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Abstract. To accurately estimate the effect of driving conditions on vehicle emissions, an on-road light-duty vehicle emis-
sion platform was established based on OEM-2100TM, and each second data of mass emission rate corresponding to the 
driving conditions were obtained through an on-road test. The mass emission rate was closely related to the velocity and 
acceleration in real-world driving. This study shows that a high velocity and acceleration led to high real-world emissions. 
The vehicle emissions were the minimum when the velocity ranged from 30 to 50 km/h and the acceleration was less 
than 0.5 m/s2. Microscopic emission models were established based the on-road test, and single regression models were 
constructed based on velocity and acceleration separately. Binary regression and neural network models were established 
based on the joint distribution of velocity and acceleration. Comparative analysis of the accuracy of prediction and evalu-
ation under different emission models, total error, second-based error, related coefficient, and sum of squared error were 
considered as evaluation indexes to validate different models. The results show that the three established emission models 
can be used to make relatively accurate prediction of vehicle emission on actual roads. The velocity regression model can 
be easily combined with traffic simulation models because of its simple parameters. However, the application of neural 
network model is limited by a complex coefficient matrix.

Keywords: on-road emission test, driving conditions, light-duty vehicle, velocity, acceleration, mass emission rate.

Introduction

Vehicle emission is one of the major factors affecting ur-
ban atmosphere. Vehicle emissions are affected by not 
only inherent conditions such as the engine technology 
and emission control technologies, but also the actual 
driving conditions on the road. It is important to quanti-
tatively measure emissions under different driving condi-
tions, providing driving strategies for drivers and optimiz-
ing traffic control strategies to reduce emissions (Cheng 
et al. 2009; Zi et al. 2006; Guo et al. 2012).

Vehicle emission under different working conditions 
have been extensively studied, such as COPERT (https://
www.emisia.com/utilities/copert) and EMFAC (https://
www.arb.ca.gov/emfac) models. The COPERT model 
(Kouridis et  al. 2000) was developed by the European 
Environmental Bureau (EEB) using the basic emission 
correction factor and external parameters and emission 
factor in computer emulator considering the effect of the 
running state of vehicle emissions, deterioration, environ-
mental conditions, and fuel oil as the external influencing 

factors. The disadvantage of this model is that it focused 
on average speed and vehicle type as the main factors in-
fluencing emission. The age of the vehicle had less influ-
ence. Vehicle emissions and fuel type mainly affect the 
accuracy of calculation results (Boulter et al. 2007). The 
EMFAC model was developed by California Air Resources 
Bureau (CARB). Each type of vehicle was sampled every 
year, and the model was updated. Bai et al. (2009) applied 
the EMFAC model to simulate CO2 emission from vehicles 
in California (US). By comparing the calculation results 
with the MOtor Vehicle Emission Simulator (MOVES) 
model (https://www.epa.gov/moves), the simulation results 
show that the CO2 emission had slight difference in 2002, 
but the CO2 emission obtained from the MOVES model 
was almost 40% higher than the EMFAC model in 2030. In 
addition, Hong Kong applied the modified EMFAC model 
to its traffic, and the emission was calculated based on dy-
namic traffic data. This better reflects the inventory and 
traffic control ability of vehicle emissions in Hongkong.
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At present, the new developed emission models such 
as MOVES, International Vehicle Emissions (IVE, http://
www.issrc.org/ive) are microscopic and use on-road test 
data. Compared to macroscopic emission models based 
on average velocity, microscopic models can better reflect 
the effect of operating conditions on vehicle emission 
and thus provide more effective emission control strate-
gies (Guo et al. 2016, 2017). In the MOVES model (EPA 
2007), using the Vehicle Specific Power (VSP) calculation 
method for emission, the model can depict vehicle emis-
sions in different modes of operation. However, the actual 
operation modes are relatively less in the traffic network, 
and the results lead to poor stability. IVE model was de-
veloped to estimate exhaust emissions in developing coun-
tries. This model is based on the calculation method for 
zero emission factor and deterioration rate and introduces 
driving behaviour parameters to correct the emission fac-
tors. The main advantage of this method is that the data 
can reflect the local characteristics of developing coun-
tries, and the parameters of the fit are higher. However, the 
classification parameters of engine stress model calcula-
tion are more complex, and it is also difficult to obtain the 
actual traffic conditions. Therefore, it is not suitable for the 
dynamic analysis of traffic emissions (Davis et al. 2005).

