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Abstract. This paper evaluates the Technical Efficiencies (TEs) of a group of airports in East China by applying a three-
stage Data Envelopment Analysis (DEA) method. The merit of this method allows us to consider the impact of the envi-
ronmental factors on measuring airport efficiencies. Three variables, i.e. per capita Gross Domestic Product (GDP), the 
proportion of the tertiary industry, and the number of tourists, are used to represent the environmental factors. The results 
show that the environmental factors have airport-specific impacts on the value of the efficiencies. Additionally, airport TE 
are dominated by both Pure Technical Efficiency (PTE) and Scale Efficiency (SE). Based on empirical results, airport spe-
cific strategies can be provided to enhance airport efficiency, such as taking the effects of environmental variables and the 
statistical noise into consideration when analysing the airport efficiency, improving airport efficiencies according to their 
own conditions and improving the PTE or SE according to their categorizations.
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Notations 

Abbreviations:

AE – allocative efficiency;
AHP – analytic hierarchy process;
BCC – acronym from R. D. Banker, A. Charnes and 

W. W. Cooper (Banker et al. 1984);
CCR – acronym from A. Charnes, W. W. Cooper 

and E. Rhodes (Charnes et al. 1978);
CRS – constant returns to scale;
CV – coefficient of variation;

DEA – data envelopment analysis;
DEA-AR – DEA assurance region;

DMU – decision-making unit;
GDP – gross domestic product;
IATA – international air transport association;

LR – likelihood ratio;
OLS – ordinary least squares;
PTE – pure technical efficiency;

RS – returns to scale;
SD – standard deviation; 
SE – scale efficiency;

SFA – stochastic frontier analysis;

Variables and functions:

e  – coefficient matrix of slack variables for outputs of 
0i

DMU ;
ê  – coefficient matrix of slack variables for inputs of 

0i
DMU ;

Ê  – conditional estimators;
nf  – stochastic frontier function;

N +  – truncated normal distribution;
S−  – slack variables for inputs of 

0i
DMU ;

S+  – slack variables for outputs of 
0i

DMU ;

nis  – the stage 1 slack in the usage of the nth input for 
iDMU ;

niu  – managerial inefficiency;

niv  – statistical noise;

TE – technical efficiency;
TFP – total factor productivity; 
VRS – variable returns to scale;

WLU – work load units;
irs – increasing returns to scale; 

drs – decreasing returns to scale.
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iX  – the input value of iDMU ;

0X  – the input of 
0i

DMU ;

nix  – the original nth input of iDMU ;
A
nix  – the adjusted nth input of iDMU ;

iY  – the output value of iDMU ;

0Y  – the output of 
0i

DMU ;

iz  –
environmental variables;

nb  – the parameter to be estimated for the environmen-
tal variables;

ˆnb
 
– evaluated values of bn via the SFA model;

ng  – the variance of managerial inefficiency divided by 
the variance of managerial inefficiency plus the 
variance of statistical noise;

ε  – a small positive real number (usually, in empirical 
calculations, 10–6);

niε
 
– the sum of managerial inefficiency and the statisti-

cal noise;
( )φ ⋅

 
– the probability density function for standard nor-

mal distribution;
( )Φ ⋅

 
– the cumulative distribution function for standard 

normal distribution;

il  
– weight coefficient;

nl  – the ratio of uns  to vns ;

θ  – the value of the PTE;
ns  – the standard deviation of 2

ns ;
2
ns  

– the variance of managerial inefficiency plus the 
variance of statistical noise;

2
uns  – the variance of managerial inefficiency;
2
vns  – the variance of statistical noise.

Introduction

In China, air transport is growing at a very fast rate. To il-
lustrate, according to the Statistical Bulletins of Civil Avia-
tion Industry Development (CAAC 2014, 2018), growth 
rates over all commercial airports between 2013 and 2017 
for passenger transport equals 52.2% and 28.5% for the 
transport of cargo. The question that follows from this 
strong increase in air travel is whether the air transport 
sector (airports and airlines) can uphold this trend, and 
related to that, what measures are necessary to (further) 
accommodate such a growth. Part of the answer can be 
found in the 13th five-year plan (ranging from 2016 to 
2020) the Chinese government has put forward for the 
development of the civil aviation in China (CAAC 2017b). 
This plan proposes to develop six airport clusters and to 
study and evaluate the differences in airport efficiency in 
these airport clusters.

The current paper focuses specially on the airport ef-
ficiency in East China (one of the six airport clusters) dur-
ing the period from 2013 to 2017. The aim is to evaluate 
the airport efficiency and make suggestions to improve 
airport efficiency. The common technique used is DEA.

DEA has been widely used to analyse efficiency in di-
verse areas since the study of Charnes et al. (1978). DEA is 
a data planning method to evaluate the relative efficiency 
of a DMU with multi-inputs and multi-outputs (Cui, Li 
2014). DEA has become one of the most frequently used 
methods for analysing efficiency. There exist several DEA 
approaches. The methodology selected here deals with 
three-stages as initially developed by Fried et  al. (2002). 
This three-stage DEA model has the following built-up. 
First, the classical DEA model as proposed by Banker et al. 
(1984) is applied (referred to as the BCC-DEA model). 
Second, a SFA regression equation is used to eliminate the 
effects of environmental variables (i.e. referring to the ex-
ternal factors that affect airport efficiency) and the statisti-
cal noise (i.e. referring to the impact of omitted variables, 
and other related phenomena, which are represented in a 
random error term); the outcome of which is used to ad-
just the original inputs. Third, and finally, the standard 
BCC-DEA model is re-used to recalculate the efficiency, 
but then with the adjusted inputs. This latter stage is often 
not applied.

This paper is organized as follows: Section 1 presents a 
brief literature review to support the selection of the anal-
ysis model and the related variables. Section 2 formally 
introduces the three-stage DEA method. Section 3 intro-
duces the data and main results. Discussions are presented 
in Section 4, whereas the final section draws conclusions 
and suggests avenues for further research.

1. Literature review 

DEA has many different forms and has been applied in 
various fields. To illustrate, Graham (2005) reviews the 
situation of airport benchmarking and points that DEA 
is a more attractive technique than the other methods 
for its less demanding data requirements. Radonjić et al. 
(2011) employ DEA method in deciding the most favour-
able container line from Serbian ports to the near East 
ports. Jaržemskienė (2012) draws the conclusion that DEA 
proves to be most suitable for measuring the productiv-
ity of airports as complex systems. Charles and Zegarra 
(2014) develop a methodology based on DEA to measure 
and rank the competitiveness of different regions of Peru. 
Wanke and Barros (2014) use a two-stage DEA model to 
measure the cost efficiency and productive efficiency of 
Brazilian banks. Cui and Li (2014) propose a new three-
stage virtual frontier DEA model, which can distinguish 
the DEA efficient DMUs to estimate the transportation 
energy efficiency. In addition, Lozano (2015) formulates 
a parallel-processes network DEA approach to assess the 
efficiency of a production process and a pollution genera-
tion process. Hence, many different applications, and also 
many different DEA varieties. In terms of methodological 
improvements, the three-stage DEA seems most promis-
ing, but little evidence has been put forward to support 
this claim.

The three-stage DEA method has been developed 
and applied in recent years. Fried et al. (2002) propose a 
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three-stage DEA to eliminate the effects of environmental 
variables and the statistical noise with a sample of 990 US 
hospital-affiliated nursing homes. Cui et al. (2015) employ 
a three-stage DEA and Bootstrap DEA to estimate regional 
coal resource efficiency in China, taking environmental 
influences, managerial inefficiencies, and statistical noise 
into consideration. Li and Lin (2016) combine the ration-
ale of a sequential DEA and super efficiency DEA models 
to improve the estimation method, thereby obtaining an 
improved three-stage DEA method, which measures the 
actual, environmentally-sensitive TFP, or green productiv-
ity growth. Fuentes et al. (2016) combine the three-stage 
DEA and super-efficiency DEA model to evaluate the 
TE of the learning-teaching process in higher education, 
which eliminate the effects of contextual variables when 
making the calculation of values of efficiency. 

Since Gillen and Lall (1997) firstly apply a DEA to 
measure the performance of 21 airports in the US, the ap-
proach has been more frequently used to analyse airport 
efficiencies. There are examples of national studies: Gillen 
and Lall (1997) for the US; Yoshida and Fujimoto (2004) 
for Japan; Curi et  al. (2011) for Italy; Fragoudaki et  al. 
(2016) for Greece; Wanke and Barros (2017) for Senegal, 
and Fernandes and Pacheco (2018) for Brazil. In addition, 
comparative studies between countries exist, e.g. Adler, 
Liebert (2014); Lai et  al. (2015); Ferreira et  al. (2016); 
Chen et al. (2017), Button et al. (2018). Nearly all reviewed 
contributions analyse airport efficiencies within one coun-
try or between countries, but do not focus on the airport 
efficiency within an airport cluster or a multi-airport sys-
tem. This paper focuses on East China, considering that 
the developments of airports in East China are not bal-
anced and the development disparity among these airports 
is becoming larger.

