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Abstract. Urban rail transit networks seldom provide 24-hour service. The last train is the latest chance for passengers. If 
passengers arrive too late to catch the last train, the path becomes inaccessible. The network accessibility thus varies de-
pending on the departure time of passenger trips. This paper focuses on the computation method on the time-dependent 
accessibility of urban rail transit networks in order to facilitate the itinerary planning of passengers. A label setting algo-
rithm is first designed to calculate the latest possible times for Origin–Destination (O–D) pairs, which is the latest depar-
ture times of passengers from the origins such that the destinations can be reach successfully. A searching approach is then 
developed to find the shortest accessible path at any possible departure times. The method is applied in a real-world metro 
network. The results show that the method is a powerful tool in solving the service accessibility problem. It has the abil-
ity to allow passengers to plan an optimal itinerary. Comparison analysis indicates that the proposed method can provide 
exact solutions in much shorter time, compared with a path enumeration method. Extensive tests on a set of random net-
works indicate that the method is efficient enough in practical applications. The execution time for an O–D pair on a per-
sonal computer with 2.8 GHZ CPU and 4GB of RAM is only 1.2 s for urban rail transit networks with 100 transfer stations. 
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Introduction

Accessibility in transportation refers to the ease to reach 
destinations from origins on a network. It reflects the ser-
vice level of the transportation systems to various loca-
tions. People in the locations with high accessibility can 
reach many other destinations quickly; while people in 
inaccessible places can reach fewer places within the same 
time. Therefore, accessibility can be defined as a binary 
indicator of whether a destination can be reached. At a 
deeper level, it is also an indicator of how convenient a 
destination to be reached, which can be measured by the 
travel cost of the shortest path to reach the destination.

In urban rail transit systems, accessibility depends on 
network configurations and service schedule of rail tran-
sit lines. There are always several travel paths between an 
Origin–Destination (O–D) pair on urban rail transit net-
works. Different paths indicate different travel times. Pas-
sengers prefer to choose the shortest path, which reflects 
the accessibility of O–D pairs.

Urban rail transit systems seldom provide 24-hour 
services. The service usually closes for system checking 

and repairing at night time. Before service closure, the last 
train is usually the latest chance for passengers. If pas-
sengers arrive at the platform of the boarding or transfer 
station too late to catch the last train, the path becomes 
inaccessible. So, the accessibility of a path is determined 
by the schedule of last trains and the departure time of 
trips. The increasing number of paths will become inac-
cessible when approaching the closure time. As a result, 
the shortest path between an O–D pair may vary with the 
departure time. If all paths are inaccessible, the O–D pair 
thus fails to be connected. Therefore, the network acces-
sibility will be time-dependent before service closure time. 

To illustrate the time-dependent service accessibility, 
Figure 1 depicts an example network, where the departure 
and arrival times at stations of the last several trains are 
indicated. There is an O–D pair from p to q with three 
paths. For a trip with a departure time 22:52, the path a 
is inaccessible since the last train has departed from the 
origin station. As a result, the path b becomes the short-
est accessible path. When departing at 22:57, passenger  
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arrives too late to transfer at the station s2 and only the 
path c is accessible. While for a trip with departure time 
23:02, the destination turns to inaccessible eventually.

Passengers might to miss the last train if they do 
not know the time-dependent accessibility. They have to 
change their itinerary or even the travel mode on their 
trip. It severely brings inconvenience to passengers. In or-
der to improve the service quality, it is vitally important to 
provide the accessibility information, i.e., how the shortest 
path varies according to the departure time and when the 
destinations will become inaccessible. At transfer stations, 
a delay of the arrival train or an early departure of the next 
connecting train may result in the inaccessibility of a path. 
The accessibility information therefore needs to be updat-
ed on-line. It requires a computation efficiency method.

The previous researches on service accessibility of 
transit network mainly concentrate on the path finding. 
The path finding algorithms on transit network can be 
divided into headway-based and schedule-based algo-
rithms. The headway-based algorithms simplify that pas-
senger waiting time at boarding or transfer station is an 
average value that depends on the service headway. The 
classic algorithms for road networks are applicable for 
headway-based services, including Dijkstra’s algorithm 
(Dijkstra 1959), Bellman–Ford algorithm (Bellman 1958) 
and other algorithms (Zhan, Noon 1998; Sanders, Schultes 
2006) for shortest path problem and Yen’s algorithm (Yen 
1971), Eppstein’s algorithm (Eppstein 1998) and others 
(Martins et al. 1999; Martins, Pascoal 2003; Van der Zijpp,  
Catalano 2005) for K-shortest path problem. They are 
suitable for high-frequency transit networks, on which 
passengers do not care about schedule but only headway. 
However, because of the simplification on passenger wait-
ing time, the headway-based algorithms are applied in 

static networks. The inaccessibility of a path due to the 
closure of services does not be taken into account. The 
time-dependent network accessibility cannot be computed 
by these algorithms.