In terms of emission inventory and analysis of influ-
encing factors, Liu et al. (2011) studied vehicle emissions 
in Nanjing city based on the IVE model using a vehicle 
emission analyser and Global Positioning System (GPS), 
obtained the data of actual driving conditions, and cal-
culated the NOx correction factor in the emission model. 
Taking the city of Hangzhou as an example, Li et al. (2012) 
established the vehicle NOx emission inventory of Hang-
zhou through experiments and simulation and predicted 
the NOx emission of vehicles during the “12th five-year” 
period. Qiu et  al. (2015) simulated the effects of differ-
ent engine speeds, torques, engine temperatures, and in-
take pressures on HC emissions. Li and Zhang (2014) 
introduced a speed calculation method based on carbon 
emissions to solve the path planning problem. The above 
studies were aimed at the emission of a single vehicle or 
influencing factors; the characteristics of vehicle emissions 
have not been studied in detail.

In terms of emission data acquisition, Iqbal et  al. 
(2016) investigated vehicle mileage and traffic volume 
data to evaluate vehicle emission characteristics in selected 
representative roads. The data were obtained in a short 
time span, and the traffic flow and vehicle emission char-
acteristics were ignored. The obtained static data cannot 
be updated dynamically, and real-time calculations cannot 
be performed. Tang et al. (2018) used the IVE model to 
calculate the local vehicle emissions in Hangzhou city (ur-
ban, suburban, and rural areas) as well as for four different 
road types and analysed the vehicle emission characteris-
tics. Gao et al. (2012) established a quantitative model of 
traffic emissions from traffic characteristics with micro-
scopic changes and built a dynamic simulation platform 
for traffic emission in West Sanhuan trunk road (ArcGIS). 
The emission characteristics were analysed by a macro 

emission model or simulation. The accuracy of calcula-
tion or simulation is insufficient than the actual data, less 
applicable for the microanalysis of a single car. However, 
microscopic studies on vehicle emissions at different ve-
locities and accelerations are still scarce. Moreover, when 
using a macroscopic emission model to measure vehicle 
emission quantitatively, its accuracy cannot satisfy the 
requirements. For example, different accelerations would 
cause huge differences in vehicle emissions under driving 
conditions (Li et al. 2009; Demir et al. 2011). 

In this study, in order to make a detailed microscopic 
study on vehicle emissions of different velocities and ac-
celerations, and put forward an effective emission control 
strategy, an emission test platform was established based 
on light-duty vehicles, and experiments were carried out 
at the peak and common periods in selected city ring 
roads. The vehicle emission data under the corresponding 
velocity and acceleration were obtained. Then, the differ-
ence in light-duty vehicle emissions including NOx, HC, 
and CO under different velocities, accelerations, and joint 
distribution of velocity and acceleration were analysed, 
providing pertinent driving suggestions. To accurately 
estimate vehicle emissions with driving conditions, three 
microscopic emission models were established: single re-
gression, binary regression, and neural network model. 
The accuracy of prediction and application of these mod-
els were compared.

1. Data source

1.1. On-road emission test platform

In the study, an emission measuring instrument OEM-
2100TM manufactured by CATI (US) was used. It is com-
posed of a five-gas analyser, an engine state detector, and 
a computer. The five-gas analyser was used to test the vol-
ume percentage of CO, HC, NOx, CO2 and O2. The en-
gine state detector measures the per second engine speed, 
engine temperature, and intake pressure by connecting 
an On-Board Diagnostics (OBD) with the engine. This 
instrument first calculates the emission volume flow us-
ing the measured engine parameter data and then calcu-
lates the instantaneous mass emission rate by combining 
exhaust concentration data with exhaust flow data. Mass 
emission rate is calculated as follows:

 g/L  L/sexhaust concentration Exhaust flow⋅ =      
  g/smass emission rate   .