As for the study period, there are studies that use an-
nual data: Lozano et al. (2013) assess the performance of 
39 individual Italian airports in 2008, whereas Liu (2017) 
uses a sample of 24 individual global airports in 2010. Oth-

ers opt for relatively longer periods, such as 3 years from 
2007 to 2009 by Merkert and Mangia (2014), 5 years from 
2000 to 2004 by Curi et al. (2011), 6 years from 2009 to 
2014 by Örkcü et al. (2016), or even 10 years from 1998 to 
2007 by Adler and Liebert (2014). We opt for 5 years from 
2013 to 2017 considering that on the one hand, this period 
covers 12th and 13th five-year plans for the development 
of the civil aviation in China; on the other hand, in this 
time frame, some airports expanded or relocated which 
may have an effect on the airport efficiency.

As for inputs, the most frequently used variables found 
in the literature are terminal area, apron area, number of 
runways, total runway length, number of employees, num-
ber of gates, and number of aircraft parking spaces (Gillen, 
Lall 1997; Wanke 2012; Lozano et al. 2013; Merkert, Man-
gia 2014; D’Alfonso et al. 2015; Chen et al. 2017). Barros 
and Weber (2009) also use capital cost, labour cost and air-
port operating cost as inputs. Other input indicators have 
been considered such as number of baggage collection 
belts (Lozano et  al. 2013), number of check-in counters 
(D’Alfonso et  al. 2015). Specially, Yoshida and Fujimoto 
(2004) adopt time access cost as the input to study Japa-
nese airport efficiency. 

In respect to outputs, the most used indicators for air-
port outputs are the number of aircraft movements, the 
number of passengers, and the amount of cargo (Curi et al. 
2011; Gitto, Mancuso 2012; Lozano et al. 2013; Merkert, 
Mangia 2014; D’Alfonso et  al. 2015; Örkcü et  al. 2016; 
Wanke, Barros 2017). Others have suggested aeronauti-
cal revenues, and non-aeronautical revenues as outputs 
(Adler, Liebert 2014; Lai et al. 2015; Liu 2017; Fernandes, 
Pacheco 2018). 

Note also that some studies have included the effects 
of environmental variables, but none recalculate the air-
port efficiency. We employ a three-stage DEA to analyse 
the airport efficiency in East China during the period from 
2013 to 2017 using the studies mentioned in Table 1 as a 
reference.

Table 1. Review of the methodology and indicators analysing airport efficiency

Author(s) Methodology Inputs Outputs

Gillen, Lall 
(1997)

− two-stage DEA − number of runways; 
− number of gates; 
− terminal area; 
− number of employees; 
− number of baggage collection belts; 
− number of public parking spots; 
− airport area; 
− runway area

− number of passengers; 
− pounds of cargo; 
− air carrier movements; 
− commuter movements

Yoshida, 
Fujimoto 
(2004)

− DEA; 
− endogenous-weight 

TFP

− total length of runways; 
− total floor area of terminal buildings; 
− monetary access cost; 
− time access cost; 
− number of employees in terminal building

− passenger loading; 
− cargo handling; 
− aircraft movement

Barros, Weber 
(2009)

− DEA; 
− Malmquist index

− labour; 
− capital; 
− other cost

− passengers; 
− cargo shipments; 
− aircraft movements
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Author(s) Methodology Inputs Outputs

Curi et al. 
(2011)

− bootstrapped DEA − employees; 
− number of runways; 
− apron size

− number of movements; 
− number of passengers; 
− amount of cargo

Gitto, Mancuso 
(2012)

− DEA − number of workers; 
− runway area; 
− airport area

− number of movements; 
− number of passengers; 
− amount of cargo

Wanke (2012) − bootstrapped DEA − airport area; 
− apron area; 
− number of runways; 
− total runway length; 
− number of aircraft parking spaces; 
− terminal area; 
− number of parking places

− number of landings and take offs; 
− number of passengers; 
− cargo throughput

Lozano et al. 
(2013)

− network DEA − square meters; 
− number of stands; 
− number of gates; 
− number of belts; 
− number of counters

− aircraft traffic movements; 
− annual passenger movements; 
− cargo handled

Wanke (2013) − two-stage network 
DEA

− terminal area; 
− aircraft parking spaces; 
− runways

− passengers; 
− cargo throughput

Adler, Liebert 
(2014)

− DEA;
− regression analysis

− staff costs; 
− other operating costs; 
− declared runway capacity

− passengers; 
− cargo; 
− air transport movements; 
− non-aeronautical revenues

Merkert, 
Mangia (2014)

− two-stage DEA − terminal area; 
− apron area; 
− number of runway; 
− runway length; 
− runway area; 
− total area; 
− number of employees; 
− operating cost, staff cost; 
− material cost

− air traffic movements; 
− passengers; 
− cargo

D’Alfonso et al. 
(2015)

− DEA;
− two-stage approach

− airport area; 
− number of runways; 
− number of passenger terminals; 
− number of gates; 
− number of check-in; 
− number of employees

− number of passengers; 
− amount of cargo; 
− number of movements

Lai et al. (2015) − AHP;
− DEA-AR model

− number of employees; 
− number of gates; 
− number of runways; 
− size of terminal area; 
− length of runway; 
− operational expenditure

− number of passengers; 
− amount of freight and mail; 
− aircraft movements; 
− total revenues

Ferreira et al. 
(2016)

− DEA; 
− Malmquist index

− number of boarding gates; 
− number of employees; 
− total length of runways; 
− other operational costs

− number of flights; 
− number of equivalent passengers 

Fragoudaki 
et al. (2016)

− DEA; 
− Malmquist index

− runway length; 
− apron size in square meters; 
− passenger terminal size

− total aircraft movements; 
− WLUs

Örkcü et al. 
(2016)

− DEA; 
− bootstrapping 

Malmquist index

− number of runway; 
− dimension of runway units; 
− passenger terminal area

− annual number of flights; 
− annual passenger throughputs; 
− annual cargo throughputs

Continue of Table 1
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2. Methodology 

DEA is one of the most frequently used method for ana-
lysing the (airport) efficiency since the approach does not 
need a formal definition of a functional relationship be-
tween inputs and outputs. In that sense, it is a non-par-
ametric method (Fuentes et  al. 2016). The method uses 
linear programming in determining the efficiency of com-
panies where natural prices for specific inputs are lacking, 
which is ideal for situations where it is impossible to cal-
culate prices, as is the case in airport efficiency analysis. 
DEA provides a scalar measure of relative efficiency by 
comparing the efficiency achieved by a DMU with the 
efficiency obtained by similar DMUs (Gillen, Lall 1997), 
which is an appropriate way to analyse relative efficiency 
of the airport in the same airport cluster. 

As with any other method, DEA also has a number of 
disadvantages. The approach rules out any possibility of 
random influences since it is a deterministic model, which 
assumes that any resulting inefficiency is solely and exclu-
sively due to the inappropriate management of the DMU 
(Fuentes et al. 2016). To partly solve this, Fried et al. (2002) 
propose a three-stage DEA that can eliminate the effect of 
environmental variables and the statistical noise. This study 
selects a three-stage DEA since its advantages are greater 
and more significant than any potential disadvantage.

In short, DEA is a method to obtain an efficient frontier 
based on a set of observations. The frontier is calculated 
by a linear optimization program in which the measure-
ment of efficiency is defined as a ratio between the weight-
ed sum of the outputs and inputs in each DMU (Fuentes 

et  al. 2016). The weights for the inputs and outputs are 
not pre-determined but instead are the result of the lin-
ear programming procedure (Graham 2005). Efficiency 
is the result of the product of the TE and the AE. Since 
the latter considers information provided by the prices of 
the resources, the most common-used type of efficiency 
in airport analysis is the TE. The TE is a reflection of the 
efficiency obtained by the DMUs in terms of the quanti-
ties of outputs produced in comparison to the inputs used 
(Fuentes et al. 2016), which can be calculated through the 
CCR-DEA model as proposed by Charnes et al. (1978).