The schedule-based algorithms are different from the 
headway-based algorithms due to the consideration of 
service schedules exactly. Passenger waiting time is deter-
mined by line schedules and the arrival time of passengers 
at the station. So, the schedule-based algorithms require 
a dynamic network description (Brodal, Jacob 2004). Dif-
ferent kinds of schedule-based algorithms are proposed 
on dynamic networks to find the most efficient paths at 
planned departure or expected arrival times, including 
dynamic programming algorithms (Cooke, Halsey 1966; 
Ziliaskopoulos, Mahmassani 1993), label setting and cor-
recting algorithms (Tong, Richardson 1984; Ziliaskopou-
los, Wardell 2000; Huang, Peng 2002; Huang, 2007; Zogra-
fos, Androutsopoulos 2008; Xu et al. 2012), revised Mar-
tins and Santos algorithm (Wang et al. 2016) and others 
(Friedrich et al. 2001). These schedule-based algorithms 
are necessary for transit systems with long headways, since 
passengers’ path choice is not only affected by network 
configurations but also by schedules. The schedule-based 
algorithms can effectively verify the O–D accessibility 
at given departure times. However, these algorithms do 
not pay enough attention to the closure of services. The 
time-dependent accessibility before closure time is still 
not clear. More specifically, two problems below cannot 
be completely solved by the schedule-based algorithms. 
The last service for an O–D pair provided by the urban 
rail system cannot be computed directly. The relationship 
between the shortest accessible path and the departure 
time is still unknown.

With the consideration of service closure, Luo et  al. 
(2010) proposes a computation method on the dynamic 
accessibility based on path enumeration. The accessibil-
ity of paths is examined according to train timetable. But 
paths between an O–D pair cannot be completely enu-
merated, especially in large-scale networks. An inaccurate 
result of O–D accessibility may be led if any paths are left 
out. Guo et  al. (2015) set up a model to formulate the 
dynamic accessibility and design an analytical algorithm 
based on recursion equations. But the algorithm is not 
graph based and, therefore, it does not support to path 
finding. The algorithm is used for schedule planning but 
not for travel guidance.

Therefore, this paper aims to propose a novel method 
to compute the accessibility information of urban rail 
transit networks before service closure time in order to fa-
cilitate passenger itinerary planning. A label setting algo-
rithm is first designed to calculate the latest possible time 
for O–D pairs, which is the latest departure time from the 
origin such that the destination can be reach successfully, 
and to find the accessible path at the latest possible time. 
An approach is built to search for the shortest accessible 
path at any possible departure times. The method can be 
used to generate trip information for passengers. The lat-
est possible times inform passengers of the last service 

Figure 1. Illustration of time-dependent service accessibility
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between O–D pairs and enables passengers to reach their 
destination successfully. The shortest path at different de-
parture times not only facilitates passenger path planning 
and also departure time choices.

The remainder of this paper is organized as follows. 
In Section 1, problems of searching for the latest possible 
time and the time-dependent shortest path are presented. 
A label setting algorithm to calculate the latest possible 
time and an approach to find the shortest accessible path 
at any possible departure times are proposed in Section 2.  
In Section 3 a real case on Shenzhen metro network is 
conducted to investigate the performance of the proposed 
method. In latest section conclusions are presented.

1. Problem

1.1. Urban rail network description

An urban rail transit network usually consists of a number 
of bidirectional lines. Each line has a number of stations, 
which could be denoted by a node in the graph theory. 
An edge is a unidirectional connection between two ad-
jacent nodes and each edge belongs to a transit rail line. 
Let ( )1 2 ,N V V E∪  denote an urban rail network, where: 
V1 denotes the set of transfer nodes; V2 the set of other 
nodes and E the set of edges; ( ),e v u E∈  denotes the di-
rected edge starting from node v and ending at node u.

To model the relationship of nodes and edges in a 
same transit line, ( )P v  denotes the set of the edges point-
ing to the node v. All edges which are located in the same 
transit line with node v and with directions toward node 
v are included in ( )P v . It means that the set ( )P v  con-
tains not only the edges whose ending nodes are node v, 
but also the edges which are not adjacent to node  v. 
Similarly, ( ),P v u  denotes the set of the edges pointing 
to the edge ( ),e v u . A particular case is stated that the 
edge ( ),e v u  is included in ( ),P v u . Taken Figure 2 as 
example, ( ) ( ) ( ) ( ) ( ){ }, , , , , , ,P v e p w e w v e u v e q u=  and 
( ) ( ) ( ){ }, , , ,P w v e p w e w v= .

There are timetables showing the departure and ar-
rival times of trains at each edge. The time information 
is recorded: 

 – let ( ), ,dep j v u  denote the departure time of the jth-
to-the-last train from edge ( ),e v u , i.e. the departure 
time from the starting node v; 

 – let ( ), ,arr j w v  denote the arrival time of the jth-to-
the-last train at edge ( ),e w v , i.e. the arrival time at 
the ending node v;

 – let ( ),R v u  denote the running time of trains at edge 
( ),e v u ; 

 – let ( ),H w v  denote the dwell time of trains at node v 
whose running direction is from node w to node v;

 – let ( ), ,Tr w v u  denote the transfer walking time of 
passengers at transfer node v where the transfer di-
rection is from ( ),e w v  to ( ),e v u .

