»» an acceptable vantage point for the video recorder 

(around higher buildings, etc.).
Based on the above criteria, the data used in this study 

were collected from November 2015 to July 2017 by means 
of video cameras at six signalized intersections (Figure 1). 

In this paper, video detection technology is used to 
track trajectories of e-bikes. Specifically: firstly, the e-bike 
is manually identified and labelled; then mean-shift al-
gorithm is used for tracking and its motion trajectory in 
pixel coordinates of image is extracted; finally, the motion 
trajectory in pixel coordinates is converted into real tra-
jectory in world coordinates by calibration. As a classical 
algorithm, mean-shift algorithm has been researched and 
improved by many scholars and its accuracy is high in 
theory (Ning et  al. 2012); meanwhile e-bike can be ap-
proximated as a rigid body and the change itself is small 
during movement, which has less influence on accuracy 
of algorithm. In addition, in order to further verify the 
accuracy of algorithm, actual measured trajectory data is 
also used for verification and tracking accuracy can reach 
93%. This accuracy is considered reliable especially under 
heavy traffic flow conditions.

By video detection technology, trajectory information 
of e-bikes is obtained, including the temporal information 
and spatial location information. The average length of e-
bike is 1.5 m, average speed is 5 m/s, so we define that the 
intercepting interval of video image is 0.3 s. Finally, the 
survey obtains 2693 pairs of traffic flow and 59881 pairs of 
traffic flow trajectory points, including pixel coordinates, 
earth coordinates, instantaneous speed about e-bikes at 
different times. Through and left-turn e-bike traffic flow 
accounts for 64 and 36% respectively (Table 1).

1.2. Data analysis 

1.2.1. Influencing factors
When e-bikes pass through signalized intersection, there 
are many factors that can cause traffic conflict. External 
factors are mainly geometric conditions of the intersec-
tion, surrounding building properties, traffic flow status, 
signal timing and so on. It is also closely related to internal 
factors such as: distance between e-bikes L, relative speed 
between e-bikes Vxd and speed angle between e-bikes q. 
Hence an attempt has been made in this paper to analyse 
the temporal and spatial characteristics of L, Vxd and q as 
they provide theoretical support for the establishment of 
traffic conflict indicators.

The collection process of L, Vxd and q is as follows: 
»» calculate the distance between e-bikes L by using the 

real coordinate position of trajectory point in world 
coordinates; 

»» e-bike speed is calculated by using the distance and 
time difference between continuous trajectory points; 

»» use the speed to calculate relative speed between e-
bikes Vxd and speed angle between e-bikes q.
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1.2.2. Statistical characteristics
In this part, the paper statistics characteristic differences 
among L, Vxd and q. First, data is divided at a statistical 
interval of 0.45 m  – the value is width of e-bike that is 
quoted from MIIT (2018); then we calculate the average 
of all Vxd and q within each interval length respectively; 
finally, change graphs of average value obtained in differ-
ent directions are drawn (Figure 2). 

Figure 2 shows that relationships among L, Vxd and q 
have differences in various directions. When L < 11.25 m,  
Vxd and q of through e-bikes remain stable; otherwise, 
Vxd and q will change dramatically. Therefore, the paper 

defines that 11.25  m is the state change point between 
through e-bikes. Similarly, motion change point of left-
turn e-bikes is 9.45 m. The difference in the value of state 
change point may be due to following reasons. In surveyed 
videos, through traffic flow is denser than left-turn. There-
fore, the distance between through e-bikes is small, and 
speed and direction of e-bikes are not easy to change. As 
a result, through e-bikes need to travel a long distance to 
increase driving space to change state of motion. In ad-
dition, when left-turn e-bikes are closer to exit, they will 
change directions and cut into non-motorized vehicle 
lane. Thereby the distance between e-bikes is shortened.

Figure 1. Field picture of signalized intersections: a – Location 1; b – Location 2; c – Location 3;  
d – Location 4; e – Location 5; f – Location 6

a) b)

c) d)

e) f)
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From the above analysis, it can be seen that changes in 
L, Vxd and q can reflect changes of e-bikes motion state. 
Therefore, if multiple variables are used at the same time, 
it is more likely to reflect the degree of conflict between 
e-bikes and discrimination effect may be better.