RS refers to the variation of outputs caused by the 
variation of all inputs in the same proportion when other 
conditions remain unchanged. The CCR-DEA model is 
under the assumption of CRS, meaning that if all inputs 
are increased in the same proportion, then outputs will be 
increased in the same proportion, which can calculate the 
TE. The BCC-DEA model deals with efficiency of DMUs 
under the assumption of VRS given that outputs do not 
always vary in the same proportion as inputs, which can 
obtain the PTE. The PTE excludes the effect of econom-
ic scale, which demonstrates how effectively generation 
techniques are applied to obtain maximum output. The SE 
is equal to TE divided by PTE, which indicates that the 
degree to which scale economy effect is realized. Airport 
managers are typically evaluated in terms of their ability to 
minimize input usage in the production of given outputs 
(input-oriented model), or to maximize output produc-
tion with given inputs (output-oriented model). This pa-
per considers the first type of orientation (inputs) accord-
ing to the conditions in China.

Author(s) Methodology Inputs Outputs

Chen et al. 
(2017)

− non-concave 
metafrontier DEA 
approach 

− number of full-time-equivalent employees; 
− number of gates; 
− number of runways; 
− total area of all passenger terminals; 
− average length of runways at each airport 

− number of passengers; 
− weight of cargo and mail; 
− aircraft movements; 
− total revenues 

Liu (2017) − multi-period DEA; 
− Malmquist index

− runway area; 
− staff cost; 
− other operating cost

− passengers and cargo; 
− non-aeronautical revenues

Wanke, Barros 
(2017)

− two-stage satisficing 
DEA-support vector 
machine approach

− number of employees; 
− runway length in feet

− cargo movement per year; 
− number of aircraft movements per year; 
− number of passengers per year

Button et al. 
(2018)

− DEA; 
− tobit-regression

− number of airlines; 
− car park capacity; 
− distance to city center; 
− passenger terminals; 
− gates; 
− runways; 
− length of the longest runway; 
− destinations

− passenger throughput; 
− aircraft movements

Fernandes, 
Pacheco (2018)

− bootstrapped DEA; 
− Malmquist index

− average number of employees; 
− payroll (including direct and indirect 

benefits); 
− operating expenses

− total passengers; 
− freight plus mail; 
− operating revenue; 
− commercial revenue; 
− other revenues

End of Table 1
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2.1. The first stage: BCC model

The BCC-DEA model is based on the characteristics of the 
airports (DMUs) under analysis. The linear programming 
model used to obtain the efficiency of 

0i
DMU  is defined 

as follows:

( )( )ˆmin T TS Se e− +θ − ε ⋅ ⋅ + ⋅

subject to:

0
1

I

i i
i

X S X−

=

⋅l + = θ⋅∑ ; 

0
1

=
I

i i
i

Y S Y+

=

⋅l −∑ ;

1

1
I

i
i=

l =∑ ; 

( )1,1, ,1ˆ T Ne E= … ∈ ; 

( )1,1, ,1
T Me E= … ∈ ; 

 0il  ,  1, ,i I= … ; 

0S− ≥ ; 0S+ ≥ ,  (1)

where: I is the number of DMUs; N is the num-
ber of inputs; M is the number of outputs; 1 2 , , ,

T
i i i NiX x x x = …  

1 2 , , ,
T

i i i NiX x x x = …  , 1, ,i I= …  ; 1 2, , ,
T

i i i MiY y y y = …   
, 

1, ...,i I= ;  li  is defined 
1

1
I

i
i=

l =∑
 
; 1 2, , ,

T
NS S S S− − − − = …    

are slack variables for inputs of 
0i

DMU ; 1 2, , ,
T

MS S S S+ + + + = …  
1 2, , ,

T
MS S S S+ + + + = …   are slack variables for outputs of 

0i
DMU .

In this stage we can obtain the PTE and SE since 
we assumed VRS. The 

0i
DMU is efficient when 

1TE PTE SE= = =  and 0S S− += =  , at the stage of CRS. 
Meanwhile, the input slacks of all DMUs can be calculated, 
which demonstrate the disparities between the actual and 
targeted input values.

2.2. The second stage: obtain  
the adjusted input values

Fuentes et al. (2016) use a linear programming model to 
minimize the slack variables, so that they can modify the 
value of inputs and outputs. Fried et al. (2002) attribute 
the input slacks (radial plus non-radial) to managerial in-
efficiency (it means that managers do not achieve the ex-
pected goals during the organization of various resources 
for the company), environmental variables and the statisti-
cal noise, which all lead to the pure technical inefficiency. 
Our goal is to eliminate the effects of environmental vari-
ables and the statistical noise, and then if the PTE is less 
than 1, we can ascertain that the managerial inefficiency 
leads to the pure technical inefficiency. In order to capture 
the effect of the statistical noise on efficiency, the model 
must be stochastic, so we apply a SFA in the second stage 
as Fried et al. (2002) did. The similar SFA model of nth 

input can be structured with slacks of inputs obtained in 
the first stage as dependent variables while environmental 
variables as independent variables as follows:

( );n n
ni i ni nis f z v u= b + + ;

 1, ,n N= … ;  1, ,i I= … ,  (2)

where: ( );n nf Z b  is stochastic frontier function represent-
ing the effects of environmental variables to input slacks; 

1 2, , ,
T

i i i kiz z z z = …  , 1, ,i I= … ; ni niv u+  denotes mixed 

error term; ( )20,ni vnv N + s ; ( )+ 20,ni unu N s ; vni, uni 
distribute independently of each other and each of the N 
regressions (2) may be estimated by maximum likelihood 
techniques. In each regression, the parameters to be esti-
mated are ( )2 2, ,n

vn unb s s . All parameters vary across the 
N input slack regressions, which allows the environmental 
variables, statistical noise and managerial inefficiency to 
exert different impacts across inputs (Fried et al. 2002).

Set 
2

2 2
un

n
vn un

s
g =

s + s
, and the value of gn close to 1 in-

dicates that the effect of managerial inefficiency dominate 
the airport inefficiency, and the SFA method can be used 
for estimation. If gn near to 0 means that the airport inef-
ficiency is mainly derived from the statistical noise, and 
thus the OLS approach should be applied. The value of gn 
is utilized to identify the feasibility and applicability of the 
SFA regression. 

It is necessary to separate the statistical noise from 
managerial inefficiency in the residuals of the SFA regres-
sion models (2) in order to obtain estimates of vni as fol-
lows:

( )ˆ
ni ni niE u v u + =

21

ni n

nn n ni n

nn ni n

n

  ε ⋅l
φ  sl ⋅s ε ⋅l  ⋅ + s + l ε ⋅l Φ  s  

;  (3)

( )ˆ
ni ni niE v v u + = ( )ˆ ˆn

ni i ni ni nis z E u v u− ⋅b −  + ,  (4)

where: ( )ˆ
ni ni niE u v u +  denote the conditional estimators 

for managerial inefficiency; ( )ˆ
ni ni niE v v u +  denote the 

conditional estimators for statistical noise. For easy calcu-
lation, Luo (2012) defines that un

n
vn

s
l =

s
, 2 2 2

n vn uns = s + s  
and ni ni niv uε = + . 

Using the regression results, we further adjust inputs 
after eliminating the effect of environmental variables and 
statistical noise. The adjustment formula for 

0i
DMU  is as 

follows:

( )( )ˆ ˆmaxA n n
ni ni i i ix x z z= + ⋅b − ⋅b +

( )( )ˆ ˆmaxi ni niv v− ,  (5)



Transport, 2020, 35(3): 255–272 261

where: the first bracket adjusts 
0i

DMU  to a common oper-
ating environment; the second one puts it into a common 
state of nature and the worst situation encountered in the 
sample. These adjustments vary across DMUs and inputs. 
Such adjustments can make all DMUs in the same exterior 
condition.

2.3. The third stage: reuse BCC model

The BCC-DEA model is used again with the input A
nix  ob-

tained from the second stage and the efficiency can reflect 
the real operation status after eliminating external envi-
ronmental variables and statistical noise.

3. Data and results

3.1. Variables and data sources

We select the terminal area – I1, the number of gate po-
sitions – I2 and total length of runways – I3 as inputs. 
The terminal area is a significant input in the landside of 
airports that decides the ability of accommodating pas-
sengers. The number of gate positions and total length of 
runways are both typical inputs in the airside of airports, 
which limit the number and type of aircrafts that airports 
can handle at the same time. We also take the number of 
destinations – I4 into consideration because it reflects the 
service scope of airports in a degree.

For outputs, we select the passenger throughput – O1, 
the cargo and mail throughput – O2, and the number of 
aircraft movements – O3. 

Another important decision is the choice of environ-
mental variables. Environmental variables are factors that 
affect airport efficiency but that are objective and uncon-
trollable, such as social and economic factors. We select 
per capita GDP – Z1, the proportion of the tertiary indus-
try in the GDP  – Z2, and the number of tourists travel-
ling to the city where the airport is located – Z3. Per capita 
GDP determines the purchasing power of consumers and 
the level of economic development in the city. The propor-
tion of the tertiary industry in the GDP is a proxy for the 
economic structure of the city. The bigger the proportion, 

the better market environment for the development of air 
transport. Finally, the larger the number of tourists, the 
more flights will be arranged which is good for airports.