1.2. Problem formulation

Given an O–D pair ( ),p q , a path with one transfer is 
denoted by a sequence of nodes { }0 1 1, , ..., , , ..., , ...,k k t mg v p v v v v v q+= ≡ ≡

 { }0 1 1, , ..., , , ..., , ...,k k t mg v p v v v v v q+= ≡ ≡ , where: vt denotes the transfer sta-
tion. The accessibility of a path is indicated by whether 
the travel time of the path is infinite. A finite travel time 
represents the path is accessible while an infinite value 
represents not. Given a departure time tp from the ori-
gin station p, the travel time of the path g is denoted as 

( )g pT t
 
. It can be calculated by:
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+
=
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where: ( )W v  denotes the waiting time of passengers at 
the platform of station v.

The waiting time at the origin station is determined by 
the departure time of the trip. If passengers depart from 
origin too late to catch up with the last train, there is no 
train for passengers to ride and the waiting time is set to 
infinite. Otherwise, passengers ride the first arrival train. 
The waiting time is the difference between the departure 
time of the first arrival train and the departure time of the 
trip, which can be expressed as:

( ) ( )0 1
0

, if ;
, overwi
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( ) ( )( )0 1 0 1 ,,min |, , ,p pa tj v v j v vdep dep t= − ≥

where: ( )0 11, ,dep v v  is the departure time of the last train 
from the origin station v0.

Similarly, the waiting time at the transfer station is 
determined by the arrival time of the riding train, the 
transfer walking time to the platform of connecting line 
and the departure time of trains on the connecting line. 
If passengers arrive the platform later than the departure 
time of the last connecting train, the waiting time at the 
transfer station is set to infinite.
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Figure 2. An example network
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Therefore, the travel time of the path g depends on the 
departure time tp. When the departure time reaches a high 
level, the travel time of the path becomes infinite. And 
then, the path becomes inaccessible. The latest departure 
time such that the path g is accessible, denoted by ( )Lt g  , can be expressed by:

( )
( )
max .
g p

L
p

T t
t g t

∀ ≠∞
=   (4)

Let G denote the set of paths g between ( ),p q . If the 
departure time tp is later than ( )max Lt g , all paths become 
inaccessible and the destination cannot be reached. So, 
“the latest possible time”, which is defined as the latest de-
parture time from origin station such that the destination 
station can be reached successfully, can be expressed by:

( )max ,L L
pq g G

t t g
∀ ∈

=  (5)

where: L
pqt  represents the latest possible time of the O–D 

pair ( ),p q . Corresponding, the path, which is accessible at 
the latest possible time is named “the most effective path”. 
The most effective path can be expressed by:

( ) ( )* *| max .L L
g G

g g t g t g
∀ ∈

= =  (6)

Due to service closure, the previous shortest path may 
turn to inaccessible and thus the shortest path is time-de-
pendent. The time-dependent shortest path problem is to 
find the accessible path with minimum travel time at any 
possible departure times. For the time-dependent short-
est path problem, the waiting time at station platform of 
passengers is set to an average value before the path turn 
to inaccessible. Indeed, urban rail systems always provide 
the high frequent of train services even before closure. The 
simplification is reasonable here and it is significantly ef-
fective in reducing the complexity of the model.

2. Solution method

In this section, a solution method is developed to compute 
the service accessibility of urban rail network. A label set-
ting algorithm is first designed to calculate the latest pos-
sible time and to find the most effective path. Based on the 
most effective path, a searching approach is built to find 
the shortest accessible path at any possible departure time. 
The method hence includes two parts:

 – a label setting algorithm for the latest possible time;
 – a searching approach for the time-dependent short-
est path.

2.1. Label setting algorithm

The label setting algorithm is modified according to the 
notion of the classic Dijkstra’s algorithm (Dijkstra 1959). 
The Dijkstra’s algorithm finds the shortest path from an 
origin node to any other nodes by a number of iteration 
steps. In the first step, the origin node is labelled, and its 
label value is the arrival time and set to zero. During the 
iterations, all edges, which start from the labelled node are 

considered. The arrival time at their end nodes is equal to 
that of the labelled node plus the travel time of the edges. 
The unlabelled node with the minimum arrival time will 
be chosen and labelled. Only one node will be labelled at 
every iteration step. Once all nodes are labelled, the algo-
rithm is stopped.

