
*Corresponding author. E-mail: lelitha@iitm.ac.in

Copyright © 2020 The Author(s). Published by VGTU Press

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unre-
stricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

TRANSPORT
ISSN 1648-4142 / eISSN 1648-3480

2020 Volume 35 Issue 2: 156–167

https://doi.org/10.3846/transport.2020.12477

DYNAMIC TRIP PLANNER FOR PUBLIC TRANSPORT  
USING GENETIC ALGORITHM

Abhishek BASU, Bharathi RAJA, Rony GRACIOUS, Lelitha VANAJAKSHI* 

Dept of Civil Engineering, Indian Institute of Technology Madras, India

Received 15 December 2016; revised 3 April 2017, 12 October 2017; accepted 26 November 2017

Abstract. This paper reports the development of a public transport trip planner to help the urban traveller in planning and 
preparing for his commute using public transportation in the city. A Genetic Algorithm (GA) approach that handles real-
time Global Positioning Systems (GPS) data from buses of the Metropolitan Transport Corporation (MTC) in Chennai 
City (India) has been used to develop the planner. The GA has been shown to provide good solutions within the problem’s 
computation time constraints. The developed trip planner has been implemented for static network data first and subse-
quently extended to use real-time data. The “walk mode” and Chennai Mass Rapid Transit System (MRTS) have also been 
included in the geospatial database to extend the route-planner’s capabilities. The algorithm has subsequently been seg-
mented to speed up the prediction process. In addition, a temporal cache has also been introduced during implementation, 
to handle multiple queries generated simultaneously. The results showed that there is promise for scalability and citywide 
implementation for the proposed real-time route-planner. The uncertainty and poor service quality perceived with public 
transport bus services in India could potentially be mitigated by further developments in the route-planner introduced in 
this paper. 

Keywords: dynamic trip planner, genetic algorithm, global positioning system, public transportation, route-planner, static 
network, real-time data.

Notations

CSA – connection scan algorithm;
ETA – expected time of arrival;
GA – genetic algorithm;

GPS – global positioning systems;
LB – lower bound;

MRTS – mass rapid transit system;
MTC – metropolitan transport corporation;

SF – solution file;
STT – service and time table;
TSF – temporary solution file;
UB – upper bound.

Introduction

The ever-increasing number of commuting people in cities 
has resulted in serious traffic congestion problems in ur-
ban roads. A common-sense approach to avoiding traffic 
snarls is to encourage people to use public transportation 
services. Although there are extensive public transporta-
tion services in almost all cities in India, they remain un-

der-utilized because of poor service quality; public buses 
that connect various parts of the city efficiently, for exam-
ple, are often not time-bound and are unreliable. Frequent 
delays in bus travel are caused by various reasons, the pre-
dominant among them being traffic congestions, and such 
delays make travel planning very tedious. While the delay 
itself may not be avoidable, what makes for nuisance value 
is that the travel status is not communicated to the com-
muter, who has to wait indefinitely for the service. 

Providing the potential commuter with a real-time 
schedule/plan of the bus trip and travel can, to a large 
extent, improve the reliability of public transportation and 
help with better travel planning. Beyond obtaining infor-
mation about delays and expected trip duration, real-time 
route schedule and planner can help passengers choose 
optimum routes to their destination, taking into account, 
parameters such as number of stops, possible waiting 
times in bus stops and service frequency, which decide 
the duration and comfort of the trip. 

A route-planner is typically designed using travel data 
obtained from the road. This data could be historic (static) 

mailto:lelitha@iitm.ac.in
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3846/transport.2020.12477


Transport, 2020, 35(2): 156–167 157

or real-time. A static route-planner can assist the passen-
ger in planning the trip in advance. A real-time route-
planner could help the passenger optimize a trip based 
on real-time updates; for example, unexpected changes in 
bus schedules and operation can be communicated in re-
al-time, which can enable the commuter to make on-the-
spot alterations to the trip details. The best route-planner 
is one that combines both static and real-time operation.

Most earlier studies on route optimization of multi-
modal travel have treated route optimization as non-de-
terministic polynomial-time hard problems that are time 
consuming to solve using exact algorithms. To enable 
faster solution, Deng and Hu (2011) used GA for route 
optimization. The stochastic search techniques of GAs 
use natural selection and evolution to solve optimization 
problems (Hiu 1996; Zhao, Zeng 2006).

Real-time route-planners, though available for traffic 
conditions with lane discipline and homogeneity, are not 
pervasive for the public transit systems in countries like 
India. This is mainly due to the high level of uncertainty 
involved under such traffic conditions. The variability in 
such traffic conditions with heterogeneity and lack of lane 
discipline is much higher than the lane-following, ho-
mogeneous traffic. The route-planner developed in this 
study, takes into account the aforementioned inaccuracies 
and variability by applying suitable bounds to the input 
received from the prediction algorithm to ensure the solu-
tions presented to the user are stable and do not change 
rapidly with time. Moreover, to ensure that solutions are 
produced within a short period of time, the algorithm of 
choice here is the GA (Kumar et al. 2010), which has prov-
en its efficacy under similar conditions in other studies.