Data required for the analysis were collected from the 
airports official websites, Issues the Statistics Bulletin of Civ-
il Airports in China (CAAC 2017a), OAG (2018) database 
and other Internet resources. The time span ranges from 
2013 to 2017. In addition, we selected the top 20 airports 
in East China as DMUs ranked by passenger throughputs 
in 2017 (as shown in Appendix A Table A). Table 2 shows 
the descriptive statistics of the collected data of all vari-
ables, while Table 3 shows that, the results of the Pearson 
correlation test are significant, indicating a high correla-
tion level and fulfilling the principle of the indicator selec-
tion required by DEA.

Table 2. Descriptive statistics of the collected data of all variables

Variables Min Max Mean SD CV
I1 [⋅104 m2] 1.400 83.200 15.946 19.490 1.222
I2 [No] 9.000 224.000 58.500 58.391 0.998
I3 [m] 2400.000 15000.000 4253.000 2547.506 0.599
I4 [No] 13.000 273.000 73.750 53.737 0.729
O1 [person] 548306.000 70001237.000 12909898.620 14846125.706 1.150
O2 [ton] 2655.970 3824279.946 288828.852 718050.924 2.486
O3 [sortie] 6231.000 496774.000 106135.520 105164.025 0.991
Z1 [CNY] 49817.000 160706.000 94543.450 23380.655 0.247
Z2 [–] 0.349 0.698 0.499 0.085 0.170
Z3 [⋅104 person] 2737.693 32718.010 8900.013 7296.782 0.820

Table 3. Pearson correlation coefficients between inputs and 
outputs

Outputs Years
Inputs

I1 I2 I3 I4

O1

2013 0.955*** 0.983*** 0.911*** 0.949***

2014 0.949*** 0.955*** 0.895*** 0.953***

2015 0.957*** 0.956*** 0.907*** 0.952***

2016 0.964*** 0.947*** 0.918*** 0.955***

2017 0.968*** 0.951*** 0.919*** 0.949***

O2

2013 0.885*** 0.830*** 0.900*** 0.901***

2014 0.833*** 0.778*** 0.852*** 0.897***

2015 0.838*** 0.775*** 0.936*** 0.893***

2016 0.863*** 0.747*** 0.936*** 0.889***

2017 0.845*** 0.730*** 0.936*** 0.852***

O3

2013 0.951*** 0.981*** 0.919*** 0.964***

2014 0.956*** 0.958*** 0.908*** 0.971***

2015 0.960*** 0.959*** 0.915*** 0.966***

2016 0.965*** 0.953*** 0.921*** 0.968***

2017 0.965*** 0.952*** 0.927*** 0.959***

Note: *** indicates the 1% significance level.
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3.2. Results of the first stage

We use MaxDEA8.0 (http://maxdea.com/MaxDEA.htm) 
and Frontier 4.1 (http://frontier.r-forge.r-project.org/
front41.html) software to obtain the results shown in Table 
4. The first column reflects the airports (DMUs). Column 
2, 3 and 4 indicate TE, the PTE and the SE of each airport 
respectively in 2013 (followed by the same order in other 
years). Columns 5, 9, 13, 17 and 21 indicate the stage of 
returns to scale; irs means increasing returns to scale (if all 
inputs are increased in the same proportion, then outputs 
will be increased in the higher proportion); drs means 
decreasing returns to scale (if all inputs are increased in 
the same proportion, then outputs will be increased in the 
lower proportion); others show CRS. We can increase or 
decrease inputs properly according to the stage of irs or 
drs if the airport is scale inefficient. Since the DEA model 
is input-oriented, all the values in columns 2, 6, 10, 14, 18 
and 22 may be equal to 1 (efficient) or less than 1 (inef-
ficient). The lower the value is, the more inefficient the 
airport will become. 

Airports abbreviations (IATA codes) is available in Ap-
pendix A. PVG, SHA, XMN, WNZ and NGB are superior 
to other airports because their average TEs of the five years 
from 2013 to 2017 are equal to 1, as shown in Figure 1. 
Ten airports (NKG, TNA, FOC, KHN, HFE, WUX, YNT, 
JJN, CZX and WEH) do not have a good performance be-
cause their average TEs are all less than 0.849 (the aver-
age value of 20 airports). Taking CZX as an example, TEs 
from 2013 to 2017 are equal to 0.472, 0.506, 0.541, 0.511, 
0.771, respectively, and the average TE of the five years is 
0.560, which is the lowest average TE within 20 airports. 

The average TE of all the 20 airports decreases first and 
then increases as shown in Figure 2. Average PTEs are al-
ways above 0.9, and the tendency of which is the same as 
the tendency of average TEs. Average SEs nearly has a ris-
ing tendency in the five years, while the values are always 
lower, than which of average PTEs. Airport inefficiency is 
dominated by both pure technical inefficiency and scale 
inefficiency. Almost all airports are at the stage of irs ex-
cept HGH from 2013 to 2017, NKG in 2017 and FOC in 
2014, which are at the stage of drs as shown in Table 4, 
which means airports at the stage of irs can achieve more 
outputs by increasing their inputs properly.

3.3. Results of the second stage

The SFA approach is applied to analyse the slack of inputs, 
embodying the terminal area, the number of gate position, 
total length of runways, and the number of destinations. 
Three environmental variables, which are per capita GDP, 
the proportion of the tertiary industry in the GDP and the 
number of tourists travelling to the city where the airport 
is located, are regarded as the independent variables of 
the input slacks.

Table 5 demonstrates the SFA estimation results in 
2017 as an example, others are shown in Appendix B. The 
LR test results of the one-side error of SFA regressions for 
four input slacks with three environmental variables are 
all under 1% significance level, which indicates the ro-
bustness of the SFA model. The values of gn are all near 1, 
which shows that managerial inefficiencies dominates the 
pure technical inefficiencies. The separation of managerial 
inefficiency and the statistical noise by employing the SFA 
model is effective.

Table 4. Efficiency of the first stage

           Year 
 Airport 

2013 2014 2015 2016 2017 Average

TE PTE SE RS TE PTE SE RS TE PTE SE RS TE PTE SE RS TE PTE SE RS TE PTE SE

PVG 1 1 1 – 1 1 1 – 1 1 1 – 1 1 1 – 1 1 1 – 1 1 1

SHA 1 1 1 – 1 1 1 – 1 1 1 – 1 1 1 – 1 1 1 – 1 1 1

HGH 0.915 0.919 0.996 drs 0.985 1 0.985 drs 0.932 0.937 0.994 drs 0.856 0.914 0.936 drs 0.943 0.975 0.967 drs 0.926 0.949 0.976

XMN 1 1 1 – 1 1 1 – 1 1 1 – 1 1 1 – 1 1 1 – 1 1 1

NKG 0.961 0.975 0.986 irs 0.724 0.776 0.933 irs 0.764 0.804 0.950 irs 0.852 0.897 0.950 irs 0.832 0.839 0.992 drs 0.827 0.858 0.962

TAO 0.984 1 0.984 irs 1 1 1 – 1 1 1 – 1 1 1 – 1 1 1 – 0.997 1 0.997

TNA 0.767 0.827 0.927 irs 0.830 0.863 0.961 irs 0.777 0.826 0.941 irs 0.828 0.847 0.977 irs 0.932 0.939 0.992 irs 0.827 0.860 0.960

FOC 0.852 0.889 0.958 irs 0.941 0.944 0.998 drs 0.745 0.82 0.908 irs 0.689 0.810 0.851 irs 0.607 0.800 0.759 irs 0.767 0.853 0.895

WNZ 1 1 1 – 1 1 1 – 1 1 1 – 1 1 1 – 1 1 1 – 1 1 1

KHN 0.643 0.801 0.803 irs 0.628 0.803 0.782 irs 0.647 0.825 0.784 irs 0.636 0.848 0.75 irs 0.710 0.847 0.839 irs 0.653 0.825 0.792

NGB 1 1 1 – 1 1 1 – 1 1 1 – 1 1 1 – 1 1 1 – 1 1 1

HFE 0.713 0.848 0.841 irs 0.746 0.858 0.869 irs 0.813 0.888 0.916 irs 0.847 0.919 0.921 irs 0.949 0.993 0.955 irs 0.814 0.901 0.900

WUX 0.846 1 0.846 irs 0.854 1 0.854 irs 0.608 0.866 0.701 irs 0.652 0.872 0.748 irs 0.744 0.888 0.838 irs 0.741 0.925 0.797