With some modifications, the proposed algorithm cal-
culates the latest possible times from all nodes to a single 
destination. The required modifications are described:

 – first, instead of starting at the origin node, this algo-
rithm moves backward from the destination node. 
The latest possible time will be recorded as the label 
value instead of the arrival time;

 – second, in Dijkstra’s algorithm, the label value is set at 
nodes. However, the node in the urban rail network 
requires the representation of the transfer time or the 
dwell time at stations. So, the label value cannot be 
set at nodes directly in urban rail networks. Some 
researches transform nodes to additional edges, 
namely, foot edges at transfer station and stay edges 
representing train waiting at a station, and use edge 
length to represent the transfer/dwell time (Wang 
et al. 2016). To avoid the expansion of the network, 
the latest possible time is set at directed edges instead 
of nodes. The latest possible time of an edge ( ),e v u  
represents the latest departure time from node v 
through edge ( ),e v u  such that the destination node 
can be reached. In the first step, the edge is labelled 
whose end node is the destination node. And the la-
bel value is set to the departure time of the last train 
from the edge;

 – third, at every iteration step, given a labelled edge 
(called e1) and its adjacent edge (called e2), where 
“adjacent” means that the ending node of e2 is the 
starting node of e1, the label value of the adjacent 
edge e2 need to be determined. We first find the lat-
est train whose arrival time at edge e2 is less than 
the latest possible time of the labelled edge e1. Then, 
the departure time of the train from edge e2 is set 
as the label value. When a transfer is made between 
the two edges, the transfer walking time is added to 
the arrival time at edge e2. All edges adjacent to edge 
e1 are considered. And the edge with the maximum 
label value will be labelled;

 – fourth, the accessibility of a path depends on the 
transfer accessibility (Kang et al. 2015). In order to 
reduce the iteration steps, only the edges starting 
from transfer nodes will be labelled during the itera-
tions. And at every iteration step, all the edges point-
ing to the labelled edge are considered instead of the 
adjacent edges only. 

Based on the modification, the algorithm is presented. 
The necessary parameters are first defined:

 –  ( ),d v u  denotes the label value of the edge ( ),e v u
 
, 

which is the latest departure time from node v 
through ( ),e v u  such that the destination can be 
reached;
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 –  ( )d v  denotes the label value of node v, which is the lat-
est departure time from node v such that the destina-
tion can be reached; the equation ( ) ( )max ,d v d v u=

( ),e v u E∀ ∈  is followed;
 –  HP denotes the set of edges to be labelled; only the 
edges that start from transfer nodes will be labelled;

 –  ( )* *,e v u  denotes the labelled edge at every iteration 
step, which is the edge with the maximum label value 
in HP;

 –  *j th-to-the-last train is the latest train whose arrival 
time at transfer node *v  is earlier than the label value 
( )* *,d v u  minus transfer walking time; the train is 

the latest available train for passengers to reach the 
destination;

 –  ( ),F v u  denotes the parent edge of ( ),e v u .
The algorithm to calculate the latest possible times 

from all nodes to the destination node q is then described 
as follows. 

The algorithm process is depicted in Figure 3.
Step 1: set ( ) ( ), 1, ,d v u dep v u= , ( ) ( ),e v u P q∀ ∈  and

( ), 0d v u = , ( ) ( ),e v u P q∀ ∉ .
Insert all the edges starting from transfer nodes into 

the set HP, where ( ){ }1, |HP e v u v V= ∈ .
Step 2: if ( ) ( ),d w d v u≥ , 1 2w V V∀ ∈ ∪ , ( ),e v u HP∀ ∈

 
, 

then go to Step 6.
Step 3: search the edge with the maximum departure 

time from HP, and delete it, i.e.:

( )
( )

( )* *

,
, max ,

e v u HP
d v u d v u

∀ ∈
=

 
and

( )* *,HP HP e v u= − .
Step 4: for each edge ( )*,e w v , find the *j th-to-the-last 

train such that: 

( ) ( )(* * * *min | , , ,j j arr j w v d v u= ≤ − ( ))* *, ,Tr w v u .

Step  5:  for each edge ( ),e v u  such that ( ) ( )*, ,e v u P w v∈ ,  
do

if ( ) ( )* , , ,dep j v u d v u> , 

then ( ) ( )*, , ,d v u dep j v u=  and ( ) ( )* *, ,F v u e v u= .

Go to Step 2.
Step 6: Output ( )d w  as the latest possible time at 

nodes w.
The most effective path can be found from ( ),F v u .
When the algorithm calculates the latest possible 

time for an O–D pair instead of all origin nodes, it is 
easy to know that the calculation can be completed once 
( ) ( ),d p d v u≥ , ( ),e v u HP∀ ∈ , where p is the origin node. 

Moreover, the non-transfer nodes can be ignored in Step 1  
and Step 5 to save the computation time.

Taken an urban rail network as an example, it is shown 
in Figure 4. There are three rail lines and three transfer 
nodes. The timetable of the last several trains is set. On 
all lines, the departure times from the terminal stations 
of the last train are all set to 23:00 and the headways be-
tween successive trains are all 4 min. The running times 
between two adjacent stations, the dwell times at stations 

and transfer walking times at all transfer directions are 
set to 2, 1 and 3 min, respectively. We calculate the latest 
possible time from the origin node p to the destination 
node q. 