2. Methodology

The methodology of conflict identification consists of two 
steps: 

»» determination of multi-variable conflict indicator 
based on data analysis; 

»» proposing an identification method of conflict types 
based on mathematical statistical and cluster discri-
minant analysis. 

The details of each step are provided in the following 
sections.

2.1. Determination of multi-variable  
conflict indicator

Previous studies have applied numerous conflict indict-
ors, such as TTC, PET and so on. But they are not suit-
able for the discrimination between e-bikes. For example, 
TTC is applicable to identify a rear-end conflict, but there 
are cross conflict or interference between e-bikes; PET is 
frequently used for angle conflict events but it is neces-
sary to determine conflict zone. However, e-bike is small 
in size and specific zone cannot be specified. Therefore, 
for special vehicle like e-bike, a new indictor is needed to 
distinguish conflict types.

In order to find an indicator suitable for judging the 
conflict between e-bikes, the paper describes the move-
ment of e-bikes during left-turn phase at one intersection 
(Figure 3). At moment ( ) , 1i i t t= + , the space position of 
red e-bike and blue e-bike is ( ) AP i  and ( )BP i  respectively;  

Table 1. The parameter characteristics of observation location

Location 
number

Observation  
location

Intersection  
size 

[m × m]

Survey time 
period

Non-motorized 
vehicle phase

Travel 
direction  
of e-bikes

Pairs  
of traffic 

flow

Pairs  
of trajectory 

points

Location 1

Jiao Gong Road – Wen 
Yi Road intersection in 
Hangzhou City, Zhejiang 
Province

38 × 40 3 July 2017
16:30…20:00 separated

through – 
through 454 8931

left-turn – 
left-turn 209 7958

Location 2

Wen San Road – Gu 
Cui Road intersection in 
Hangzhou City, Zhejiang 
Province

36 × 40 30 June 2017
6.30…7.30

lights in 
advance

through – 
through 574 10778

left-turn – 
left-turn 393 8004

Location 3

Yu Hang Tang Road – Gu 
Dun Road intersection in 
Hangzhou City, Zhejiang 
Province

41 × 42 30 June 2017
17:00…19:00

lights in 
advance

through – 
through 398 10875

left-turn – 
left-turn 130 3196

Location 4

Xing Ming Street – Modern 
Avenue intersection in 
Suzhou City, Jiangsu 
Province

50 × 56 3 November 2015
8:40…9:10

lights in 
advance

through – 
through 35 540

left-turn – 
left-turn 17 475

Location 5

Yue Jin Road – Zhong Shan 
Yi Road –Wu Yi Road 
intersection in Zhanjiang 
City, Guangdong Province

44 × 40 1 November 2016
16:40…17:40 separated

through – 
through 50 854

left-turn – 
left-turn 63 1251

Location 6

Shang Du Road – Huang 
He South Road intersection 
in Zhengzhou City, Henan 
Province

36 × 46 18 April 2017
9:10…10:40

lights in 
advance

through – 
through 213 3408

left-turn – 
left-turn 157 3611

Total 2693 59881

Figure 2. The impact of e-bikes conflict factors:  
a – the relationship of through e-bikes among L, Vxd and q;  
b – the relationship of left-turn e-bikes among L, Vxd and q
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the corresponding speeds of two e-bikes are ( ) AV i  and
( ) BV i ; ( ) AL i  is the distance between ( )AP i  and potential 

conflict point Oi; ( ) BL i  is the distance between ( )BP i  and 
Oi; ( ) ABL i  is the distance between ( )AP i  and ( )BP i . In ad-
dition, jA is the speed angle of red e-bike from ( ) AP t  to 

( ) 1AP t + ; jB is the speed angle of blue e-bike from ( ) BP t  
to ( ) 1BP t + .

Combined with the change characteristics of e-bike 
motion state (speed, distance) in Figure 3, a new variable 
FPET is defined firstly. If two vehicles maintain the cur-
rent speed and driving direction at moment i, FPET is the 
expected time difference that these two vehicles arrive at 
the potential conflict point Oi. The calculation formula of 
FPET is:

( ) ( )
( )

( )
( )

A B
AB

A B

L i L i
FPET i

V i V i
= − .  (1)

Based on analysis results of Section 1.2.2 and state 
description of conflict traffic flow in Figure 3, it can be 
found that utilizing change of forecast post encroachment 
time between e-bikes DFPET, change of distance between 
e-bikes DL and change of relative speed between e-bikes 
DVxd comprehensively can more fully reflect state change 
of e-bikes. Further, according to summary of introduction 
section, using single-variable judgement indicator could 
not reflect the overall safety performance of vehicles. Thus, 
this paper chooses DFPET, DL and DVxd as key variables, 
and the multi-variable conflict indicator is derived. 