YNT 1 1 1 – 1 1 1 – 0.498 0.753 0.662 irs 0.539 0.762 0.708 irs 0.563 0.767 0.733 irs 0.720 0.856 0.821

JJN 0.596 1 0.596 irs 0.648 1 0.648 irs 0.786 1 0.786 irs 0.738 1 0.738 irs 0.875 1 0.875 irs 0.729 1 0.729

CZX 0.472 0.882 0.536 irs 0.506 0.794 0.637 irs 0.541 0.750 0.721 irs 0.511 0.756 0.677 irs 0.771 0.938 0.822 irs 0.560 0.824 0.679

WEH 0.602 1 0.602 irs 0.318 1 0.318 irs 0.602 1 0.602 irs 0.681 1 0.681 irs 0.717 1 0.717 irs 0.584 1 0.584

NTG 1 1 1 – 1 1 1 – 0.966 1 0.966 irs 0.908 1 0.908 irs 1 1 1 – 0.975 1 0.975

XUZ 1 1 1 – 1 1 1 – 1 1 1 – 1 1 1 – 0.983 1 0.983 irs 0.997 1 0.997

YTY 0.629 1 0.629 irs 0.755 1 0.755 irs 0.950 1 0.950 irs 1 1 1 – 1 1 1 – 0.867 1 0.867

Average 0.849 0.957 0.885 – 0.847 0.952 0.887 – 0.831 0.923 0.894 – 0.837 0.931 0.892 – 0.881 0.949 0.924 – 0.849 0.943 0.896

http://maxdea.com/MaxDEA.htm
http://frontier.r-forge.r-project.org/front41.html
http://frontier.r-forge.r-project.org/front41.html
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For the evaluated coefficients, in accordance with the 
t-statistics in brackets, all coefficients are significant at 1 
or 5% significance level, which demonstrates that three 
environmental variables do exert critical effects on air-
port efficiencies. It is essential to remove the effects of en-
vironmental variables and the statistical noise on airport 
efficiencies to obtain the “real” airport efficiencies. Differ-
ent coefficients represent different relationships between 
environmental variables and input slacks. The negative 
coefficient implies the favourable effects brought by en-
vironmental variables on the improvement of airport ef-
ficiencies, and the positive coefficient demonstrates the 
unfavourable effects. 

For per capita GDP, all the coefficients are positive and 
significant. This indicates that per capita GDP will lead to 
the input increase of the terminal area, the number of gate 
positions, total length of runways and the number of desti-
nations, which can bring unfavourable impacts on airport 
efficiencies. The city where the airport is located will ex-
pand the airport scale ahead of time to meet the growing 
demand for travel as the increase of per capita GDP, which 
leads to the input slacks of airports and causes the airport 
inefficiency. 

For the proportion of the tertiary industry in the GDP, 
the coefficients are all positive and significant, which 
means that the increase of the proportion will not be good 
for the decrease of input slacks. This result means, the con-
tinuous increase in the proportion of the tertiary indus-
try in the GDP has led to economic transformation and 
triggered new demand, which promotes the development 
of the air transport market, further expanding the airport 
scale and increasing airport inputs. While at these recent 
years, the actual demand cannot fully satisfy the supply, 
which means that the advanced construction of airports 

Figure 1. Average TEs of five years of 20 airports  
in the first stage

Figure 2. Average efficiencies of 20 airports  
from 2013 to 2017 in the first stage

Table 5. SFA estimation results in 2017

Slacks
Terminal area Number  

of gate positions
Number  

of runways
Number  

of destinations

Constant term –1.4412** (–2.2869) –14.6630*** (–5.8031) –393.1780*** (–9.5587) –2.7204*** (–6.0124)

Per capita GDP 1.7125** (2.2674) 11.5758*** (7.8775) 545.8718*** (32.2813) 3.7584*** (25.5233)

The proportion  
of the tertiary industry  
in the GDP

1.2281** (2.2017) 16.7610*** (10.5880) 172.4547*** (7.4710) 1.2258*** (3.7472)

The number of tourists 
travelling to the city where 
the airport is located

–1.2381* (–1.9588) –10.9842*** (–14.3993) –393.6742*** (–22.1047) –3.0897*** (–4.0139)

sn
2 9.9259*** (7.5302) 374.9131*** (409.1222) 399593.8000*** (399551.8500) 145.3205*** (153.0928)

gn
0.99999999*** 

(4372298.6000)
0.99999999***  
(24268.9450)

0.99999999***  
(188263.4900)

0.99999999*** 
(89680.0330)

LR test 15.6823*** 15.2384*** 12.1738*** 16.7473***

Notes: ***, **, * indicates the 1, 5, 10% significance level; 
            data in brackets demonstrate t-statistics of the coefficients. 
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will lead to airport input slacks and be unfavourable for 
the increase of airport efficiencies.

For the number of tourists travelling to the city where 
the airport is located, coefficients of the terminal area, the 
number of gate positions, total length of runways and the 
number of destinations are all negative and significant. As 
more and more tourists come to the city where the airport 
is located, the airport’s inputs will be utilized adequately, 
and outputs will be increased significantly, which can 
bring favourable effects on the improvement of airport ef-
ficiencies.

In accordance with the regression results from 2013 
to 2017, the selected three environmental variables exert 
effects on different input slacks for airport efficiencies. It 
is necessary to measure airport efficiencies by eliminating 
effects of environmental variables and the statistical noise. 
According to the regression results obtained by the SFA 
model, the adjusted inputs can be obtained according to 
Equations (2)–(5) to evaluate the real airport efficiencies.

3.4. Results of the third stage

Airport efficiencies are evaluated again using the adjusted 
inputs and original outputs, as shown in Table 6. PVG, 
SHA, XMN are still superior to other airports after elimi-
nating the effect of environmental variables and the sta-
tistical noise as implied in Figure 3. Eleven airports (FOC, 
KHN, HFE, WUX, YNT, JJN, CZX, WEH, NTG, XUZ and 
YTY) do not have a good performance, considering that 
the average TE of 20 airports is 0.775. WEH has the low-
est average TE (0.434) within 20 airports, of which TEs 
are equal to 0.384, 0.195, 0.432, 0.528 and 0.629 respec-

tively from 2013 to 2017. The average TE of 20 airports 
decreases first and then increases as shown in Figure 4, 
and the biggest efficiency emerges in 2017. Average PTEs 
are still above 0.9, and the tendency of which is near to 
the tendency of average TEs. Average SEs also has a simi-
lar tendency with average TEs, while the values are still 
always lower, than which of average PTEs. Pure technical 
inefficiency and scale inefficiency both lead to the techni-
cal inefficiency. Other airports are at the stage of irs from 
2013 to 2017 except HGH from 2015 to 2017 and NKG in 
2017 after eliminating the effects of environmental vari-
ables and the statistical noise, as shown in Table 6.

Table 6. Efficiency of the third stage

           Year 

 Airport 

2013 2014 2015 2016 2017 Average

TE PTE SE RS TE PTE SE RS TE PTE SE RS TE PTE SE RS TE PTE SE RS TE PTE SE

PVG 1 1 1 – 1 1 1 – 1 1 1 – 1 1 1 – 1 1 1 – 1 1 1

SHA 1 1 1 – 1 1 1 – 1 1 1 – 1 1 1 – 1 1 1 – 1 1 1

HGH 0.924 0.925 0.999 irs 1 1 1 – 0.951 0.956 0.995 drs 0.872 0.935 0.933 drs 0.957 0.986 0.971 drs 0.941 0.960 0.980

XMN 1 1 1 – 1 1 1 – 1 1 1 – 1 1 1 – 1 1 1 – 1 1 1

NKG 0.946 0.972 0.973 irs 0.746 0.816 0.914 irs 0.806 0.852 0.946 irs 0.852 0.900 0.946 irs 0.859 0.860 0.999 drs 0.842 0.880 0.956

TAO 0.967 0.994 0.973 irs 1 1 1 – 1 1 1 – 1 1 1 – 1 1 1 – 0.993 0.999 0.995

TNA 0.807 0.911 0.886 irs 0.949 1 0.949 irs 0.778 0.852 0.913 irs 0.808 0.876 0.922 irs 1 1 1 – 0.868 0.928 0.934

FOC 0.866 0.913 0.948 irs 0.906 0.918 0.987 irs 0.711 0.792 0.898 irs 0.654 0.793 0.825 irs 0.601 0.792 0.759 irs 0.748 0.842 0.883

WNZ 1 1 1 – 0.932 1 0.932 irs 0.686 0.811 0.845 irs 0.782 0.885 0.884 irs 1 1 1 – 0.880 0.939 0.932

KHN 0.626 0.797 0.785 irs 0.566 0.776 0.73 irs 0.593 0.779 0.761 irs 0.586 0.790 0.741 irs 0.673 0.808 0.833 irs 0.609 0.790 0.770