The iterations process of the algorithm is shown in Fig-
ure 5, where the time along edges is the value of ( ),d v u : 

 – initially, the label values of edges that point to the 
node q are set to the departure time of the last train 
from the edges. The label values of other edges are 
set to 0. The edges starting from transfer nodes are 
inserted into HP:

 – at the first iteration, as shown in Figure 5b, since the 
label values ( )1,d v q  is greater than ( )2 ,d v q , the edge 
( )1,e v q

 
is labelled and then deleted from HP;

 – then we search the latest available train, whose ar-
rival time at node v1 is less than ( )1,d v q  minus the 
transfer walking time. The 5th-to-the-last train and 
the last train at two directions on Line 2 are obtained;

 – based on the timetable of the two trains, the label val-
ues of the edges on Line 2 are updated. The updated 
values are shown in Figure 5b; 

 – at the second iteration, ( )2 ,e v q  with greater value 
than ( )3 ,e v q  is newly labelled and deleted from HP; 

 – we repeat the iteration steps. The results of the sec-
ond and third iteration are shown in Figure 5c and 
Figure 5d; 

Figure 3. Flow chart of the algorithm

Figure 4. Structure of the example transit network
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 – as shown by Figure 5d, the edge with the maximum 
label value in HP is ( )3 ,e v p  and its label value is 
( )3 , 22:47d v p = . The value is less than the label val-

ues of node p1 22:50. Hence, the algorithm is stopped.
Theorem 1. The label setting algorithm is correct for 

calculating the latest possible times.
Proof. The algorithm is correct, really for the same rea-

son as Dijkstra’s algorithm (Dijkstra 1959). The validity of 
the algorithm is proved by the induction. The induction 
hypotheses are founded on the premises that: (1) the de-
parture time ( )d p  of node p is latest after the algorithm is 
stopped; (2) the departure time ( ),d v u  is the possible de-
parture time such that the destination can be reach from 
node v through edge ( ),e v u .

To prove the hypothesis (1), recall that the algorithm 
initially set the last train as the latest available train, and 
at each iteration step the algorithm find the latest train 
that can catch the labelled edge at transfer node. Accord-
ing to Bellman’s principle of optimality, it shows that the 
departure time ( )d p  is the latest to the destination node 
at all iteration steps.

Moreover, the algorithm is stopped when ( ) ( ),d p d v u≥
 ( ) ( ),d p d v u≥

 
, ( ),e v u HP∀ ∈ . The departure time of node p 

cannot be more than ( )d p  any more since the departure 
time of the node will be less than ( ),d v u

 
, ( ),e v u HP∀ ∈  

if the algorithm continues. This result indicates that the 
departure time ( )d p  of node p is latest after the algorithm 
is stopped.

The hypothesis (2) is then proved. For each edge 
( ),e v u , ( ) ( )*, , ,d v u dep j v u=  and ( ) ( )*, ,e v u P w v∈ . 

So, passengers starting from edge ( ),e v u  at the depar-
ture time ( ),d v u , the *j th-to-the-last train is caught 
and the train can get to the transfer node *v . Since 

( ) ( ) ( )* * * * * *, , , – , ,arr j w v d v u Tr w v u≤ , passengers are 
able to transfer into the connecting train and then get to 
the node *u . Notice that ( )* *,e v u  is the parent edge of 
( ),e v u . It means that the parent edge can be reached af-

ter making one transfer. Therefore, after the update of the 
edge ( ),e v u , its parent edge also can be reached until the 
destination node q is reached.

Taken together, the departure time ( )d p  of node p is 
the latest possible time such that the destination node can 
be reach from node p.

Theorem 2. If the Fibonacci heap data structure is 
used to store ( ),d v u  for every edge ( ),v u  in HP, then 
the time complexity of the algorithm for an O–D pair is 

( )( )1O m P T+ ⋅ , where 1m  is the number of the edges 
starting from transfer nodes, T the number of the transfer 
directions in the network, P the maximum times of find-
ing the latest available train for each transfer directions.

Proof. In order to obtain the time complexity of the 
algorithm, recall that the set HP involves Step 1 that insert 
edges into HP, Step 3 that search for the labelled edge and 
Step 5 that update the value ( ),d v u . If Fibonacci heap data 
is used, the amortized times of insertion and update op-
eration are both ( )1O , and search operation can be done 
in amortized time ( )( )2 1logO m

 
(Fredman, Tarjan 1984). 

Since HP contains m1 edges, it is obvious that the total 
time for Step 1 is ( )1O m , and Step 3 is ( )( )1 2 1logO m m⋅

 
. 