As shown in Figure 1, the system to measure driving 
conditions consists of a GPS, a laptop, and an interface 
program to monitor the on-road position, velocity, and 
acceleration of a light-duty vehicle.

1.2. Test projects

According to the classification of vehicles mentioned in 
the Measuring Method of Urban Vehicle Emission Pollu-
tion set by the Scottish Environment Protection Agency 
(SEPA) in 2005, light-duty vehicles have a weight of less 
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than 3.5 t. According to this standard, five types of light-
duty vehicles were selected for this test as shown in Ta-
ble 1. 

In vehicle emission studies, average velocity is an im-
portant factor to analyse vehicle emission. Therefore, the 
influencing factors, average velocity, traffic congestion, and 
changes in traffic flow in morning and evening should be 
considered when selecting testing roads. As shown in Fig-
ure 2, the Red Flag Street and Yan’an Street were selected 
as the testing roads that have a large traffic flow, and traffic 
jam often occurs in the peak period. These easily cause 
congestion and affect the travel of traffic participants.

The test was conducted in three periods: the morning 
peak period, evening peak period, and common period. 
The low experienced drivers’ characteristics are usually 
aggressive, unsteady, conservative and novice (less than 
3 years of driving experience), however, the experienced 
drivers are often smooth going and speeding. Zheng et al. 
(2017) analysed the influence of different characteristics 
drivers (experienced and low experienced) on the emis-
sion of their car. According to their research, the low ex-
perienced drivers increased emissions of CO2 by 80.5% 
over experienced drivers per star-stop, and the emissions 
of NOx increased from 0.0033 g (experienced) to 0.087 g  
(low experienced) per start-stop. Furthermore, the low 
experienced drivers have more frequent start-stop, which 
further leads to an increase in emissions. In our test, two 
drivers with more than 10 years of driving experience 
were selected, thereby eliminating the influence of driver 
factors. To ensure that the test data are representative, five 
types of vehicles were tested more than 150 test runs in the 
three city ring roads during three periods. OEM-2100TM 
automatically organized the test data, finally providing 
the vehicle mass emission rate of NOx, HC, and CO and 
the corresponding velocity, acceleration, and other driv-
ing conditions. The data were processed including the loss 
of data, and removing the wrong data. Thus, an emission 
database containing vehicle emission data and the corre-
sponding driving condition data was obtained, as shown 
in Table 2. 

2. Analysis

During the driving, changes in the velocity and accelera-
tion of vehicle would affect the engine performance such 
as the engine temperature and combustion temperature in 
the cylinder, thus affecting the three mass emission rates.

2.1. Effect of velocity

As vehicle emissions are closely related with the veloc-
ity, the effect of velocity on emission was analysed in 
detail. First, the test data were acquired at an interval of  
1 km/h velocity, and the average mass emission rates were 
calculated at 51 velocity points at the interval of 1 km/h 
between 0…50 km/h. Figure 3 shows the changes in the 
three mass emission rates with velocity.

As shown in Figure 3, the NOx mass emission rate 
gradually increases with velocity. This is because when a 
car is driven at a high velocity, its engine throttle opens 
significantly, and its cylinder combustion temperature 
increases sharply. Therefore, the NOx emissions increase 
accordingly. In contrast, the HC and CO mass emission 
rates increase with velocity until it reaches a certain value. 
This turning point results from the fact that combustion 
is improved by the turbulence mixing, eddy diffusion, 
and exhaust turbulence of gas mixture, thus promoting 
the secondary oxidation of a quenching layer, which in 
turn promotes oxidation reaction inside the exhaust pipe.

Figure 1. On-board emission test platform light-duty vehicles
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Table 1. Five types of light-duty vehicles tested

Vehicle category
Production 

date  
[year]

Travelled 
distance 

[km]

Engine 
displacement 

[L]
VW Jetta Gix 2001 52000 1.6
HongQi CA7201 2004 45000 2.0
VW Jetta Gix 2002 33000 1.6
VW Santana Vista 2007 15000 1.8
BenTeng B50 2008 12000 1.6

Figure 2. Regional GPS testing road map
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Based on the test data, the average mass emission rates 
of NOx, HC, and CO under six different velocity ranges 
were calculated. The results are shown in Table 3.