1. Methodology

This real-time dynamic route-planner presented in this 
study provides alternatives that could help a passenger to 
seek the itinerary that requires the shortest time to travel 
from one node (origin) to the other (destination) within 
the network, under real-time conditions. The planner 
seeks to provide the solutions in the shortest possible time. 
Secondary objectives include a framework for scalability 
of the algorithm and ensuring that the solutions are rea-
sonably stable to absorb the errors inherent in the predic-
tion algorithm whose output the route-planner utilizes to 
provide the solutions. The assumptions of the model are:

 – the bus capacity is considered to be infinite. This as-
sumption is acceptable since the acceptable crowding 
level varies greatly among different passengers; while 
some passengers limit their choice to sparsely occu-
pied buses, others might be willing to travel when 
the bus is occupied close to its capacity. This assump-
tion is also convenient since currently bus crowding 
data is not available for most bus routes in the system 
considered;

 – the current study assumes all passengers to be homo-
geneous and therefore value of time is considered to 

be the same across all passengers. Moreover, passen-
gers are trying to minimize time. The repercussions 
of this assumption are minimized by the design of 
the result display – by ensuring sufficient alternatives 
are presented to the user and it is the user’s choice 
to select the alternative that satisfies the user’s goals;

 – the exact itinerary is not fixed “apriori” and it is as-
sumed that the user is willing to change their itiner-
ary if the solution presented during the initial query 
ceases to be optimal. The user’s attractive set is gov-
erned by the solutions presented by the route-planner 
and the user’s pre-defined preferences such as maxi-
mum number of transfers;

 – in the static implementation of the route-planner, it 
is assumed that the buses arrive as per a schedule 
based on past data. For the real-time implementation 
of the route-planner, the assumption is that buses ar-
rive randomly, and the estimated arrivals are based 
on predicted values at the time of query. In case the 
query is made before the particular run of the bus, 
then values used in the static implementation are 
used instead.

In GA, the search space comprises the space of all fea-
sible solutions, each point in which represents a unique 
solution (Obitko 1998). The fitness of this point is defined 
according to the objectives of the problem. A string of 
elements (values) in a particular order, called the chromo-
some, represents each solution of the GA. The Chromo-
some representation used in this study is shown in Figure 1,  
where nodes 2, 12, 14 and 20 represent bus stops, and 
51000, 54000, 56000 represent unique bus routes within 
the network. The elements themselves are called “genes” 
and the specific representation of the chromosomes is 
the “encoding”. A “generation” of population is the set of 
chromosomes generated during a single iteration of GA. 
The application of genetic operators such as “selection”, 
“crossover” and “mutation” on successive generations of 
population, enhances the fitness of individual solutions.

GA has been used sporadically in bus network optimi-
zation problems. Borole et al. (2013), for example, devel-
oped route-planners using K-shortest path algorithm with 
GPS data, to obtain multi-criterion shortest path. Nanay-
akkara et al. (2007) developed GA-based route-planners 
for large urban street networks in Singapore. In their 
work, chromosome encoding with each gene represented a 
node ID. Abbaspour and Samadzadegan (2011) described 
the use of GA-based multimodal path computation in 
time-dependent personal tour planning and scheduling. 
This study developed a non-binary chromosome encod-
ing scheme with alternate genes representing node and 
mode. Chen et al. (1999) also reported the development of 
multimodal route-planner using offline data. Jariyasunant 

Figure 1. Chromosome representation

56000 205400051000 14122



158 A. Basu et al. Dynamic trip planner for public transport using genetic algorithm

et al. (2011) showed that pre-computing paths expedites 
generation of solution. 

The suitability of GA in time-constraint shortest path 
problems indicates that they can be used for bus-based 
route-planning using dynamic bus GPS data. GA could 
solve the problem by encoding the chromosome in a suit-
able scheme. Effective storing and retrieval can enable 
rapid, real-time solutions. In our work, a GA-based travel 
time prediction algorithm developed in-house (Vanajak-
shi et al. 2009) has been used for developing the route-
planner, as described in the following sections.

In this work, each step of the GA was modified to meet 
the computational requirements of route-planning. In the 
chromosome encoding scheme used, alternate genes rep-
resented bus stops and bus routes wherein, odd genes were 
bus stops and even genes were the route ID of the bus. 
The algorithm was first initialized for population and then 
evaluated and ranked according to cost value. The genetic 
operators were then applied on successive generations of 
solutions after which, infeasible chromosomes were re-
paired. This was followed by evaluation and ranking. The 
second step was repeated until the fixed limit on the num-
ber of generations was reached. The pseudo-code for the 
algorithm is shown below:

Initialize the population
Evaluate and rank initial population
Repeat

Perform competitive selection
Apply genetic operators on selected solutions from population
Repair infeasible solutions
Evaluate and rank the solutions in this generation

Until convergence criteria is satisfied

During initialization, the chromosome was first con-
structed starting at the source node. The node adjacent 
to the source and the corresponding mode of travel were 
then randomly chosen, this step being repeated with the 
chosen node, until the destination node was reached. The 
number of intermediate nodes determined the length of 
a chromosome; hence, the chromosomal length was di-
rectly related to the number of transfers allowed by the 
user. When a particular node was reached, it was added 
to a scan list that tracked all the nodes already visited, to 
avoid repetitions and cycles. It was possible during initiali-
zation that a solution did not reach the destination, for 
example, when a node had no outwardly directed arc, or if 
all nodes adjacent to the current node were already in the 
scan list. A counter that counted the number of attempts 
to select an adjacent node was maintained and when it 
exceeded the limit, the partial solution was discarded. A 
pre-defined limit was necessary because GA is probabilis-
tic and independent of the node chosen. The process was 
repeated multiple times until the predefined population 
size is reached. The pseudo-code for the initialization step 
is shown here:

Scan  = {scanned nodes}
Repeat
Start at O - Origin and pick up an adjacent node randomly (say i)
Repeat

Add this node to Scan
Repeat

Counter  = 0
Pick up an adjacent node randomly (say i)
Counter  = Counter  + 1

Until a node is picked or Counter limit is reached
Until node D - Destination is reached
Until predefined population size is reached
Evaluate and rank initial population

The computation time was related to population size – 
low population size was associated with lower computa-
tion time. However, in such cases, the diversity in solution 
set was also low, which could lead to convergence to local 
minima. If the population size were high, however, the 
computation duration was longer, but the diversity of the 
solution was higher, resulting in higher probability of the 
existence of the global minimum. 