Figure 5. Results of the iterations

23:00 23:03

23:06 23:03    23:00

q v1

p

v2

v3

a) initialization

q
23:03

23:06

23:00

22:59

22:4722:44 22:50

(5th-to-the-last train)

22:56

v1

v2

v3 p

22:53

q
23:03

22:56

22:52

22:55

22:58

22:47

p

v1

v2

v3

q

22:48

(4th-to-the-last train)
22:47

22:41

22:38

22:35

22:32
(8th-to-the-last train)

p22:47

v1

v2

v3

22:44

22:55

edges in HP

labelled edge

edge with updated value

(the last train)

b) the rst iteration

c) the second iteration

(2nd-to-the-last train)

(3rd-to-the-last train)

d) the third iteration



32 Y. Chen et al. A computation method on time-dependent accessibility of urban rail transit networks  ...

The total time for Step 5 is ( )1O m T⋅  since we at most 
need to examine m1 edges for each transfer and the num-
ber of transfers involved is at most T. 

As for Step 4 that find the latest available train, the 
time complexity is at most ( )O P  for each transfer. The 
total time is ( )O P T⋅ . Therefore, the total time for the 
algorithm is:

( )( )1 1 2 1 1logO m m m m T P T+ ⋅ + ⋅ + ⋅ =

( )( )1O m P T+ ⋅ .

2.2. Searching approach

A searching approach is proposed to find the shortest ac-
cessible path at any possible departure times. Since the 
inaccessibility of paths causes the time-dependent short-
est path, the approach requires the K-shortest paths and 
examines the accessibility of the paths.

It should be noted that the waiting time at origin and 
transfer stations are simplified to an average value. As a re-
sult, the travel time of paths is nonnegative and constant. 
The urban rail transit network is considered as a static 
network. The K-shortest paths thus can be found by the 
classic algorithms (Yen 1971; Martins, Pascoal 2003; Van 
der Zijpp, Catalano 2005). Moreover, since the K-shortest 
paths do not vary in static networks, they often can be 
found and stored offline. In this paper, the algorithm de-
veloped by Martins and Pascoal (2003) is applied to find 
the K-shortest paths.

To examine the accessibility of the K-shortest paths, 
the latest possible times for paths are calculated. The label 
setting algorithm is used by treating paths as networks. 
When applied for a path, the algorithm degenerates into a 
recursion algorithm in effect.

Before presenting the approach, a lemma is introduced 
first. Let gi denote the ith shortest path in the static net-
work. Without loss of generality, the most effective path 
is represented by the kth shortest path. Let ( )L

it g  denote 
the latest possible time of the ith shortest path. 

Lemma. For paths gi and gj, if i < j and ( ) ( )L L
i jt g t g<

 
, 

the travel time of the path gj is only shorter than that of 
the path gi at departure time ( ) ( )L L

i p jt g t t g< ≤ . If i j<  
and ( ) ( )L L

i jt g t g≥ , the travel time of the path gj is long-
er than the path gi at any departure times. 

According to the lemma, it is obvious that the path gk+1 
cannot become the shortest path at any departure times. 
The paths with longer travel time than the most effective 
path can be ignored. Therefore, the searching approach, 
based on the most effective path, is proposed as follow:

Step 1: if k = 1, then the shortest path is path gk when 
L

p pqt t≤ , go to Step 7;
Step 2: calculate the latest possible time of path g1. The 

shortest path is path g1, when ( )1L
pt t g≤ ;

Step 3: set i = 1 and j = 2; 
Step 4: if k = j, then the shortest path is path gk when 
( )L L

i p pqt g t t< ≤ , go to Step 7;

Step 5: calculate the latest possible time of path gj; if 
( ) ( )L L

j it g t g> , then the shortest path is path gj, when 

( ) ( )L L
i p jt g t t g< ≤  and set i = j;

Step 6: set j = j + 1. Go to Step 4.
Step 7: output the shortest path at different departure 

times.

3. Case studies

A practical application on the Shenzhen metro network is 
undertaken to illustrate the effectiveness of the proposed 
method. On the metro network, the latest possible times 
and the time-dependent shortest paths between O–D pairs 
are computed. A comparison analysis is then conducted 
to confirm the correctness of the method. In addition, the 
execution time of the method on a set of random rail tran-
sit network is tested to validate the computation efficiency.

3.1. Practical application

The Shenzhen metro network is composed of 5 bidirec-
tional lines and 118 stations, including 13 transfer stations. 
The total length of Shenzhen metro network is 178 km. 
The network topology is illustrated in Figure 6, in which 
the arrows on the lines indicate up-directions. 

The train timetable is provided by the operator of 
Shenzhen metro. The departure times of the last trains 
from terminal stations are 23:00 on all lines. Transfer 
walking time in transfer stations is assumed to be con-
stant, which is set as 20% longer than average value to ap-
ply to most passengers. It ranges from 3 to 5.5 min varying 
with different transfer directions.

To illustrate the effectiveness of the proposed meth-
od on trip information generation, two O–D pairs from 
Changlingpi to Yangnan and to Guomao are taken as ex-
amples. The latest possible times and the accessible paths 
for the two O–D pairs are calculated by the label setting 
algorithm. It is implemented on a personal computer with 
2.8 GHZ CPU and 4GB of RAM. The computational time 
of the algorithm is less than 0.2 s for one execution in this 
case. The results are shown in Figure 7.