2.2. Effect of acceleration

To evaluate the effect of acceleration on mass emission 
rates of NOx, HC, and CO, six ranges of acceleration were 
studied: a ≤ -2 m/s2, -2 < a ≤ -1 m/s2, -1 < a ≤ 0 m/s2,  
0 < a ≤ 1 m/s2, 1 < a ≤ 2 m/s2 and a > 2 m/s2. The average 

mass emission rates of three emissions in each range were 
calculated and drawn as a curve in Figure 4. 

Figure 4 shows that with the increase in acceleration, 
the mass emission rate of NOx first decreased and then 
increased when the acceleration is above -2 m/s2. How-
ever, the mass emission rate of HC linearly increased with 
acceleration. In contrast to NOx, the mass emission rate of 
CO first increased and then slightly decreased when the 
acceleration was more than 1 m/s2.

With the increase in acceleration, the homogeneity of 
the mixture in cylinder was destroyed. The combustion 
state of mixture compared to the steady state was also de-
stroyed. Therefore, when a car accelerates, vehicle emis-
sions change drastically, throttle opens significantly, and 
combustion temperature in the cylinder increases sharply. 
As a result, the NOx emission increases accordingly. On 
the other hand, with the increase in the amount of in-
jected fuel during the acceleration, the consistency of gas 
mixture increases, thus increasing the consistency of CO 
and HC in the emission. Moreover, the secondary forma-
tion of oil droplets over the fuel surface also thickens the 
gas mixture, leading to denser concentrations of CO.

Table 2. Vehicle emission data and the corresponding driving conditions

Time Engine speed  
n [rpm]

Emission rate Vehicle velocity  
v [km/h]

Vehicle acceleration  
a [m/s2]NOx [mg/s] HC [mg/s] CO [mg/s]

9:00:01 1704 0.14906 0.03419 3.48397 20 0.583333
9:00:02 1403 0.12864 0.02867 2.6661 22.1 0.138889
9:00:03 1308 0.10212 0.0203 2.3969 22.6 0.722222
9:00:04 1438 0.13389 0.02429 2.8943 25.2 0.722222
9:00:05 1715 0.16481 0.02781 1.4981 27.8 0.833333
9:00:06 1661 0.17481 0.03284 1.24072 30.8 0.250000
9:00:07 1336 0.14427 0.02613 1.2439 31.7 0.277778
9:00:08 1362 0.15294 0.02679 1.17642 32.7 0.416667
9:00:09 1433 0.15683 0.0274 1.16361 34.2 0.472222
9:00:10 1498 0.15382 0.02646 1.17006 35.9 0.500000

Figure 3. Changes in NOx, HC, and CO mass  
emission rates with velocity

Table 3. Mass emission rates of NOx, HC, and CO under 
different velocity ranges 

Vehicle velocity 
v [km/h]

Emission rate

NOx [mg/s] HC [mg/s] CO [mg/s]
0…10 0.17 0.05 1.62

10…20 0.33 0.08 3.11
20…30 0.44 0.09 2.74
30…40 0.49 0.08 2.39
40…50 0.48 0.06 1.79

>50 0.55 0.05 1.33

0 5 10 15 20 25 30 35 40 45 50 55
Velocity [km/h]

0

1

2

3

4

5

6

7 NO  (´0.1)x
HC (´0.1)
CO

M
as

s e
m

iss
io

n 
ra

te
 [m

g/
s]

Figure 4. Changes in NOx, HC, and CO mass emission rates 
with acceleration
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2.3. Effect of joint distribution  
of velocity and acceleration

Velocity and acceleration jointly affect the generation of 
three pollutants of a motor vehicle on road. In the follow-
ing analysis, the variation in the mass emission rates of 
three pollutants is presented under the joint distribution 
of velocity and acceleration.