NGB 0.930 1 0.930 irs 1 1 1 – 0.956 1 0.956 irs 0.930 1 0.930 irs 1 1 1 – 0.963 1 0.963

HFE 0.675 0.844 0.800 irs 0.582 0.777 0.749 irs 0.640 0.764 0.838 irs 0.647 0.785 0.825 irs 0.780 0.880 0.887 irs 0.665 0.810 0.820

WUX 0.645 0.952 0.677 irs 0.984 1 0.984 irs 0.648 0.958 0.676 irs 0.726 1 0.726 irs 0.813 1 0.813 irs 0.763 0.982 0.775

YNT 0.699 0.935 0.747 irs 0.684 0.923 0.741 irs 0.459 0.754 0.608 irs 0.500 0.764 0.654 irs 0.539 0.766 0.705 irs 0.576 0.828 0.691

JJN 0.503 0.978 0.514 irs 0.405 0.880 0.460 irs 0.514 0.863 0.596 irs 0.427 0.902 0.474 irs 0.602 0.954 0.631 irs 0.490 0.915 0.535

CZX 0.409 0.912 0.448 irs 0.467 0.898 0.519 irs 0.539 0.867 0.622 irs 0.498 0.840 0.593 irs 0.817 0.987 0.827 irs 0.546 0.901 0.602

WEH 0.384 1 0.384 irs 0.195 1 0.195 irs 0.432 1 0.432 irs 0.528 1 0.528 irs 0.629 1 0.629 irs 0.434 1 0.434

NTG 0.941 1 0.941 irs 0.668 1 0.668 irs 0.590 1 0.590 irs 0.581 0.998 0.582 irs 0.860 1 0.860 irs 0.728 1.000 0.728

XUZ 1 1 1 – 0.727 1 0.727 irs 0.710 1 0.710 irs 0.517 0.782 0.662 irs 0.694 0.907 0.766 irs 0.730 0.938 0.773

YTY 0.527 1 0.527 irs 0.549 1 0.549 irs 0.768 1 0.768 irs 0.774 1 0.774 irs 1 1 1 – 0.724 1 0.724

Average 0.792 0.957 0.827 – 0.768 0.949 0.805 – 0.739 0.912 0.808 – 0.734 0.913 0.800 – 0.841 0.947 0.884 – 0.775 0.936 0.825

Figure 3. Average TEs of five years of 20 airports  
in the third stage
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4. Discussions

4.1. Discussion on airport TEs

Through comparing airport efficiencies (Table 4 and Ta-
ble 6), we discover that PVG, SHA and XMN are always 
efficient in the first and third stage for the period under 
analysis. The average TE of these 20 airports decreases 
from 0.849 to 0.775, the average PTE decreases from 0.943 
to 0.936, and the average SE decreases from 0.896 to 0.825 
after eliminating environmental variables and the statis-
tical noise, which indicates that exterior environmental 
variables and the statistical noise may result in the un-
derestimation of airport efficiencies in East China, and it 
is necessary to measure “real” efficiencies. For airports, 
after eliminating environmental variables and statisti-
cal noise, average TEs of three airports (PVG, SHA and 
XMN) are equal to 1, while at the first stage, which of five 
airports (PVG, SHA, XMN, WNZ and NGB) are equal 
to 1, which indicate that exterior environmental variables 
and statistical noise of WNZ and NGB have exerted fa-

vourable influences on airport efficiencies. Average TEs 
of 13 airports (TAO, FOC, WNZ, KHN, NGB, HFE, YNT, 
JJN, CZX, WEH, NTG, XUZ and YTY) decrease in the 
third stage compared with the first stage. The result means 
that exterior environmental variables of these airports are 
conducive to the improvement of efficiencies and airport 
efficiencies will decrease when adjusting these airports to 
the most unfavourable environments. Average TEs of 4 
airports (HGH, NKG, TNA and WUX) increase in the 
third stage compared with the first stage, which means the 
exterior environmental variables will lead to relatively low 
airport efficiencies of these airports. Considering that the 
economic level of the region where these four airports are 
located respectively is relatively high, these airports have 
the problem of advanced construction, which may cause 
low airport efficiency. 

Relating our findings to the 12th and 13th five-year 
plans for the development of the civil aviation in China, re-
sults indicate that the average TE from 2013 to 2015 (in the 
12th five-year period) is 0.842 in the first stage and 0.767 
in the third stage, while the average TE between 2016 and 
2017 (in the 13th five-year period) is 0.859 in the first stage 
and 0.788 in the third stage. After eliminating effects of en-
vironmental variables and statistical noise, the average TE 
decrease both in the two periods, and which of the period 
2016–2017 is higher than the period 2013–2015 both in 
the first and third stage. Figure 5 shows that the number 
of efficient airports during the period 2016–2017 is larger 
than that in the period 2013–2015, which are separately 
equal to 7 and 6, and TAO and YTY become more efficient 
between 2016 and 2017 compared to the period 2013–2015 
in the first stage. In the third stage, the number of efficient 
airports during the period 2016–2017 is still larger than 
that in the period 2013–2015, which are separately equal 
to 4 and 3. Average TE of XUZ is not equal to 1 between 

Figure 4. Average efficiencies of 20 airports  
from 2013 to 2017 in the third stage
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2016 and 2017 compared with the period 2013–2015 in 
the first stage. In general, more airports are becoming ef-
ficient during the period of the 13th five-year plan, and 
airports need to take actions to gain better development 
in the next years.

Inefficient airports can take actions to become more ef-
ficient according to the evaluated results shown in Tables 4 
and 6. For example, the TE of airport XUZ in 2017 in the 
first stage is 0.983, the PTE is 1 and the SE is 0.983, sug-
gesting that the scale inefficiency leads to the airport inef-
ficiency. On the other hand, the TE of airport XUZ in 2017 
in the third stage is 0.694 (i.e., the PTE of 0.907 multiplied 
by the SE of 0.766), showing that the managerial ineffi-
ciency causes the pure technical inefficiency, and the pure 
technical inefficiency and scale inefficiency jointly lead to 
the airport inefficiency. When ignoring the effect of en-
vironmental variables and statistical noise, the airport ef-
ficiency is misestimated. Irrespectively of the first or third 
stage, the airport XUZ is at the stage of irs; hence it can 
increase inputs properly to achieve more outputs. To be-
come efficient or increase the efficiency value, the airport 
XUZ would have to improve the management level such as 
optimizing the check-in process, enhancing the employee 
cohesion, improving the normal flight rate, allocating the 
parking position reasonably and so on, and keep suitable 
production scale like optimizing the airport industrial 
structure. Other inefficient airports also exist where the 
situation is that the production scale does not match with 
practical outputs. For example, the airport HFE relocated 
to another site in 2013 with larger scale such as larger ter-

minal area and more gate positions, which caused decease 
of efficiency in 2014. The airport YNT has the similar situ-
ation as the airport HFE. It is important to have proper 
inputs for keeping a suitable production scale.

The airport HGH is continuously in the stage of drs 
from 2013 to 2017 in the first stage while from 2015 to 
2017 in the third stage; hence, it better not increases its 
inputs anymore. The average TE, PTE and SE are equal to 
0.926, 0.949 and 0.976 in the first stage while 0.941, 0.960 
and 0.980 in the third stage. All these findings show that 
the pure technical inefficiency and scale inefficiency joint-
ly lead to the airport inefficiency. Actually, the output pro-
duced by input per unit of the airport HGH is lower than the 
efficient airport or the airport in the stage of irs, especially 
reflected in gate positions. The airport HGH can increase 
the PTE by utilizing gate positions properly, strengthening 
the construction of base airlines, improving the compre-
hensive transportation system and the airport information 
technology. To improve the SE, HGH can raise the out-
put of input per unit like increasing the airline occupancy 
rate, improving the capacity of gate positions and so on.