The cost associated with each chromosome was then 
computed and the validity examined according to the 
schedule data. Cost function was taken as the duration 
of the trip, which is the sum of travel and waiting times. 
Since the study involved cost minimization, the fitness 
function was inversely related to cost function (Goldberg 
1989). There was high cost penalty if a solution was inva-
lid and this made the solution infeasible.

The initialization step was followed by the mating step, 
in which, the genetic operators (crossover, selection and 
mutation) were applied on successive generations of the 
population until the termination criterion was fulfilled. In 
GA, individuals with higher fitness values in the popu-
lation were selected. The selection operator allowed only 
the fittest individual chromosomes to be taken forward to 
the next mating pool, and by this, the population limit on 
chromosomes was ensured. Hence, for selection operation, 
the solutions were ordered according to their cost and only 
those solutions with low cost function values (“fit” solu-
tions) were carried forward to the next generation. Com-
mon genes in two parent chromosomes were detected by 
the crossover operator, parts of which were then swapped 
to produce two new daughter chromosomes. The first step 
of the crossover mechanism chose two parent chromo-
somes; in this work, the choice was random. Whether or 
not crossover happened during a particular iteration was 
decided by the crossover probability Pc. For this, nodes or 
potential sites for crossover in the parent chromosomes 
were first identified. In the presence of multiple nodes, 
one of them was randomly chosen. This was followed by 
crossover, during which two new daughter chromosomes 
were generated. The post-processing procedure removed 
cycles after this process. Figure 2 shows an example of the 
crossover operation.



Transport, 2020, 35(2): 156–167 159

The pseudo-code for the mating step (crossover and 
selection operators) is shown here:

Generate a random number in (0,1)
If random number generated < Pc

Halt and pass on the same population to next generation
Else

Select two chromosomes randomly from {Chromosome-set} i
Parents  = randomly chosen chromosomes
N  = similar odd genes (potential sites for crossover)
Case: N  = 0

Halt
Case: N > 1

Select particular site for crossover among potential sites 
(randomly)
Go to N  = 1 case with chosen site

Case: N  = 1
Perform crossover at chosen site to produce offspring 
chromosome
Evaluate offspring chromosome and add them to population

Rank the population {Chromosome-set} i+1
Elitism Strategy: Retain only the fittest chromosomes in the set

Mutation refers to the random change in the chromo-
some in an effort to prevent convergence of the solution 
to a local minimum. In this study, mutation operation 
has been applied as follows: a randomly chosen odd gene 
(except the first and last gene) is changed and is assigned 
a new random value. Since this solution is not valid in 
its present state, a new path connecting the origin to the 
destination through the randomly chosen gene is then 
computed and duplicate nodes are removed (the repair 
process). This was followed by computation of the cost as-
sociated with the chromosomes generated after the mating 
step and rejection of infeasible solutions. The parameter 
governing the mutation operation is denoted by mutation 
probability Pm. Figure 3 shows an example of the mutation 
followed by repair operation.

The pseudo-code for the mating step (mutation) is 
shown below:

Generate a random number in (0,1)
If random number generated < Pm

Halt and pass on the same population to next generation
Else

Select a chromosome randomly from {Chromosome-set} i
Swap a set of odd genes (barring first and last gene)
Repair the chromosome
Evaluate the chromosome
Add the chromosome to the population set

Rank the population {Chromosome-set} i+1

2. Algorithm implementation

Python was used in this work to implement the GA-
based framework. The parameters were chosen based on 
user preferences obtained through a survey conducted in 
Chennai City (India). GPS data from buses operated by 
MTC, Chennai were used for computation. Each log (or 
record) included a timestamp and the corresponding lon-
gitude and latitude of the bus.

The imposed constraints were divided into two broad 
categories: hard constraints and soft constraints. Hard 
constraints used during computation of results, was again 
of two types: network constraint and maximum number 
of transfers in a particular solution. The former meant that 
buses were constrained to fixed routes and not allowed 
deviations. The bus network was represented by a directed 
graph comprising links to a particular bus route ID. The 
onward and return directions along the same bus route 
were taken into consideration and the directions within 
the same bus route were assigned different IDs. The sec-
ond hard constraint of maximum number of transfers in 
a particular solution was chosen in order to eliminate too 
many solutions, thereby limiting the computational time 
involved. 

Soft constraints, imposed after computation of results, 
were used to filter the solutions in order to obtain the best 
and most relevant solutions. Soft constraints included 
maximum number of transfers allowed by the user, maxi-
mum walking distance and maximum travel duration that 
the user preferred. These constraints enable user-specific 
planning solutions.