Figure 5 shows that the mass emission rate of NOx had 
a consistent increasing trend with velocity in different ac-
celeration ranges. Under a fixed velocity, a larger accel-
eration causes a significantly higher mass emission rate 
of NOx.

When the velocity is higher than 10 km/h and the ac-
celeration is higher than 1.5 m/s2, the mass emission rate 
of NOx is obviously higher than that in other sections. 
This is because when a car accelerates at a high velocity, 
its throttle opens significantly, and the combustion tem-

perature in cylinder sharply increases, thus increasing the 
emission of NOx. When the velocity is low, the mass emis-
sion rate of NOx is considerably lower than that at a high 
velocity. Therefore, high velocity and high acceleration are 
the main reasons for the increase in NOx emission.

Figure 6 shows that the mass emission rate of HC first 
decreased and then increased with velocity in different 
acceleration ranges. However, at a fixed velocity, the HC 
emission slightly changed under different accelerations, 
consistent with the effect of acceleration on emission de-
scribed in Section 2.2.

In the velocity range from 10 to 50 km/h, the mass 
emission rates of HC are relatively stable, mostly in the 
range of 0.06…0.1 mg/s. When the velocity ranged from 
30 to 40 km/h with more than 1.5 m/s2 acceleration, the 
HC mass emission rate reached its peak of 0.18 mg/s. 
This indicates that velocity is the major factor affecting 
HC emission, and incomplete combustion caused by high 
acceleration under medium velocity results in high emis-
sion.

Figure 7 shows that the mass emission rate of CO first 
increased and then decreased with the increase in velocity 
in different acceleration ranges. At a fixed velocity, the CO 
mass emission rate at a high acceleration above 1 m/s2 is 
significantly higher than that at a low acceleration. 

When the acceleration is less than 1 m/s2, the CO mass 
emission rate slightly changed under different velocities 
and accelerations. However, the mass emission rate of CO 
was high when the acceleration was higher than 1 m/s2 
and the velocity ranged from 20 to 50 km/h. Thus, a high 
acceleration increases the amount of gas mixture.

In summary, the incomplete combustion in high ac-
celeration and high combustion temperature inside the 
cylinder can be prevented when light-duty vehicles run at 
a moderate velocity from 30 to 50 km/h and the accelera-
tion is less than 0.5 m/s2. Thus, the emission performance 
of light-duty vehicles can be improved.

Figure 5. Effect of both velocity and acceleration  
on the mass emission rate of NOx

Figure 6. Effect of both velocity and acceleration  
on the mass emission rate of HC

0

0.2

0.4

0.6

0.8

1.0

1.2

1.6

1.8

1.4

N
O

 m
as

s e
m

iss
io

n 
ra

te
 [m

g/
s]

x

a Ј 0.5 
0.5 < a Ј 1 
1 < a Ј 1.5 
a > 1.5 

v > 50 0 < v Ј 10 10 < v Ј 20 20 < v Ј 30 30 < v Ј 40 40 < v Ј 50

Velocity [km/h]

Velocity [km/h]

a Ј 0.5 
0.5 < a Ј 1 
1 < a Ј 1.5 
a > 1.5 

H
C

 m
as

s e
m

iss
io

n 
ra

te
 [m

g/
s]

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

v > 50 0 < v Ј 10 10 < v Ј 20 20 < v Ј 30 30 < v Ј 40 40 < v Ј 50

Figure 7. Effect of both velocity and acceleration  
on the mass emission rate of CO
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3. Microscopic emission model

Changes in velocity and acceleration would vary engine 
performance, thus affecting vehicle emissions. Thus, veloc-
ity and acceleration can be used to establish a microscopic 
emission prediction mode.

3.1. Velocity regression model

Single regression models of three emissions were estab-
lished based on a single parameter of velocity, closely re-
lated to vehicle mass emission rates.