Among them, the calculation process of key variables 
is as follows: 

»» calculate the speed of e-bike and the distance be-
tween e-bikes by using the real coordinate position 
of trajectory point in world coordinates; 

»» calculate the relative speed and change value be-
tween e-bikes, and change value of distance between 
e-bikes; 

»» using FPET calculation formula (Equation 1), FPET 
and its change value are obtained by speed and dis-
tance between e-bikes.

2.2. Identification method of conflict types

According to actual traffic data, the conflicts in this pa-
per are divided into three types: non-conflict, non-serious 
conflict and serious conflict. Therefore, the establishment 
of conflict identification method includes two steps: The 
first step is the conflict existence identification, namely the 
identification of non-conflict and conflict; the second step 
is the conflict severity identification, namely the identifi-
cation of non-serious conflict and serious conflict. This 
part mainly utilizes the data of Location 1 through Loca-
tion 3 for analysis. The specific process shown in Figure 4.

2.2.1. Conflict existence identification
Cluster analysis
This paper uses the K-means clustering method to iden-
tify conflict existence. The DFPET, DL and DVxd are the 
clustering variables. First, combined with inconsistency 
coefficient, the optimal classification of data is automati-
cally identified as two types. Then, due to large amount of 
clustering data (59881 pairs trajectory points), we use K-
means clustering method to demarcate the conflict types 
of two types. The clustering results are shown in Table 2. 

Figure 3. Moving process of the e-bikes at signalized intersection: a – the trajectories of e-bikes;  
b – motion states of e-bikes at moment t; c – motion states of e-bikes at moment t + 1

Trajectory junction pointO

E-bike

Movement track

P (t + 1)A

P (t + 1)B

P (t)A

P (t)B

Tangents junction pointOt

O

P (t)A

P (t)B

L (t)AB

P (t + 1)A

P (t + 1)B

Ot

O

Ot + 1 Tangents junction point

L (t + 1)AB

P (t)A

P (t)B

L (t)AB

jA jB

a)

b)

c)



Transport, 2021, 36(2): 185–198 191

When conflict is going to occur, drivers will make 
some measures of avoidance, such as deceleration, brak-
ing etc. At that time, DL and DVxd will increase obviously, 
DFPET will become obviously smaller. Corresponding to 
the data in Table 2, it can be seen that the first type is type 
of conflict and the second type is non-conflict. Besides, 
one-way ANOVA shows that significance of three vari-

ables is less than 0.05. In other words, all three variables 
contribute to clustering.

As shown in Table 2, motion states of e-bikes have 
significant differences in two conflict types. In addition, 
comparing values of three parameters, it is found that 
through e-bikes change their motion states more quickly 
for avoiding road users.

Figure 4. Discrimination process of e-bike conflict types (ak – marginal value of serious conflict in k directions)

conflict existence identification

conflict severity identification

DDFFPPEETT

DDFFPPEETT,,

DDFFPPEETT

KK

Table 2. Clustering results of variables

Through – through e-bikes

K-means clustering method DFPET [s] DL [m] DVxd [m/s]
The first type mean 0.8819 0.6221 4.2808

pairs of trajectory points 7662 7662 7662
standard deviation 2.9616 0.4955 2.0223

The second type mean 2.4946 0.3839 1.2373
pairs of trajectory points 22922 22922 22922
standard deviation 1.0725 0.2953 0.8600

Left-turn – left-turn e-bikes

K-means clustering method DFPET [s] DL [m] DVxd [m/s]
The first type mean 0.7858 0.4418 2.1544

pairs of trajectory points 4883 4883 4883
standard deviation 1.4894 0.3800 1.7360