A temporal geospatial STT database was used to store 
network and schedule data for the algorithm. The data-

Figure 2. A single point crossover operation (at node 8)

205700051000 82

59000 875200053000 32 145400051000 10 2056000

59000 875200053000 32 57000 20 54000 14105100051000 82 56000 20

Figure 3. A mutation (node 14) followed by repair operation 
(remove duplicate node 12)

56000 20145400051000 122

56000 20125400051000 122

206000051000 122



160 A. Basu et al. Dynamic trip planner for public transport using genetic algorithm

base had two components: the network structure data and 
temporal data for bus routes. The former was stored as 
a modified adjacency matrix containing information on 
nodes adjacent to a given node, and arcs representing the 
various bus routes. The temporal data for the bus routes 
consisted of GPS data obtained from the buses and cor-
responding predictions. The departure time from each bus 
stop was found and this was stored in the database as in-
dependent trip files for each bus route. 

3. Evaluation of algorithm on a static network

Static networks provide invariant, pre-determined and 
historic temporal information for computation. The input 
data provided by static network was observed schedule of 
buses. Bus routes with IDs 5A, 5B, 5E, 21D, 21L, 23C and 
154 were chosen for this study. A schematic of the network 
is presented in Appendix. The GA parameters were tuned 
as follows: chromosome length limit of 9 and predefined 
population limit of 10 were chosen for the initialization 
step. Crossover probability value Pc was chosen as 0.8, mu-
tation probability value Pm as 0.01 and the total number of 
generations (including the initialization step) was chosen 
as 10 for the mating step. The parameter values used in 
this study are representative values, that have been fine-
tuned empirically based on the network data available. In 
the application of the route-planner framework to a larger 
network, the ideal GA parameter values would vary with 
time since the network itself is dynamic in nature – de-
pending on the time of the day, there could be several or 
few links/arcs present within the network, thereby chang-
ing the sparsity and requiring a similar change in the GA 
parameters as well. The authors suggest to optimize and 
store GA parameter values after the complete network in-
formation is available based on time period of the day. 
The focus in the study was on selecting representative GA 
values that would allow us to study the ever-growing dy-
namic network and focus on producing solutions within 
time constraints.

Ten iterations of genetic operator application were car-
ried out for each generation. A sample solution for a query 
where origin was set as “Broadway”, destination as “ESI 
Hospital” and time of travel as 10:30 am is shown in Fig-
ure 4. There were four solutions for the above query, and 
each solution specifies the bus routes to be taken and the 
bus transfer stations. For each solution, the total duration 
of trip in seconds, called cost value is also shown and the 
solutions are presented in ascending order of cost value.

Computation time measurement under static condition
One hundred nodes were chosen randomly from within 
the network in order to measure the computation time to 
arrive at solutions for a generic query. Start time of a trip 
was arbitrarily chosen and all feasible solutions between 
these nodes were computed at this time. The time taken 
for each iteration was recorded and the time to compute 
each solution is shown in Figure 5.

The GA framework produces acceptable solutions. Al-
though the mean time to produce solutions is high, the 
algorithm is robust. This paves way for the discussion in 
the subsequent sections where real-time data is used with 
the identified GA parameters from the static case. A total 
of 561 valid iterations were recorded. The average time 
taken to compute a particular solution was found to be 
1.97 s, the standard deviation was 0.28 s. The limit on the 
number of generations was used as the termination crite-
rion because the network chosen was sparse. As observed 

Figure 4. Program output for sample query: static case

Solution #1
Bus Stop >>> Broadway
Take Bus >>> 21L
Bus Stop >>> Madhya Kailash/CLRI
Take Bus >>> 5E
Bus Stop >>> ESI Hospital
Cost Function Value is 4500

Solution #2
Bus Stop >>> Broadway
Take Bus >>> 21L
Bus Stop >>> Santhome Church
Take Bus >>> 21D
Bus Stop >>> Vannandurai
Take Bus >>> 5E
Bus Stop >>> ESI Hospital
Cost Function Value is 5891

Solution #3
Bus Stop >>> Broadway
Take Bus >>> 21D
Bus Stop >>> Ashtalakshmi Koil/Velankanni Koil/Besant Nagar Church
Take Bus >>> 5E
Bus Stop >>> ESI Hospital
Cost Function Value is 5940

Solution #4
Bus Stop >>> Broadway
Take Bus >>>> 21D
Bus Stop >>> Vannandurai
Take Bus >>> 5E
Bus Stop >>> ESI Hospital
Cost Function Value is 5940

Figure 5. Time taken per iteration: static testing

Iteration
0 100 200 300 400 500

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Ti
m

e 
to

 co
m

pu
te

 so
lu

tio
n 

[s
]



Transport, 2020, 35(2): 156–167 161

from the iteration time scatter plot, barring a few cases, 
the GA was able to produce solutions in most cases within 
a short period of time. In practice, this hints at capping 
the maximum time for generating results to a query since 
this covers the solution generation for most cases. As part 
of the study, the cap on maximum time was enforced indi-
rectly, by maintaining a cap on the number of generations.

4. Real-time implementation

To provide relevant information, the route-planner needs 
to work with real-time bus data because traffic networks 
are dynamic in nature and static data based information 
may not be sufficient to provide the ideal itineraries in 
real-time. The distinction of this from static planner is that 
ETAs of buses obtained from real-time data are utilized to 
optimize the user’s itinerary in the real-time implemen-
tation of the planner. Therefore, in this work, the algo-
rithm was integrated with the real-time data available for 
a subset of buses in 16 routes: 5A, 5B, 5E, 7B, 19B, 21L, 
221H, 23C, 47A, G18, M119A, M14, M7A, M7, M70 and 
154. Schematic of the network is presented in Appendix. 
A prediction algorithm generated the ETAs at the various 
bus stops along the bus route using raw data from buses. A 
separate file, called the ETA file was generated for each bus 
in a route and for specific bus stop. Predictions were made 
at small intervals of time until as specific bus stop was 
reached, after which, the prediction process was stopped.