The airport TE indicates that the ratio of target inputs 
the inefficient airport required to original inputs in the first 
stage (or adjusted inputs in the third stage) when taking 
other efficient airports as a benchmark. Since PTE and SE 
jointly contribute to the TE, slacks of inputs and outputs are 
calculated by the CCR-DEA model, which assumes that all 
airports are at the stage of CRS. Taking year 2017 as an ex-
ample, slacks in the third stage are as shown in Table 7. TEs 
of PVG, SHA, XMN, TAO, TNA, WNZ, NGB and YTY are 

Table 7. Slacks of inputs and outputs of 20 airports in 2017 of the third stage

Airport I1 [⋅104 m2] I2 [No] I3 [m] I4 [No] O1 [person] O2 [ton] O3 [sortie]
PVG 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
SHA 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
HGH 1.6091 36.8455 309.5586 6.9510 2098017.3200 0.0000 0.0000
XMN 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
NKG 6.0104 20.1617 1052.9850 16.6369 4014658.1986 116008.8133 0.0000
TAO 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
TNA 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
FOC 5.8808 39.7894 1610.9956 41.8635 0.0000 0.0000 0.0000
WNZ 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
KHN 4.5624 23.4338 1475.2359 26.5104 0.0000 53611.8275 0.0000
NGB 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
HFE 6.1645 8.7959 1825.7829 15.8326 0.0000 16971.7914 0.0000
WUX 6.2995 5.0383 1579.5207 10.2632 0.0000 0.0000 0.0000
YNT 4.6974 23.0266 1894.8924 33.6189 0.0000 39578.5537 0.0000
JJN 3.9374 11.9437 1839.1020 22.2949 0.0000 0.0000 0.0000
CZX 0.7443 6.0167 1829.5881 5.6831 0.0000 1338.1343 0.0000
WEH 0.7311 7.5109 2228.9864 8.5361 234305.8082 15669.3442 0.0000
NTG 0.3294 29.2237 2881.9437 19.4288 1682835.7512 0.0000 0.0000
XUZ 1.1709 6.4199 2085.0818 12.2284 0.0000 7886.7454 0.0000
YTY 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000



Transport, 2020, 35(3): 255–272 267

equal to 1 in 2017 in the third stage, slacks of inputs and 
outputs are all equal to 0. Other inefficient airports have 
different degree of redundancy in four inputs and output 
deficiency in three outputs. WUX has the most redundan-
cy in terms of terminal area, which is equal to 62995 m2,  
FOC has the most redundancy in terms of gate positions 
and number of destinations, while as for total length of 
runway, NTG has the most redundancy. Although the rel-
evant inputs of airports (terminal area, number of gate po-
sitions, runway length and number of destinations) cannot 
be changed in a short time, input slacks reflect the unrea-
sonable allocation of airport resources and have important 
reference value for the improvement of efficiency. In or-
der to reduce input slacks, the terminal area can be fully 
utilized by increasing flights or arranging flight schedule 
reasonably; airports had better attract more airlines to de-
ploy more different types of aircraft to reduce the slacks of 
gate positions and total runway length; and reducing the 
number of destinations moderately to improve the route 
network will be also helpful to make intensive use of re-
sources. HGH, NKG, WEH and NTG have different de-
gree of output deficiency in passenger throughput; NKG, 
KHN, HFE, YNT, CZX, WEH and XUZ have different de-
gree of output deficiency in cargo and mail throughput. It 
would be better for these airports to increase outputs to 
improve efficiency.

4.2. Discussion on the decomposition  
of airport TEs

To better understand variations of the 20 airports’ TEs, 
we decompose the TE into the PTE and the SE. Figures 
6 and 7 illustrate the categorization of PTE and SE of 20 
airports separately in the first and third stage. We catego-
rize the airports into four different groups on the basis of 
high–low PTE and high–low SE.

For the high–high group, the amount of airports cat-
egorized to this group in the first stage is more than that 
in the third stage because TEs may be overestimated when 
we do not consider the effects of environmental variables 
and the statistical noise. PVG, SHA, HGH, XMN, TAO, 
WNZ and NGB are all categorized into the high–high 

group no matter the effects of environmental variables 
and the statistical noise are eliminated or not. These air-
ports can play a role model for other airport managers to 
improve the airport efficiency. NTG and XUZ drop from 
the high–high group to the high–low group after eliminat-
ing environmental variables and the statistical noise. The 
PTEs in this group are close to each other, while their SEs 
vary significantly, which means that their SEs have great 
improvement potential.

For the low–high group, airports in this group have 
low PTEs and high SEs. In the first stage, NKG, TNA and 
HFE locate in this group, with lower PTE than the average 
efficiency of 20 airports and higher SE than the average. 
When eliminating environmental variables and the statis-
tical noise in the third stage, HFE moves from the low–
high group to the low–low group, and FOC moves from 
the low–low group to the low–high group. Optimizing the 
check-in process, improving transit connection process, 
enhancing the employee cohesion, allocating the parking 
position reasonably and accelerating technological inno-
vation are the common effective ways to improve PTEs of 
these airports. Additionally, the SE improvement in these 
airports should not be ignored.

For the low–low group, KHN, YNT and CZX are al-
ways in this group no matter considering environmental 
variables and the statistical noise or not. HFE drops from 
the low–high group to the low–low group, which means 
the SE gets smaller after eliminating environmental varia-
bles and the statistical noise. JJN drops from the high–low 
group to the low–low group, while WUX moves from this 
group to the high–low group in the third stage. Both the 
PTE and the SE of airports in the low–low group are lower 
than the average point. PTEs and SEs of these airports are 
required to be improved to accelerate the improvement of 
TEs. What these airports can do are improving the man-
agement level and adjusting the production scale for get-
ting higher TEs. 

For the high–low group, it represents the airports with 
high PTE and low SE. WEH and YTY are all categorized 
into the high–low group whether effects of environmen-
tal variables and the statistical noise are eliminated or not. 
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NTG and XUZ drop from the high–high group to the 
high–low group, and WUX moves from the low–low group 
to this group in the third stage. Airports in the high–low 
group need to focus on improving the SE, especially WEH, 
who’s SEs rank the lowest among all airports.

20 airports are divided into four categories according 
to the PTE and SE, and different groups have different ef-
ficiency characteristics. The high–high group has higher 
PTE and Higher SE than the average level, which makes 
them to be the benchmark of other airports. The low–high 
group, low–low group and high–low group all need to take 
different actions to improve corresponding efficiencies. 
Airports in the same group share the similar characteris-
tic, but are also slightly different. For example, SEs of HGH 
and XMN, which are both in the high–high group are 
nearly the same, but PTE of HGH is lower, than which of 
XMN, hence HGH needs to focus on the improvement of 
PTE. It is also necessary to compare the efficiency between 
different groups. Such as CZX, which have the same output 
scale with YTY in 2017, is always in low–low group, while 
YTY is always in the high–low group. The PTE and SE of 
CZX are lower than YTY. According to Table 7, CZX have 
a different degree of slacks of inputs and outputs, which 
indicate that CZX need to adjust the input scale with the 
reference of YTY. Similarly, NKG and XMN, which han-
dled almost 25 million passengers in 2017, have different 
efficiency performance. XMN is always efficient from 2013 
to 2017 both in the first and third stage, while NKG is in 
the low–high group. NKG has two runways but XMN has 
only one runway, there are input redundancies and output 
deficiencies in NKG according to Table 7. Compared with 
XMN, inputs of NKG do not match with the existing de-
mand, so it is necessary to allocate the existing resources 
reasonably or stimulate the demand to improve the effi-
ciency.

4.3. Policy recommendations for airport efficiency 
improvement in East China

To improve the airport efficiency, several policy recom-
mendations are proposed as below.

Firstly, airport managers had better not only consider 
the airport efficiency calculated in the first stage, but also 
refer to real airport efficiency obtained in the third stage. 
Since the traditional DEA model neglect the effects of en-
vironmental variables and statistical noise, the airport ef-
ficiency will be misestimated. The real airport efficiency 
eliminating the effects of environmental variables and sta-
tistical noise has much more significant reference values 
for improving the airport efficiency. 

Secondly, airports had better improve their efficien-
cies according to their own conditions. Different airports 
are located in different environments, which have vari-
ous effects on airport efficiencies. HGH, NKG, TNA and 
WUX are located in regions with high level of economies, 
which may cause the inappropriate advanced construction 
of airports so that lead to input redundancies and output 

deficiencies. If exterior environments are conducive to the 
improvement of the efficiency, airports should make full 
use of the market environment to expand output so that 
improving efficiencies; otherwise, take actions to avoid the 
impact of the market environment on airports, such as not 
rebuilding or expanding the airport scale blindly, allocat-
ing existing inputs reasonably and stimulating the increase 
of demand to improve airport efficiencies. 

Thirdly, airports should take different measures to 
improve the PTE or SE so that the airport TE can be in-
creased. According to four categories of airports based on 
the decomposition results of airport efficiencies, airports 
attributed to the low–high group, such as NKG and TNA, 
should improve PTEs so that TEs can be improved. Air-
ports belong to the low–low group, such as KHN, YNT 
and CZX, both PTEs and SEs should be improved to guar-
antee the improvement of TEs. These airports had better 
improve the management level and adjust the production 
scale for getting higher TEs. WEH and YTY, attributed to 
the high–low group, should focus on improving the SE to 
obtain high TEs.