The second type mean 4.3073 0.4027 1.8180
pairs of trajectory points 14275 14275 14275
standard deviation 0.6321 0.3459 1.5067
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Discriminant analysis
In order to part conflict types dynamically, paper uses the 
method of enter independent together to build the Fisher 
linear discriminant functions. At the same time, the Wilk 
test is necessary for discriminant functions. The test re-
sults show that their significance is less than 0.05; that is, 
the established linear discriminant functions can distin-
guish two types of samples effectively and have a strong 
statistical significance. The Fisher linear discriminant 
functions are:

1 1 2 3 4k xdy b FPET b L b V b= ⋅D + ⋅D + ⋅D + ;  (2)

2 1 2 3 4k xdy c FPET c L c V c= ⋅D + ⋅D + ⋅D + ,  (3)

where: k  – travel direction of e-bike (k  = 1 represents 
through e-bike, k  = 2 represents left turn e-bike); yk1  – 
discriminant function 1 of different conflict types in k di-
rection; yk2 – discriminant function 2 of different conflict 
types in k direction; bj – undetermined parameters, their 
specific values are based on actual data (j = 1, 2, 3, 4); cj – 
undetermined parameters, their specific values are based 
on actual data (j = 1, 2, 3, 4).

If yk1 > yk2, it indicates that the sample belongs to the 
type of conflict, otherwise sample belongs to the type of 
non-conflict. 

In addition, the paper verifies the performance of dis-
criminant functions by cross validation, and the results 
show that cross validation can classify 98% of the samples 
correctly. So far, the discriminant equations for conflict 
existence have been established.

2.2.2. Conflict severity identification
To further classify the severity of conflict, this paper has 
conducted an in-depth analysis of conflict type data. It 
is found that there is always a break point for DFPET, 
DL and DVxd in each group of conflict trajectories at the 
same moment, as is shown by number 12 in Figure 5. The 
DFPET corresponding to break point is defined as critical 
DFPET in the paper. Consequently, the critical DFPET is 
used as the indicator of conflict severity identification.

After determining critical DFPET as the indicator to 
judge the severity of conflict, it is necessary to further ana-
lyse the numerical characteristics of it (Table 3).

Combined with the operation regularity of e-bike and 
definition of FPET, discriminant value (critical DFPET) of 
conflict severity should be within the range of mean value 
of conflict type. As shown in Tables 2 and 3, so the mean of 
critical DFPET is chosen as marginal value of serious con-
flict. Then threshold intervals for different conflict types 
can be determined. Specifically, when the result of dis-
criminant analysis is type of conflict and value of DFPET  

for through e-bikes is between 0 and 0.5862 s, then the 
type of conflict is a serious conflict. Otherwise, the type 
is non-serious conflict. Similarly, if its type is conflict and 
value of DFPET for left-turn e-bikes is between 0 and 
0.7613 s, then the type of conflict is a serious conflict; oth-
erwise, it is the non-serious conflict. So far, conflict type 
identification method for e-bikes has been completed. 

3. Results and discussion

3.1. Method validation

To verify the effectiveness of method, we tested the con-
flict types with field data of Location 4 through Location 6.  
The parameter characteristics of locations are shown in 
Table 1. The validation mainly includes establishment of 
test standards and comparative analysis of test results.

3.1.1. Establishment of test standards
To verify correctness of proposed method, the paper se-
lects two types of videos that can directly distinguish types 
of conflicts for analysis: one is the video of e-bikes with 
obvious serious conflicts (such as the behaviour of e-bike 
being forced to stop); the other is the video of e-bikes run-
ning freely, which its traffic volume is small and there is no 
interference between e-bikes obviously. Because change of 
relative speed between e-bikes DVxd and change of speed 
angle between e-bikes Dq can reflect change of distance 
and travel direction between e-bikes, these two types of 
data in condition of serious conflict and non-conflict are 
collected respectively. Then the distribution characteristics 
of DVxd and Dq are drawn. The results show that DVxd 
and Dq are normally distributed in different motion states 
(Figure 6). The PDF is:
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Figure 5. Schematic diagram for determining indicator  
of conflict severity
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Table 3. Critical DFPET statistics table

Travel direction  
of e-bikes

Pairs of 
trajectory points

Minimum 
[s]

Maximum 
[s]

Mean  
[s]

Standard deviation 
[s] Variance Skewness Kurtosis

Through – through 1267 0.0002 13.3039 0.5862 1.0575 1.1184 6.0564 52.8170
Left-turn – left-turn 663 0.0003 9.9595 0.7613 1.2560 1.5780 3.6950 16.9071
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where: x  – value of DVxd and Dq for different conflict 
types; ( )f x  – PDF; m – mean of variable x; s – standard 
deviation of variable x.