Although this study focused on developing a route-
planner for bus routes, in order to extend the route-plan-
ner’s capabilities, walk mode and Chennai MRTS, which 
is an elevated railway line system; were also included in 
the geospatial database. The two-way MRTS stretch be-
tween “Velacherry” and “Chennai Beach” were included 
as a separate mode. A distance calculation using the GPS 
coordinates was proposed for the walk mode. A connector 
was defined as the shortest link between a bus stop and 
the nearest MRTS station, which would be traversed by 
walk. The ticket purchase time at the MRTS station was 
also included as a fixed time period. The parameters for 
the GA in real-time planning were the same as those used 
in the static planner.

4.1. Computation time measurement  
under real-time condition

A hundred nodes were chosen at random from within the 
network in order to obtain the computation time needed 
to generate solutions for a generic query, and all feasible 
solutions between the nodes were computed using a trip 
start time chosen arbitrarily. The time taken for all itera-
tions was noted. The time taken to compute each solution 
is shown in Figure 6. Forty valid iterations were produced. 
The average time taken to compute a solution was 2.29 s, 
the standard deviation was 0.58 s.

4.2. Segmentation

In order to narrow down the search space during real-
time query, the base algorithm was segmented to further 
reduce the time required to compute solutions. For this, 
network solutions pre-generated for all feasible node 
pairs were stored in SFs and could be retrieved during 
real-time query. Thus, the algorithm could skip the ini-
tialization steps and proceed to the mating step to apply 
genetic operators on the retrieved solutions. Two mod-
ules – “archiver” and “retriever”– were used to perform 
the segmentation. The “archiver” calculated solutions for 
the entire network and stored them in a database, while 
the “retriever” retrieves data from the database as input 
during a query. Figure 7 shows a schematic summarizing 
the working of the route-planner.

As can be observed from the schematic diagram, the 
mating step is now operated in isolation, instead of as part 
of the complete GA algorithm, which is the effect of seg-
mentation of the algorithm. The input to the mating step 
is usually from the initialization step. In this, the segmen-
tation step enables the route-planner to go directly to the 
mating step forgoing the necessity to initialize a popula-
tion. Although the initialization step requires only a small 
fraction of the total time, it could sometimes fail to yield 
a solution, due to the fact that GA is a probabilistic tech-

Figure 6. Time taken per iteration: real-time testing

5 10 15 20 25 30 35 40
Iteration

1.5

2.0

2.5

3.0

3.5

4.0

5.0

Ti
m

e 
to

 co
m

pu
te

 so
lu

tio
n 

[s
]

4.5

Figure 7. Schematic diagram of the route-planner

Refresher

Cache

Retriever

Mating

Append validity parameter

Send solution

Solution 
present 
in cache

Solution not 
present in cache

Query



162 A. Basu et al. Dynamic trip planner for public transport using genetic algorithm

nique. Without segmentation, the common way to resolve 
this would be to run the initialization for multiple itera-
tions until suitable candidate solutions are available for 
the next steps. However, with segmentation, it is ensured 
that suitable candidate solutions are available for all runs 
of the algorithm.

To summarize, in segmented algorithm, solutions of 
the network problem were generated and stored, to be re-
trieved when a query was made to seed the GA. After re-
trieving the stored solutions, they are assigned a cost value 
based on the real-time data available at the time of query.

4.3. Computing time in segmented algorithm 

A hundred nodes were chosen from the network and base 
algorithm was evaluated under real-time conditions. All 
feasible solutions between these nodes at the same time 
instance were obtained as explained before. The time du-
ration of each iteration was recorded and the time of com-
putation of each solution is shown in Figure 8.

Forty valid iterations were produced as before. How-
ever, for segmented algorithm, the average time taken to 
compute a single solution was 0.12 s, the standard devia-
tion was 0.003 s. Thus, segmentation produced approxi-
mately 95% faster results than the base algorithm.

4.4. Handling multiple queries in real-time

Delays can be caused by simultaneous generation of mul-
tiple requests to the route-planner. Computing time in 
such cases can be optimized by maintaining a cache, a 
repository-of-sorts, to store recent queries. In this work, 
results of earlier queries were stored in a TSF database 
and assigned a validity parameter to indicate the duration 
of validity of the SF. At every fresh query, the TSF was 
checked for similar (same destination and origin) queries 
in the queue. To evaluate the performance, three queries 
were sent to the route-planner, with similar first and last 
queries, while the intermediate query was for a different 
origin and destination. Due to the cache, solution to the 
repeated query (query 3) was generated 99% faster than 
when there was no cache. Thus, the use of cache improves 
the efficiency of real-time field implementation.

4.5. Need for error correction

Consider the following scenario: a query was generated at 
11:48 am for a trip required at 12:15 pm between “Kara-
pakkam” bus stop (origin) and “Chennai Beach” MRTS 
station (destination). The solution obtained using this pro-
gram, as shown in Figure 9 (program output) and Figure 10  
(map depiction), had both bus and MRTS modes and re-
quired a transfer. 

The map (Figure 10) shows the transfer points for the 
sample case. Here, a passenger arrived via bus 19B at the 
bus stop (marked red) and walks over (blue) to the MRTS 
station (marked green).

In the next step, multiple queries were generated at the 
following times:

 – about thirty minutes before journey;
 – ten minutes before the start time of the journey, as 
estimated from the first step;

 – after the journey started;
 – ten minutes before ETA at the destination – “Madhya 
Kailash” bus stop;

 – the actual time of arrival.