Conclusions 

This paper calculated the efficiency of 20 airports in East 
China from 2013 to 2017 using a three-stage DEA meth-
odology. The terminal area, the number of gate positions, 
total length of runways and the number of destinations 
are taken as input variables. The passenger throughput, 
the cargo and mail throughput and the number of aircraft 
movements are taken as output variables. Meanwhile, the 
effects of environmental variables and the statistical noise 
are also considered. First, we obtained the real airport effi-
ciency by eliminating the effect of environmental variables 
and the statistical noise. Second, we analysed the cause of 
inefficient airports and explored differences between inef-
ficient and efficient airports for offering suggestions for 
airport managers to promote the regional development.

We find that firstly, PVG, SHA and XMN are always 
superior to other airports because their TEs are equal 
to 1 from 2013 to 2017 no matter eliminating effects of 
environmental variables and the statistical noise or not. 
The number of efficient airports between 2016 and 2017 
is more, than which in the period 2013–2015 both in the 
first and third stage. The number of efficient airports in the 
third stage is less, than which in the first stage no matter in 
the period 2013–2015 of the period 2016–2017. Secondly, 
at the second stage, three environmental variables contain-
ing per capita GDP, the proportion of the tertiary industry 
in the GDP and the number of tourists travelling to the 
city where the airport is located, are regarded as the inde-
pendent variables of the input slacks. In accordance with 
the regression results of the SFA method in 2017, all coef-
ficients are significant. The coefficients of per capita GDP 
and the proportion of the tertiary industry in the GDP are 
positive, which indicates these environmental variables 
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do exert unfavourable effects on the improvement of the 
airport efficiency. The coefficients of the number of tour-
ists travelling to the city where the airport is located are all 
negative, which imply that it exerts favourable effects on 
the airport efficiency improvement. Thirdly, the exclusion 
of environmental variables and the statistical noise has 
airport-specific effects. Except for PVG, SHA and XMN, 
efficiencies of HGH, NKG, TNA and WUX will increase 
while which of other airports will decrease after eliminat-
ing the effects of environmental variables and the statisti-
cal noise. Generally, environmental variables and the sta-
tistical noise do exert effects on the evaluation of airport 
efficiencies. Finally, airport TE can be decomposed into 
PTE and SE. In accordance with the average level of PTE 
and SE, 20 airports are categorized into four groups, and 
each group has airport-specific strategies to improve air-
port efficiency. 

According to the empirical results, several policy rec-
ommendations can be proposed: firstly, airport managers 
had better not only consider the airport efficiency calcu-
lated in the first stage, but also refer to real airport effi-
ciency obtained in the third stage; secondly, airports had 
better improve their efficiencies according to their own 
conditions; finally, airports should take different measures 
to improve the PTE or SE so that the airport TE can be 
increased.

Our paper obviously also has certain limitations. For 
one, we did not use a dynamic model, despite including 
information from various years. A possible solution is to 
calculate the productivities of airports for successive years 
such as 2013–2015, 2014–2016 and 2015–2017. Second, 
we cannot further distinguish between efficient airports, 
although there are also differences among those airports 
that have been denoted as efficient. Third, input, output 
and environmental variables we selected are the most rep-
resentative indicators, but limited by the availability of 
data and the requirements of sample size, other input and 
output variables that can reflect airport characteristics or 
environmental factors that may affect the airport efficiency 
evaluation are not included. Future studies should seek to 
prevent these limitations, treating the information in a dy-
namic manner by specific models such as DEA-Malmquist 
method to obtain the changes of airport productivities, 
and/or considering the differences between efficient air-
ports through specific algorithms such as a super-efficien-
cy DEA model. Finally, other input or output variables can 
be included, such as inputs of an airport in technology, 
labour or finance, outputs in finance or even undesirable 
outputs. The effects of overlapping catchments, airport 
type (hub or non-hub), or dynamic economic growth rates 
on the airport efficiency can also be considered.

Finally, we are convinced that this paper is of value to 
governments and public bodies, and airport managers to 
take actions to improve the airport efficiency according to 

the efficiency values such as increasing inputs, raising the 
management level and so on, which are beneficial to the 
development of the region.
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Appendix A

See Table A, Figure A.

Table A. Airports selected as DMUs

IATA code Airport
CZX Changzhou Benniu International Airport
FOC Fuzhou Changle International Airport

HFE Hefei Xinqiao International Airport

HGH Hangzhou Xiaoshan International Airport

JJN Quanzhou Jinjiang International Airport

KHN Nanchang Changbei International Airport

NGB Ningbo Lishe International Airport

NKG Nanjing Lukou International Airport

NTG Nantong Xingdong International Airport

PVG Shanghai Pudong International Airport

SHA Shanghai Hongqiao International Airport

TAO Qingdao Liuting International Airport

TNA Jinan Yaoqiang International Airport

WEH Weihai International Airport

WNZ Wenzhou Longwan International Airport
WUX Sunan Shuofang International Airport
XMN Xiamen Gaoqi International Airport

XUZ Xuzhou Guanyin International Airport

YNT Yantai Penglai International Airport

YTY Yangzhou Taizhou International Airport
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Figure A. Map of East China (a) and top 20 airports in East China (b)

a) b)

Appendix B

See Table B.1, Table B.2, Table B.3 and Table B.4.

Table B.1. SFA estimation results in 2013

Slacks
Independent variables Terminal area Number of gate 

positions
Number  

of runways
Number  

of destinations

Constant term –1.0070***

(–6.1812)
–2.3279***

(–4.6197)
–371.1345
(–1.4122)

–2.1440**

(–2.6003)

Per capita GDP –1.2802***

(–8.9992)
–5.4659***

(–11.5311)
–110.4701
(–0.3742)

–4.3973***

(–4.4004)

The proportion of the tertiary industry in the GDP 2.8974***

(3.6977)
6.5073***

(4.1420)
803.7622***

(2.9147)
7.6798***

(8.0578)
The number of tourists travelling to the city where 
the airport is located

–2.0991***

(–12.0354)
–3.5988*

(–1.8581)
–770.8934***

(–4.1698)
–7.5126***

(–7.5169)

sn
2 22.2348***

(451.7510)
144.5792***

(140.3985)
545885.8900***

(543832.4600)
42.0041***

(42.0084)

gn
0.99999999***

(146600.4400)
0.99999999***

(754035.3600)
0.99999999***

(66330.7980)
0.9958***

(9.1050)
LR test 16.6867*** 13.0505*** 13.5464*** 5.0492**

Notes: ***, **, * indicates the 1, 5, 10% significance level; 
          data in brackets demonstrate t-statistics of the coefficients.

Table B.2. SFA estimation results in 2014

Slacks
Independent variables Terminal area Number of gate 

positions
Number  

of runways
Number  

of destinations

Constant term –3.9785***

(–5.9440)
–15.5733***

(–5.5419)
–686.3853***

(–5.6792)
–5.2602***

(–4.4777)

Per capita GDP 1.6071*

(2.0212)
9.8961***

(6.9507)
406.8541***

(9.5798)
0.5922*

(1.8607)

The proportion of the tertiary industry in the GDP 5.8280***

(7.3159)
20.0725***

(13.7393)
926.7358***

(19.5295)
9.2195***

(116.1619)
The number of tourists travelling to the city where 
the airport is located

–4.4453***

(–4.5788)
–16.1098***

(–14.3039)
–854.6575***

(–32.5575)
–8.7637***

(–10.9775)

sn
2 38.4690***

(38.6078)
340.1350***

(340.5488)
710473.1800***

(710400.8200)
69.0693***

(70.5585)

gn
0.99999999***

(2630.2330)
0.99999999***

(27971.5970)
0.99999999***

(94657.8350)
0.99999999***

(60952.7320)
LR test 15.9270*** 15.7871*** 13.8195*** 12.1071***

Notes: ***, **, * indicates the 1, 5, 10% significance level; 
            data in brackets demonstrate t-statistics of the coefficients.
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Slacks
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of runways
Number  
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(–229.6595)
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The proportion of the tertiary industry in the GDP 0.6055
(0.6126)

13.2306***

(3.2090)
335.1967***

(221.2449)
3.5532***

(82.8724)
The number of tourists travelling to the city where 
the airport is located

–1.6965*

(–1.8293)
–10.5707***

(–4.4796)
–613.7995***

(–341.2435)
–1.7424***

(–3.8436)

sn
2 23.6010***

(27.2364)
490.0769***

(489.1801)
448358.8800***

(448358.7100)
73.9776***

(76.1967)

gn
0.9999999***

(27344.4750)
0.99999999***

(1197.1118)
0.99999999***

(10.7367)
0.99999999***

(26420086.0000)
LR test 13.6035*** 13.9710*** 9.2392*** 11.2976***

Notes: ***, **, * indicates the 1, 5, 10% significance level; 
            data in brackets demonstrate t-statistics of the coefficients.
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