The modelling data selection process is shown in Fig-
ure 8. First, 13 groups of emission data were selected un-
der a velocity of 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 
55 and 60 km/h. Then, the average emission rates were 
calculated according to the corresponding velocity, and 
the average emission rates of NOx, HC, and CO with re-
spect to velocity are shown in Figures 9–11. According 
to the calculation data, the model results can be obtained 
from Equations (1)–(3) through multiple regression using 
Origin Pro 9.0 software (https://www.originlab.com/origin):

NOx:

x
4 5

NO 3.20529 10 6.22451 10y x- -= ⋅ + ⋅ ⋅ ;  (1)

HC:
4 5

HC 7.24546 10 6.73095 10y x- -= ⋅ + ⋅ ⋅ -
6 2 8 32.29452 10 2.16185 10x x- -⋅ ⋅ + ⋅ ⋅ ;  (2)

CO:
CO 0.00868 0.0024y x= + ⋅ -

5 2 7 39.92745 10 9.62459 10x x- -⋅ ⋅ + ⋅ ⋅ ,  (3)

where: y is the instantaneous emission rate [mg/s]; x is the 
instantaneous velocity [km/h], 0 < x < 60 km/h.

The above three regression equations are mathematical 
expressions of velocity-regression model and reflect the 
relationship between velocity and average mass emission 
rates. As this model is based on only one factor, it has a 
simple form, and the results can be easily predicted. This 
characteristic further facilitates it to coordinate with oth-
er models. However, because many factors affect vehicle 
emissions on actual roads and the effect of velocity only 
accounts for about 30%, the single-factor velocity model 
has some limitations.

3.2. Binary regression model

The binary regression model predicts the emission rate 
based on both velocity and acceleration. In this model, 
the acceleration is selected from -5 to 5 km/h/s, and the 
velocity is selected from 0 to 60 km/h. Each velocity has 
11 points corresponding to acceleration (-5, -4, -3, -2, 
-1, 0, 1, 2, 3, 4, 5).

The modelling process is as follows: First, set a group 
of regression models to express the relationship between 
instantaneous emission rate and velocity, and then divide 
the emission rates into 11 groups based on acceleration. 
Next, set Equation (4) for each group using the cubic re-

Figure 8. Processing procedure for selecting modelling data

Figure 9. Velocity–emission rate regression curve of NOx

Figure 10. Velocity–emission rate regression curve of HC
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gression method. As a result, four groups of coefficients 
av, bv, cv, and dv can be obtained, and each group has 11 
statistics related to the corresponding acceleration.

2 3
A v v v vE a b v c v d v= + ⋅ + ⋅ + ⋅ ,                            (4)

where: EA is the instantaneous mass emission rate [mg/s]; 
av, bv, cv, and dv are the regression coefficients; v is the 
instantaneous velocity [km/h].

https://www.originlab.com/origin
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The binary regression model of emission rate can be 
expressed as follows:

x

3

NO
, 0

i j
ij

i j

E a a v
=

= ⋅ ⋅∑ ;  (5)

3

HC
, 0

i j
ij

i j

E b a v
=

= ⋅ ⋅∑ ;  (6)

3

CO
, 0

i j
ij

i j

E c a v
=

= ⋅ ⋅∑ ,  (7)

where: 
xNOE , HCE , and COE  are the mass emission rate 

of NOx, HC, and CO, respectively [mg/s]; aij, bij, and cij 
are the model coefficients; ai is the acceleration [km/h/s],  
-5 < a < 5 km/h/s; v j is the velocity [km/h], 0 < v < 60 km/h.

Table 4 shows the model coefficients of binary regres-
sion.

The binary regression model has diverse applications. 
It can be used to predict instantaneous emission under a 
velocity of 0…60 km/h and acceleration of -5…5 km/h/s. 
Moreover, this model can be easily combined with other 
models to quantify emission.

3.3. Neural network model

As the emission data nonlinearly vibrates with velocity 
and acceleration, a neural network model was established 
to ensure algorithmic accuracy and computational effi-
ciency. The neural network toolbox of MATLAB (https://
www.mathworks.com/products/matlab.html) was used to 
analyse and program to perform the following calculation, 
as shown in Figure 12. 