Figure 8. Time taken per iteration: segmented algorithm testing

5 10 15 20 25 30 35 40
Iteration

0.114

0.116

0.118

0.120

0.122

0.124

0.126

0.128

0.130

Ti
m

e 
to

 co
m

pu
te

 so
lu

tio
n 

[s
]

Figure 9. Program output for sample query: real-time case

Solution #1
Bus Stop >>> Karapakkam
Take Bus >>> 19B-Towards-saidapet
Bus Stop >>> Madhya Kailash
Walk >>> Madhya Kailash to Kasturbai Nagar MRTS Station
MRTS >>> Kasurbai Nagar MRTS Station
Take Train >>> Towards Chennai Beach Station
MRTS >>> Chennai Beach Station

Figure 10. A map denoting the transfer points  
for a sample query

Longitude
80.246 80.248 80.250

13.004

13.006

13.008

13.010
Transfer stations

La
tit

ud
e



Transport, 2020, 35(2): 156–167 163

Table 1 lists the ETAs at the above times of query and the 
corresponding cost function value. There was significant  
variation in the cost value beyond the Scenario 3 (after 
start of journey), which implies that the user would get 
different values for the journey duration after the jour-
ney starts. The high variation in cost function is an un-
favourable attribute for the route-planner because of the 
possibility of changes to the chosen solution after journey 
starts, due to a missed transfer. 

The route-planner utilizes the output of a prediction 
algorithm (exogenous and not covered in the present 
study). This prediction algorithm uses GPS feed to gener-
ate ETA. These predicted ETAs are then used within the 
route-planner framework to generate candidate solutions. 
However, due to inconsistent GPS feed and inherent er-
rors in predictions, these ETAs can have errors and these 
were primarily found to depend on the time of the day, 
the location and the time of query. A good route-planner 
should not significantly alter the solution and its cost 
function value during the journey, to avoid inconvenience 
to the commuter. It is therefore necessary to minimize the 
error effects in our route-planner. The errors in predicted 
values should be captured within the route-planner so that 
buffers are provided around the predicted time. Hence, 
these errors were observed over an extended period of 
time and analysed to find the bounds on the predicted 
values in order to generate conservative solutions within 
the route-planner. These bounds, to an extent, help to gen-
erate solutions that do not change rapidly over time. This 
is discussed in the subsequent sections.

4.6. Integration of an error function

When a user generates a query, the algorithm uses pre-
dicted travel time data available at that instant. Prediction 
errors in the predicted travel time may, in extreme cases, 
even invalidate the solution generated by the route-plan-
ner. The errors largely depend on the bus stop, time of day 
and bus route and must be accounted for during route-
planning. We have categorized the error into two groups, 
depending on the time of the day and the time to reach 
the bus stop and the mean value of errors were calculated 
for each category. When there was a positive error, the bus 
arrives earlier than predicted and in the case of negative 
error – later. The bus route 19B and “Madhya Kailash” bus 
stop were selected to calculate the error function, and the 
results are shown in Figure 11.

The error function constructed, took into account the 
bus stop ID, the bus route ID, time of day, and the time 
of query. Given tai as the ETA at time ti, tai is the actual/
observed time of arrival at the bus stop. To buffer the ETA, 
error limits were imposed:

tai – e+
 ≤ ta ≤ tai + e–,  (1)

where: tai represents ETA at time ti; ta represents actual/
observed time of arrival at the bus stop; e+ represents was 
taken as the magnitude of mean positive error; e– that of 
the mean negative error. 

Since ta was not known at the time of prediction, it 
was difficult to choose the error value. Hence, the values 
of (tai – ti) from historical error data were used. Bounds 
were placed on the predicted data, to ensure that the final 
solution set contained individual valid solutions with high 
probability. This also ensured that the solution or the cost 
function value did not fluctuate, an upper limit value of 
total time of the journey was obtained – leading to genera-
tion of conservative solutions.

The sample real-time query described in the earlier 
subsection was explored again, with bounds on the ETAs, 
using the error function. Table 2 shows the bounds on the 
ETAs. The cost function value against scenario plot (with 
and without the error function) is shown in Figure 12.  
The cost function value did not fluctuate after the trip 
commenced due to inclusions of bounds. Hence, the error 
function was useful to reduce fluctuations in the solution.

Table 1. ETAs at various times of query and the associated cost

Scenario Time of query
Bus stops Walk and 

ticket time
Boarding: MRTS

Cost
Karapakkam Madhya Kailash Kasturbai Nagar Chennai Beach

1 11:48 12:17 12:39 12:48 12:51 13:20 3747
2 12:09 12:19 12:46 12:53 13:11 13:40 4860
3 12:30 n/a 12:42 12:51 13:11 13:40 4843
4 12:32 n/a 12:40 12:49 12:51 13:20 3643
5 actual data 12:19 12:43 12:52 13:11 13:40 4843

Figure 11. Mean error values v/s actual time  
for the bus to reach stop

Actual time for the bus to reach stop [s]
>1800 1800...1200 600...3001200...600 <300

positive error (period 1)
positive error (period 2)
negative error (period 1)
negative error (period 2)

0

50

100

150

200

250

300

M
ea

n 
er

ro
r [

s]



164 A. Basu et al. Dynamic trip planner for public transport using genetic algorithm

Conclusions

The present study developed a route-planner that can op-
erate with both static data and real-time data from the 
road, with bus mode of travel being the primary focus. 
Bus routes of the MTC, Chennai, India were taken as a 
case study. The route-planner used GA framework on a 
set of bus routes to test its performance first on a static 
network, and was later extended to real-time predictions. 
Real-time prediction values were associated with inherent 
errors that sometimes led to erroneous solution dispensed 
to the user during the journey. To resolve this issue, an 
error function was created and was shown to be effec-
tive in providing reliable data to the traveller. Therefore, 
two key features of the route-planner presented as a part 
of this study are its ability to generate reasonable results 
in a relatively short period of time, as exemplified by the 
cases discussed in the paper, and the ability of the error-
function incorporated in the planner to trim the solution 
set by getting rid of solutions with high uncertainty (due 
to high probability of missing transfers). 