The results indicate that the latest possible time of an 
O–D pair is not necessarily the departure time of the last 
train from the origin station. The latest possible time from 
Changlingpi to Yangnan is 22:57, and the latest available 
train for passengers is the 5th-to-the-last train. Passengers 
on the train have enough time to transfer into Line 4 at 
Shenzhen North. But passengers on the 4th-to-the-last train 
might to fail to transfer at the station. Hence, it is necessary 
to provide the latest possible times of O–D pairs for passen-
gers. They are really useful to enable passengers using the 
urban rail system to reach their destination successfully.

Then the shortest paths are searched at different de-
parture time between O–D pairs. The execution time for 
an O–D pair is less than 0.01 s on average. For the O–D 
pair from Changlingpi to Yangnan, the most effective path 
is the shortest path. So, the time-dependent shortest path 
can be concluded in Table 1.
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Moreover, based on the latest possible times from an 
origin station to all other destination stations, the acces-
sible stations from the origin station at a given departure 
time can be obtained. To get the information, the algo-
rithm is executed n  –1 times, where n is the number of sta-
tions in the network. The computational cost is about 7 s  
in this network. The accessibility of Changlingpi to other 
stations is shown in Figure 8.

The accessible stations from Changlingpi at 23:03 are 
marked by green in Figure 8. It is useful for passengers 
to choice their trip destination, especially in the situation 

that the planned destination is inaccessible by the rail sys-
tem. For example, Yangnan is inaccessible for passengers 
departing from Changlingpi at 23:03, but the alternative 
destination can be Laojie or Hongling, which is near from 
Yangnan. Moreover, the failure of transfer connection 
can be identified by the inaccessible stations. The missed 
transfer connections are illustrated in Figure 7 by curves. 
This information can be provided on the electronic board 
at each station. It is very beneficial to passengers’ trip at 
late night.

Figure 6. Network topology of Shenzhen metro

Figure 7. Results of the latest possible times and the most effective paths
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Table 1. The time-dependent shortest path from Changlingpi to Yangnan

Departure time [h:min] The shortest path Travel time [min]
22:57 Changlingpi → Shenzhen North → Civic Park → Yangnan 38.5

Table 2. The time-dependent shortest path from Changlingpi to Guomao

Departure time [h:min] The shortest path Travel time [min]
22:57 Changlingpi → Shenzhen North → Exhibition Center → Guomao 42.5

22:57…23:05 Changlingpi → Buji → Laojie → Guomao 52.5
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In addition to passengers’ trip guidance, the method 
also can be used for operators in the analysis of the time-
dependent network accessibility. The percentage of acces-
sible O–D pairs on the network varying with departure 
times is shown in Figure 9. An O–D pair firstly becomes 
inaccessible at 21:56 and about half of O–D pairs turn to 
inaccessible after 23:01. It indicates the level of service 
provision. And it also is the basis of the improvement of 
service accessibility.

For the O–D pair from Changlingpi to Guomao, the 
most effective path is the 4th shortest path. The time-de-
pendent shortest path is given in Table 2. The relationship 
of the minimum travel time varying with the departure 
time is revealed. It enables passengers to balance the de-
parture time and travel time. It is clear that if departing 
earlier than 22:57, passengers can spend less travel time.

3.2. Comparison analysis
To justify the label setting algorithm, a comparison analy-
sis is conducted with the path-based method proposed by 

Luo et al. (2010). The path-based method is applied to find 
the latest possible time and the most effective path. Since 
paths between an O–D pairs cannot be completely enu-
merated, we search the effective paths whose travel time 
is less than 1.5 times of the minimal travel time between 
O–D pairs. And at least 10 paths are listed for each O–D 
pair. Then, we calculate the latest possible times of these 
paths.

On the Shenzhen metro network, same results are ob-
tained by the two methods for most O–D pairs. However, 
results are different for about 1.13% of all O–D pairs. The 
O–D pairs are mainly between stations on Line 1 and Line 5.  
Taken the O–D pair from Hi-Tech Park to Yijing as an 
example, the different result is illustrated in Table 3. 

It is obvious that the path found by the label setting 
algorithm is excluded by the path-based method since the 
travel time of the path is too long. Indeed, the path is still 
a choice for passengers before service closure time. So the 
path-based method may leave out accessible paths due to 
the incomplete enumeration.