A Body Fat (BF) neural network model was established 
with two hidden layers. The tansing and logsig functions 
were used as the transfer functions of the emission rate 
model. The third layer function uses purelin linear transfer 
function. The relationship of BF mapping neural network 
model can be expressed as follows:

( )( )( )3 3 2 2 1 1 1 2 3E f W f W f W P b b b= ⋅ ⋅ ⋅ + + + ,  (8)

where: E is the emission rate; W1, W2 and W3 are the 

Figure 11. Velocity–emission rate regression curve of CO
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raw data Table 4. Binary regression model coefficients

Variable 
parameters NOx HC CO

a -1.646013 -0.480287 7.115069
a2 0.257026 0.017818 7.299528
a3 0.059187 0.074631 1.507933
a⋅v 0.162353 0.070015 -0.592252
a2⋅v -0.034504 -0.003120 -0.724626
a3⋅v -0.008106 -0.010206 -0.139018
a⋅v2 -0.002891 -0.002256 0.011174
a2⋅v2 0.000896 0.0000678 0.013234
a3⋅v2 0.000262 0.000341 0.002491
a⋅v3 0 0.0000208 0
a2⋅v3 0 0 0
a3⋅v3 0 -0.00000315 0
v 0.361401 0.032044 1.403942
v2 -0.005651 -0.000597 -0.026676
v3 0 0 0

Constant -0.113739 0.412267 13.288111

Figure 12. Structure of neural network model
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weights of neural network; b1, b2 and b3 are the deviation 
matrices; P is the input vector (velocity, acceleration); f 1 
is the nonlinear transfer function (transig); f 2 is the non-
linear transfer function (logsig); f 3 is the linear transfer 
function (purelin).

In this model, 660 sets of data were selected from the 
emission test data under a velocity of 0…60 km/h and ac-
celeration of -4…4 m/s2. The input is instantaneous veloc-
ity and acceleration, and the output is instantaneous mass 
emission rates of NOx, HC, and CO. The neural network 
model parameters are shown in Table 5.

3.4. Comparative analysis of models

The predicted accuracy under different emission models, 
total error, second-based error, related coefficient, and 
sum of squared error as the evaluation indexes were com-
pared to validate different models.

The total error can be expressed as follows:

( )abs
[%] 100%

X Y
total error

Y
-

= ⋅ ,  (9) 

where: X is the sum of predicted value; Y is the sum of 
raw value.

The second-based error can be expressed as follows:

( )abs
[%] 100%

x y
second based error

y
-

= ⋅ ,  (10)

where: x is the per second predicted value; y is the per 
second raw value.

The related coefficient can be expressed as follows:
( )cov ,

xy
x y

X Y
ρ =

s ⋅s
, 1 1xy- ≤ ρ ≤ , (11)

where: sx is the standard deviation of predicted value; sy 
is the standard deviation of raw value,

( ) ( ) ( )
1

1cov ,
n

i x i y
i

X Y x y
n =

= ⋅ -m ⋅ -m∑ ,  (12)

Table 5. Parameters of neural network model

Model NOx HC CO
Number of 
first hidden 
layer nodes

30 25 30

Number 
of second 

hidden layer 
nodes

15 10 15

Training 
times 2081 1950 4920

Network 
error 0.1 0.1 0.1

Input velocity;
acceleration

velocity;
acceleration

velocity;
acceleration

Output

NOx 
instantaneous 
mass emission 

rate

HC 
instantaneous 
mass emission 

rate

CO 
instantaneous 
mass emission 

rate

Table 6. NOx emission model error analysis

Model
Parameters Velocity regression model Binary regression model Neural network model

Total error 2.65% 7.32% 3.26%
Second-based error 24.90% 56.84% 18.77%
Related coefficient 0.85554 0.692776 0.99202
Total variance 0.00052 – 2.5430⋅10–4

Number of coefficients 2 12 –

Table 7. HC emission model error analysis

Model
Parameters Velocity regression model Binary regression model Neural network model

Total error 10.70% 16.37% 2.80%
Second-based error 30.14% 54.70% 31.57%
Related coefficient 0.82914 0.41047 0.98462
Total variance 8.50⋅10–5 – 1.57⋅10–5

Number of coefficients 4 14 –

Table 8. CO emission model error analysis

Model
Parameters Velocity regression model Binary regression model Neural network model

Total error 10.28% 11.04% 1.43%
Second-based error 31.52% 44.56% 15.14%
Related coefficient 0.90857 0.64916 0.98612
Total variance 0.00345 – 0.018405
Number of coefficients – 12 –
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where: xi is the predicted emission rate; yi is the raw emis-
sion rate; mx is the average of predicted value; my is the 
average of raw value.