According to the 3 ⋅s  criterion, study chooses m ± s 
as the standard range to identify non-conflict and serious 
conflict. When the standard ranges of DVxd and Dq belong 
to non-conflict (serious conflict) at the same time, the 
type of trajectory pair is non-conflict (serious conflict); 
otherwise, it belongs to non-serious conflict. As shown 
in Table 4.

So far, establishment of test standards has been com-
pleted. In the actual test, accuracy of model can be verified 
by comparing it with proposed method. While Table 4 is 
only used as the test standards in this paper.

3.1.2. Comparative analysis of test results
According to Figure 4, we provide a group data of left-turn 
e-bikes as an example to illustrate the test process. Specific 
steps are as follows:

»» Step 1: Obtain the DFPET, DL and DVxd of left-turn 
e-bikes;

»» Step 2: Substituting DFPET, DL and DVxd into Fisher 
linear discriminant functions – Equations (2) and (3).  

In this test, specific parameter values of Equations (2) 
and (3) are as follows: k = 2, 1 0.006b = −  , 2 3.674b =  , 

3 4.062b = , 4 12.774b = − , 1 0.01c = , 2 2.324c = 2 2.324c = , 3 1.042c = 
3 1.042c = , 4 1.331c = − . So if yk1 > yk2, it belongs to type 

of conflict, otherwise sample belongs to type of non-
conflict. It should be noted here that the clustering 
part has been completed when the method is pro-
posed, so there is no need to repeat in actual use;

»» Step  3: Further identify the severity of conflict. In 
this test, k = 2 and 2 0.7613a = . So if DFPET is be-
tween 0 and 0.7613 s, then the type is a serious con-
flict; otherwise, it is the non-serious conflict;

»» Step 4: Verify the identification results. Compare the 
identification results by test standards with results 
by proposed method, accuracy of method can be 
obtained. 

The final test results are shown in Table 5.
According to the test process of above example, test 

results of all locations are obtained (Figure 7): here, Loca-
tion 4 and Location 5 are the intersections, which have di-
viding strips between motor vehicle lanes and non-motor-
ized vehicle lanes, while location 6 has no dividing strip.

It can be seen from Figure 7 that proposed method has 
a high accuracy overall. Furthermore, setting of dividing 
strip has a certain influence on the trend of conflicts num-
ber: overall trend is that as the severity of conflict increas-
es, number of conflict gradually decreases, but no divid-
ing strip will rise slightly at the end. In addition, there are 
significant differences in the number of conflicts between 
through and left-turn directions, which is related to envi-
ronmental differences at intersections. Therefore, in practi-
cal applications, it is possible to compare e-bike conflicts in 
different directions and intersection types. Then, the basis 
for safe optimization sequence of e-bikes is determined. 

In order to further test proposed method in this paper, 
a comparison was made with TTC and deceleration. Typi-
cally, road safety analysts will study conflict events with 
TTC less than 3 s; meantime 1.5 s TTC threshold is usu-
ally associated with serious conflicts (Tageldin et al. 2015). 
Therefore, the paper utilizes 3 and 1.5 s respectively as 
threshold to distinguish conflict types. In addition, decel-
eration mean of different experts categorization is used as 
threshold for different conflict types, specifically 1.5 and 
4 m/s2 (Tageldin et al. 2015). Results are shown in Table 
6 and Figure 8.

Table 6 and Figure 8 show – compared with TTC and 
deceleration, accuracy of proposed method is the highest, 
both above 90%; deceleration is more accurate than TTC. 