Figure 8. The accessibility of Changlingpi to other stations

Line 1

Line 2
Line 3

Line 3Line 4

Line 4

Line 1

Line 2

Line 5
Line 5

Bao’an Center

Qianhaiwan Window of 
the World

Shopping 
Park

Futian

Exhibition
 Center

Jingtian

Hi-Tech Park

Civic Park

Yangnan

Science 
Museum

Yijing

Children’s Palace

Grand
eater

Laojie

Huangbeiling

Buji
Shenzhen 

North

Changlingpi

Guomao
Zhuzilin

Huaxin

Honglang North Yangmei

Longhua

Ailian

Xixiang

Hongling

Xiangmi

Origin station: Changlingpi 
Departure time: 23:03

 23:03

Figure 9. The percentage of accessible O–D pairs varying with departure times

A
ac

ce
ss

ib
le

 O
–D

 p
ai

rs
 [%

]

0

20

40

60

80

100

21
:5

0
21

:5
4

21
:5

9
22

:0
3

22
:0

7
22

:1
1

22
:1

5
22

:1
9

22
:2

3
22

:2
7

22
:3

1
22

:3
5

22
:3

9
22

:4
3

22
:4

7
22

:5
1

22
:5

5
22

:5
9

23
:0

3
23

:0
7

23
:1

1
23

:1
5

23
:1

9
23

:2
3

23
:2

7
23

:3
1

23
:3

5
23

:3
9

23
:4

3
23

:4
7

23
:5

1
23

:5
5

23
:5

9

Departure time

Table 3. the result obtained by two methods

Methods The latest possible time [h:min] The most effective path Travel time [min]
Path-based method 22:39 Hi-Tech Park → Laojie → Buji → Yijing 72.5
Label setting algorithm 22:46 Hi-Tech Park → Bao’an Centre → Yijing 79.5
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To confirm the correctness of the proposed algorithm, 
the path-based method is executed again and more paths 
are examined. We list the first 20th paths for each O–D 
pair and calculate the latest possible times. In this experi-
ment, same results are obtained for all O–D pairs. Since 
no path is left out by the label setting algorithm, it can 
be concluded that the label setting algorithm always can 
calculate the latest possible time and obtain the latest ser-
vice exactly.

From the view of computation efficiency, the execu-
tion time of the path-based method for all O–D pairs is 
68 s, while the label setting algorithm only uses 7 s to ac-
complish it. The label setting algorithm is more efficient 
than the path-based method. That is because the calcula-
tion of the latest possible times for so many paths is time-
consuming.

3.3. Computational test

To further evaluate the computation efficiency, the label 
setting algorithm is tested on a set of random transit net-
works with increasing number of transfer stations: from 
12 to 500 transfer stations. To better emulate actual rail 
transit networks, the number of stations on the tested 
networks is set depending on the number of transfer sta-
tion, for example, a network with 30 transfer stations has 
at least 150 stations. The train timetable is also generated 
randomly. The latest possible time for a random O–D pair 
is computed. Each test is performed for 10 times randomly 
and the average computation time is recorded. The com-
putation times on different networks with varying number 
of transfer stations are illustrated in Figure 10. 

The results indicate that the computation times in-
crease quadratically with the number of transfer stations. 
The results confirm the analysis in the time complexity 
of the algorithm. The algorithm is considerably efficient 
enough in the practical application. In more details, the 
computation times are less than 0.7 s for the test networks 
with 50 transfer stations, which is much larger than most 
real-world networks. Even for those with 100 transfer sta-
tions, the computation times are still about 1.2 s.

To illustrate the relationship of the computation time 
with the number of all stations, the computation times 

with the same number of transfer stations but different 
number of all stations are tested, which is shown in Fig-
ure 11.

The computation times are nearly the same for differ-
ent networks with the same number of transfer stations. 
The results suggest that the computation cost is influenced 
by the number of transfer stations but not by the number 
of all stations. It is a nice characteristic in practical ap-
plications. 

Conclusions

In urban rail transit systems, the closure of train services 
leads to the time-dependent accessibility. It may bring in-
convenience to passengers. In such case, the accessibility 
information should be provided to passengers in order to 
improve the day-end service quality. 

This paper proposed a method to compute the time-
dependent accessibility of urban rail transit networks. 
First, a label setting algorithm is designed to calculate the 
latest possible time and the accessible path at the depar-
ture time. Then a search procedure is developed to find 
the shortest path at different departure time. The main 
contribution of the method attributes to the full consid-
eration of service accessibility before closure time.

The proposed method has been applied on the Shen-
zhen metro network. The results indicate that it is a pow-
erful tool in solving the service accessibility problem in 
the metro network. It provides passengers with the lat-
est service of O–D pairs and the shortest path at differ-
ent departure time. The information not only facilitates 
passengers the path optimization and also departure time 
choices. It moreover has applications in the analysis of ser-
vice accessibility.

Comparison analysis indicates that the proposed 
method always can provide exact solutions in much short-
er time, while the correctness of the path-based method 
is dependent on the number of listed paths. Extensive ex-
periments on a set of random rail transit network show 
that the proposed method is efficient enough to calculate 
the accessibility information. It implies great potential of 
this method in a real-world network.

Figure 10. Relationship of the computation time  
with the number of transfer stations

Figure 11. Relationship of the computation time  
with the number of all stations
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