The total variance can be expressed as follows:

( )2 i itotal variance x y= -∑ .  (13)

Tables 6–8 show that the total error of vehicle emis-
sion prediction in the three models is less than 17%, and 
the second-based error is less than 30%. The related coef-
ficients of velocity regression model and neural network 
model are above 0.8. This shows that the established emis-
sion models can be used to make relatively accurate pre-
diction of vehicle emission on actual roads. The velocity 
regression model has a relatively simple parameter. The 
prediction accuracy of CO emission was higher than that 
of other two models. Full combustion occurred in the ab-
sence of high CO emissions. Therefore, the model is suit-
able for vehicle in cold start. The oxygen concentration 
on automobile emission area reaches a plateau; accelera-
tion and idle state can be predicted. It can be applied to 
combine with traffic simulation models to evaluate and 
analyse microscopic emission on urban road network and 
intersection. The binary regression model has good gen-
erality. However, the error per second is larger, and the 
correlation is lower than the other two models. It is suit-
able to estimate the micro emission of light-duty vehicles 
in urban roads. The neural network model has the highest 
correlation in the three models, and its prediction results 
are most accurate. It is suitable for the good prediction ac-
curacy of light-duty vehicle emission based on actual road 
conditions, and it can be applied to the accurate predic-
tion of urban road intersection and small area road net-
work. However, its coefficient matrix is complex, which 
is not conducive to traffic simulation model integration.

Conclusions

First, light-duty vehicles on urban road were selected as 
the study object. An on-road emission test platform was 
established, and actual road experiments were conducted. 
The mass emission rates of three emissions and the cor-
responding driving conditions were obtained. Then, the 
effect of velocity, acceleration, and the joint distribution of 
both on vehicle emission was evaluated. Velocity regres-
sion model, binary regression model and neural network 
model were established by regression and neural network, 
accurately reflecting the instantaneous emission rates of 
light-duty vehicles on actual roads:

1) with the increase in velocity, the mass emission rate 
of NOx gradually increases, and the mass emission 
rates of HC and CO first increase and then decrease. 
With the increase in acceleration, the mass emission 
rates of three pollutants increase and decrease er-
ratically, but generally show an increasing trend;

2) considering both velocity and acceleration, emis-
sion is the minimum under a moderate velocity 
of 30…50  km/h and an acceleration of less than 
0.5 m  / s2;

3) the velocity regression model can be coordinated 
with other traffic models, but its application is lim-
ited for only one parameter. Both the binary regres-
sion model and neural network model have exten-
sive applications, but the binary regression model 
has poor accuracy. Although the neural network 
model has more accurate prediction, it cannot be 
integrated with other models because of its complex 
coefficient matrix.

In conclusions, the three emission models developed 
in the present work provides quantification predictive 
tools of light-duty vehicle emissions of dynamic road net-
work. This information is essential for analysis on current 
situation of light-duty vehicle emissions, at the same time; 
it is the basic work of making emission control strategy. 
Future research will be focused on more vehicle types such 
as natural gas vehicles and hybrid vehicles, the effects of 
road grade and slope on emissions will be also taken into 
account. Furthermore, Electric Vehicles (EVs) are rapidly 
developing in the Chinese market due to their zero emis-
sion and high efficiency. At present, EVs holdings main-
tain a growth rate of more than 25% per year. Our follow-
up study will combine the changes in vehicle composition 
of different energy types brought about by the increase in 
EVs holdings to further analyse the reduction in vehicle 
emissions due to EVs growth.
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