Figure 6. Distribution function of DVxd and Dq under different 
motion states: a – through e-bikes; b – left-turn e-bikes
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Table 4. Statistical Value of DVxd and Dq under different conflict types

Travel direction Conflict types Pairs of trajectory points
DVxd [m/s] Dq [°]

m s m ± s m s m ± s

Through – through
non-conflict 1996 1.74 1.45 (0.29, 3.19) 10.78 7.59 (3.19, 18.37)
serious conflict 131 4.20 9.74 (0, 13.94) 36.29 16.44 (19.85, 52.73)

Left-turn – left-turn
non-conflict 850 2.13 2.20 (0, 4.33) 8.59 5.97 (2.62, 14.56)
serious conflict 124 2.38 1.82 (0.56, 4.2) 38.11 23.26 (14.85, 61.37)
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Table 5. The test results of a group of left-turn e-bikes

Track point 
sequence DFPET [s] DL [m] DVxd [m/s] Dq [°] y21 y22

Predicted  
conflict type Actual conflict type

1 0.4812 0.5197 3.1924 13.5465 2.0740 3.2081 non-conflict non-conflict
2 1.4510 0.4937 3.5806 3.8921 3.4972 3.5619 non-conflict non-conflict
3 2.9825 0.2857 5.6656 49.9054 11.1104 5.2663 non-serious conflict non-serious conflict
4 0.2427 0.3811 0.9997 13.3138 –7.3276 0.5988 non-conflict non-conflict
5 0.5645 0.5466 0.2230 12.9462 –9.8938 0.1773 non-conflict non-conflict
6 0.6214 1.4168 1.9296 8.1830 0.2321 3.9785 non-conflict non-conflict
7 2.4899 0.8833 3.6439 14.7310 5.1234 4.5436 non-serious conflict non-serious conflict
8 0.9514 1.1533 2.6529 12.3957 2.1822 4.1231 non-conflict non-conflict
9 0.7599 0.9083 3.8657 14.6731 6.2200 4.8155 serious conflict non-serious conflict

10 0.6584 0.4669 1.3376 6.0378 –5.6648 1.1544 non-conflict non-conflict
11 0.9551 1.8937 1.5806 4.6721 0.5464 4.7264 non-conflict non-conflict
12 0.5645 1.5466 3.2230 24.7462 5.9665 5.6274 serious conflict serious conflict
13 0.7514 1.4168 3.9296 58.1830 8.3484 6.0638 serious conflict serious conflict
14 3.1774 0.2083 6.1997 14.6831 12.9839 5.6450 non-serious conflict non-serious conflict
15 1.6584 0.4669 1.3376 6.0378 –5.7248 1.1645 non-conflict non-conflict
16 0.7785 0.3333 1.2157 3.7277 –6.6580 0.7182 non-conflict non-conflict
17 0.6141 0.4326 3.3268 3.1668 2.2917 3.1469 non-conflict non-conflict
18 6.9971 0.7223 2.0167 2.9879 –2.3484 2.5189 non-conflict non-conflict
19 10.9925 0.1068 2.1653 3.9280 –4.2459 1.2833 non-conflict non-conflict
20 15.5807 0.1672 1.6016 10.3201 –6.5891 0.8821 non-conflict non-conflict

Figure 7. The test accuracy at different locations: a – Location 4; b – Location 5; c – Location 6
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Exploring the causes of this phenomenon  – on the one 
hand, TTC is mostly used for discrimination of rear-end 
conflicts and it may be less suitable for mixed traffic envi-
ronments with many non-motorized vehicles; on the other 
hand, deceleration, such an indicator based on evasive be-
haviour, it can better reflect the conflict between e-bikes, 
but it can only quantify the magnitude of deceleration ac-
tion and other aspects cannot be reflected. The identifica-
tion indicators and method proposed in paper compre-
hensively consider the influence of space and time, so they 
can reflect the conflicts between e-bikes more effectively. 
Combining the above analysis, the proposed method can 
divide different types of conflict between e-bikes accurate-
ly and effectively. Its rationality and credibility are higher.

3.2. Sensitivity analysis

To further test the discriminant effect of multi-variable 
conflict indicator, the paper chooses ROC curve to analyse 
the sensitivity of DFPET, DL and DVxd. The specific analy-
sis results are shown in Table 7 and Figure 9.

The results show: In through e-bikes, DVxd plays im-
portant influence on the test results of non-conflict and 
non-serious conflict, ∆FPET plays important influence 
on the test results of serious conflict; in left-turn e-bikes, 
DL plays important influence on the test results of non-
conflict and serious conflict, DVxd plays important influ-
ence on the test results of non-serious conflict. Meantime, 
the value of AUC is all above 0.7 and the significance is 
less than or equal to 0.05. This indicates that the test has 
statistical significance and its accuracy is high.