In order to extend the route-planner’s capabilities, walk 
mode and the Chennai MRTS were also included in the 
geospatial database and this showed that this framework 
could potentially be integrated with other modes of pub-
lic transport. The algorithm was subsequently segmented 
to speed up prediction process. In addition, a temporal 
cache was also introduced during implementation, to han-

dle multiple queries generated simultaneously. Overall, it 
was seen that there is great promise for scalability and 
citywide implementation for the real-time route-planner 
developed in this study. The uncertainty and poor service 
quality perceived with public transport bus services in 
India could be mitigated by further developments in the 
route-planner introduced in this paper.

Acknowledgements

The authors acknowledge the support for this study as a 
part of the sub-project CIE/10-11/168/IITM/LELI under 
the Centre of Excellence in Urban Transport project fund-
ed by the Ministry of Urban Development, Government of 
India, through letter No N-11025/30/2008-UCD.

Appendix

1) All tests were performed using Python 3.5.1-0, on a 
computing system with the following configuration: 
processor  – 2.6 GHz Intel Core i5, memory  – 8 GB 
1600 MHz DDR3, operating system – OS X (10.11.4).

2) A comparison with Dijkstra’s algorithm on a dummy 
network was done prior to implementation and the 
results are presented below.

Dijkstra’s algorithm is deterministic and is assured 
to give the minimal cost solution. GA on the other 
hand is probabilistic in nature. In order to check if the 
GA framework suggested in the present study could 
generate comparable solutions, a dummy network was 
chosen, as shown in Figure A1. On this network, both 

Figure 12. Cost function value against scenario with  
and without the error function

Table 2. Bounds on ETAs: real-time sample query

Scenario Time of query

Bus stops
Walk and 

ticket time

Boarding: MRTS

CostKarapakkam Madhya Kailash
Kasturbai Nagar Chennai Beach

LB UB LB UB
1 11:48 12:14 12:19 12:38 12:45 12:54 13:11 13:40 5104
2 12:09 12:17 12:21 12:41 12:48 12:57 13:11 13:40 5430
3 12:30 n/a n/a 12:38 12:44 12:53 13:11 13:40 5104
4 12:32 n/a n/a 12:36 12:43 12:52 13:11 13:40 5104
5 actual 12:19 12:43 12:52 13:11 13:40 5104

without error function
with error function

Scenario
1 2 3 4 5

C
os

t f
un

ct
io

n 
va

lu
e

3500

4000

4500

5000

5500

Figure A1. The dummy network (note: the nodes are denoted 
by lower-case alphabets and the numbers on the links  

represent cost associated with it)

d

e
f

c

b

a

15

7

10

9
14

2

9

11

6



Transport, 2020, 35(2): 156–167 165

Dijkstra’s algorithm and the modified GA algorithm 
were tested to find the shortest path from node “a” to 
node “‘e”. The Dijktra’s algorithm could find the short-
est path solution [a–c–f–e] in approximately 0.00097 s.  
The parameters for GA framework were chosen to be 
same as earlier. The GA framework was tested for 100 
separate test runs for different initial population sizes, 
and it was checked for the number of times, it could 
find the best solution. It was found that for an initial 
population size of 10, the GA framework was able to 
find the best solution in 85 out of 100 test runs (85%), 
which was satisfactory. Moreover, in 12 out of remain-
ing 15 test runs, it could generate the second-best so-
lution. The average time taken by the algorithm was 
0.00042 s per test run. For an initial population size 
of 30, the GA framework was able to find the ideal 
solution always. Table A1 shows the variation of the 
average computation time per test run and percentage 
of optimal solutions with the initial population size 
that is chosen.

Based on the mentioned comparison, it was con-
cluded that the present GA framework is well suited to 
the problem presented in this study. 

3) Figure A2 shows the various bus routes and MRTS 
route, which were utilized in the study. 

4) To demonstrate the efficacy of the GA method used, 
the CSA was utilized (Dibbelt et al. 2017). Compari-
son of the time required and the cost function value 
for both CSA- and the GA-based implementations of 
the route was carried out. Comparison was done for 

both (1) static implementation: a sample query with 
origin as “Broadway” and destination as “ESI Hospital” 
and (2) real-time implementation: a sample query with 
origin and destination as “Karapakkam” and “Chennai 
Beach” station was generated with scheduled time of 
travel as 12:15 pm. Results obtained are presented in 
Table A2.
It can be seen that for the static implementation, the 

CSA is better. On the other hand, segmented GA per-
forms better than CSA for the real-time implementation. 
This shows the advantage of using GA for more complex 
real-time problems. To further illustrate the above, five ad-
ditional examples were evaluated under real-time imple-
mentation. The results obtained are presented in Table A3.

Table A2. Performance comparison of GA and CSA

Algorithm used
Static implementation Real-time implementation

Computation time [s] Cost function value Computation time [s] Cost function value
GA 1.97 4527 0.12 3747
CSA 1.77 4500 0.24 3747

Note: the values for GA presented in Table are averaged over 100 runs of the query.

Table A3. Comparison of average computation time for additional examples (real-time implementation)

Source Destination Time of query 
[h:min]

Cost value  
for CSA

Computation time 
for CSA [s]

Average cost 
value for GA

Average computation 
time for GA [s]

ESI D.M.S. 9:45 2027 0.20 2029 0.13

Mettupalayam Errikarai 9:30 886 0.17 886 0.10

Vadapalani Temple Ajantha 10:10 981 0.20 981 0.12

Guindy Race Course Maduvinkarai 12:15 329 0.20 329 0.14

Saidapet Malar Hospital 19:05 1253 0.29 1260 0.12

Post Office Sidco 18:30 423 0.21 423 0.11

Note: the values for GA presented in Table are averaged over 100 runs of the query.

Table A1. Variation of average computation time and 
percentage of optimal solutions with the initial population size

Initial population 
size

% of optimal 
solutions

Average computation 
time (test run) [s]

3 35 0.00018
4 47 0.00021
5 60 0.00025
6 65 0.00026
7 69 0.00030
8 74 0.00031
9 80 0.00035

10 85 0.00042
30 100 0.00104



166 A. Basu et al. Dynamic trip planner for public transport using genetic algorithm

Figure A2. Schematic map depicting the bus routes utilized in this study



Transport, 2020, 35(2): 156–167 167

References 

Abbaspour, R. A.; Samadzadegan, F. 2011. Time-dependent per-
sonal tour planning and scheduling in metropolises, Expert 
Systems with Applications 38(10): 12439–12452. 
https://doi.org/10.1016/j.eswa.2011.04.025 

Borole, N.; Rout, D.; Goel, N.; Vedagiri, P.; Mathew, T. V. 2013. 
Multimodal public transit trip planner with real-time transit 
data, Procedia – Social and Behavioral Sciences 104: 775–784. 
https://doi.org/10.1016/j.sbspro.2013.11.172 

Chen, C.; Kitamura, R.; Chen, J.; 1999. Multimodal daily itiner-
ary planner: interactive programming approach, Transporta-
tion Research Record: Journal of the Transportation Research 
Board 1676: 37–43. https://doi.org/10.3141/1676-05 

Deng, Y.; Hu, S. 2011. Route optimization of multi-modal travel 
based on improved genetic algorithm, in Proceedings 2011 
International Conference on Transportation, Mechanical, 
and Electrical Engineering (TMEE), 16–18 December 2011, 
Changchun, China, 1701–1704. 
https://doi.org/10.1109/TMEE.2011.6199539 

Dibbelt,  J.; Pajor, T.; Strasser, B.; Wagner, D. 2017. Connection 
Scan Algorithm. 49 p. Available from Internet: 
https://arxiv.org/abs/1703.05997v1 

Goldberg, D. E. 1989. Genetic Algorithms in Search, Optimiza-
tion, and Machine Learning. Addison-Wesley Professional. 
432 p.

Hiu, W. 1996. Genetic Algorithms, in Surveys and Presentations in 
Information Systems Engineering (SURPRISE), Imperial Col-
lege London, UK. 

Jariyasunant, J.; Mai, E.; Sengupta, R. 2011. Algorithm for finding 
optimal paths in a public transit network with real-time data, 
Transportation Research Record: Journal of the Transportation 
Research Board 2256: 34–42. https://doi.org/10.3141/2256-05 

Kumar,  M.; Husian,  M.; Upreti,  N.; Gupta, D. 2010. Genetic 
algorithm: review and application, International Journal of 
Information Technology and Knowledge Management 2(2): 
451–454. https://doi.org/10.2139/ssrn.3529843 

Nanayakkara, S. C.; Srinivasan, D.; Lup, L. W.; German, X.; Tay-
lor, E; Ong, S. H. 2007. Genetic algorithm based route plan-
ner for large urban street networks, in 2007 IEEE Congress on 
Evolutionary Computation, 25–28 September 2007, Singapore, 
4469–4474. https://doi.org/10.1109/CEC.2007.4425056 

Obitko, M. 1998. Genetic Algorithms. Available from Internet: 
https://www.obitko.com/tutorials/genetic-algorithms/index.
php 

Vanajakshi, L.; Subramanian, S. C.; Sivanandan, R. 2009. Travel 
time prediction under heterogeneous traffic conditions us-
ing global positioning system data from buses, IET Intelligent 
Transport Systems 3(1): 1–9. 
https://doi.org/10.1049/iet-its:20080013 

Zhao, F.; Zeng, X. 2006. Simulated annealing–genetic algorithm 
for transit network optimization, Journal of Computing in 
Civil Engineering 20(1): 57–68. 
https://doi.org/10.1061/(ASCE)0887-3801(2006)20:1(57)

https://doi.org/10.1016/j.eswa.2011.04.025
https://doi.org/10.1016/j.sbspro.2013.11.172
https://doi.org/10.3141/1676-05
https://doi.org/10.1109/TMEE.2011.6199539
https://arxiv.org/abs/1703.05997v1
https://doi.org/10.3141/2256-05
https://doi.org/10.2139/ssrn.3529843
https://doi.org/10.1109/CEC.2007.4425056
https://www.obitko.com/tutorials/genetic-algorithms/index.php
https://www.obitko.com/tutorials/genetic-algorithms/index.php
https://doi.org/10.1049/iet-its:20080013
https://doi.org/10.1061/(ASCE)0887-3801(2006)20:1(57)