Table 6. Results for all test samples

Conflict type Non-conflict Non-serious conflict Serious conflict Total

Through – through e-bikes

Np 2701 800 996 4495
Nt 2405 626 813 3844
Nd 2553 719 869 4141
N 2864 861 1077 4802

Left-turn – left-turn e-bikes

Np 3861 621 483 4965
Nt 3029 457 367 3853
Nd 3673 580 418 4671
N 4125 680 532 5337

Notes: Np is the number of conflict types identified based on the proposed method; Nt is the number of conflict types identified based 
on TTC indicator; Nd is the number of conflict types identified based on deceleration indicator; N is the actual number of conflict types.

Figure 8. Accuracy of discriminant based on different conflict indicators
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Table 7. Sensitivity analysis results of different variables

Test variable Test indicator
Through – through e-bikes Left-turn – left-turn e-bikes

Non-conflict Non-serious 
conflict

Serious 
conflict Non-conflict Non-serious 

conflict
Serious 
conflict

DFPET [s]
AUC 0.53 0.52 0.76 0.52 0.62 0.54
gradual significance 0.58 0.75 0.04 0.64 0.78 0.74

DL [m]
AUC 0.57 0.61 0.58 0.78 0.51 0.72
gradual significance 0.58 0.64 0.70 0.03 0.96 0.05

DVxd [m/s]
AUC 0.71 0.83 0.64 0.55 0.78 0.54
gradual significance 0.05 0.02 0.55 0.19 0.03 0.60

Figure 9. ROC curves of various conflict types in different directions: a – non-conflict in through e-bikes;  
b – non-conflict in left-turn e-bikes; c – non-serious conflict in through e-bikes; d – non-serious conflict in left-turn e-bikes;  

e – serious conflict in through e-bikes; f – serious conflict in left-turn e-bikes
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Conclusions

To improve the safety of mixed-traffic flow at the inter-
section, this paper proposes a novel multi-variable con-
flict indicator that is based on change of FPET, change of 
relative speed and change of distance. Then, by utilizing 
mathematical statistics and cluster discriminant analyses, 
a new conflict identification method for e-bikes moving 
in the same direction is built, including conflict existence 
identification and conflict severity identification. Finally, 
field data in Suzhou, Guangzhou and Zhengzhou are used 
to verify the effectiveness of method. Experimental results: 
in non-conflict, non-serious conflict and serious conflict, 
the accuracy of through e-bikes are 94.31, 92.92, 92.48% 
respectively; left-turn e-bikes are 93.60, 91.32, 90.79% re-
spectively; Compared with TTC and deceleration, accu-
racy of proposed method is the highest. The results show 
that: multi-variable indicator based on time and space are 
more suitable for identifying e-bike conflicts than separate 
space-time approaching indicators; the conflict identifica-
tion method could satisfy the requirements of e-bike con-
flict identification. 

In addition, other conclusions are drawn during the 
research: 

»» in the type of serious conflict, the range of DFPET 
for through e-bikes is 0…0.5862 s, and the range of 
DFPET for left-turn e-bikes is 0…0.7613 s. This re-
sult is based on the dataset surveyed in this paper. 
The threshold range in other traffic environments 
can also be obtained according to proposed process;

»» in through e-bikes, the most valuable variable in sen-
sitivity analysis is DVxd; in left-turn e-bikes, it is DL;

»» the setting of dividing strips has significant influence 
on the number and trend of conflict types.

In general, the proposed multi-variable conflict indica-
tor and conflict identification method provide the theoret-
ical basis for automated conflict detection of mixed traffic 
flows and scientific management of intersections. In addi-
tion, in practical applications, the proposed model can be 
used to ascertain the location of conflict zone, guide the 
direction of traffic flow, determine the safe optimization 
sequence of different traffic flow directions and intersec-
tion types (including intersection organization and chan-
nelization), and thus road safety can be improved. More-
over, by the statistical analysis of actual data, this study 
chooses the mean of critical DFPET as marginal value of 
serious conflict. However, this choice method is limited by 
the amount of data and may result in the deviation from 
marginal value, so finding appropriate settings of critical 
DFPET is an important and challenging issue.
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