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Abstract. Control delay is an important parameter that is used in the optimization of traffic signal timings and the esti-
mation of the level of service at signalized intersection. However, it is also a parameter that is very difficult to estimate. 
In recent years, floating car data has emerged as an important data source for traffic state monitoring as a result of high 
accuracy, wide coverage and availability regardless of meteorological conditions, but has done little for control delay esti-
mation. This article proposes a vehicle trajectory based control delay estimation method using low-frequency floating car 
data. Considering the sparseness and randomness of low-frequency floating car data, we use historical data to capture the 
deceleration and acceleration patterns. Combined with the low-frequency samples, the spatial and temporal ranges where 
a vehicle starts to decelerate and stop accelerating are calculated. These are used together with the control delay probability 
distribution function obtained based on the geometric probability model, to calculate the expected value of the control de-
lay for each vehicle. The proposed method and a reference method are compared with the truth. The results show that the 
proposed method has a root mean square error of 11.8 s compared to 13.7 s for the reference method for the peak period. 
The corresponding values for the off-peak period are 9.3 s and 12.5 s. In addition to better accuracy, the mean and standard 
deviation statistics show that the proposed method outperforms the reference method and is therefore, more reliable. This 
successful estimation of control delay from sparse data paves the way for a more widespread use of floating car data for 
monitoring the state of intersections in road networks.

Keywords: probe vehicle, vehicle trajectories, traffic control delays, signalized intersections, global positioning system, traffic  
engineering, computing.

Introduction 

Traffic control delay (the difference between the actual 
travel time influenced by traffic signals and reference 
travel time under free flow conditions) is an important 
performance indicator for evaluating signal control sys-
tems and the Level Of Service (LOS) in traffic operations 
at intersections. However, in current traffic data detection 
infrastructure, control delay is not directly measurable. A 
variety of theoretical models were developed to estimate 
control delay of signalized intersection. Cheng et al. (2016) 
reviewed and classified the estimation model development 
process into three stages. Stage 1 covers 1920–1970s, and 
approaches proposed in this stage largely considered ran-
dom arrivals. These models failed to provide accurate 
results under high saturation degree. To improve the ac-
curacy of delay estimation for high saturation level, the 

coordination transformation technique, time-dependent 
models were derived and progression factors to account 
for the filtering impact from upstream intersection are 
introduced from 1970s to 2000s (Stage 2). Due to inac-
curate approximation of specific traffic condition, some 
modified approaches and supplementary terms were de-
rived from 2000 onwards (Stage 3). The drawback of the 
theoretical delay estimation model is when the traffic is 
undersaturated, they all could achieve satisfying accuracy, 
but under high saturation degree, their performance will 
decline to varying degrees. Although some modified mod-
els could give acceptable estimation result by introducing 
some factors, the model is more complicated and more pa-
rameters need to be calibrated. Besides, these models need 
signal timing information and traffic volume collected by 
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the fixed sensors like loop detectors as input. Therefore, 
the theoretical models could only provide control delay 
estimation for the intersections without fixed sensors. In 
recent years, probe vehicle technologies able to register 
vehicle trajectories have created an opportunity to address 
the limitations of the current systems in estimating traffic 
control delay. In theory, probe vehicle or floating data have 
the potential to provide high accuracy vehicle position, 
location, time and derivatives over a wide spatial-temporal 
coverage. Although probe vehicle data are spatial-tempo-
rally sparse due to the limitations of storage and transmis-
sion, it has been widely used for various traffic parameters 
estimation (Comert, Cetin 2009; Rahmani et al. 2015; Shi 
et al. 2017). But up to now there has not been much re-
search focusing on the delay estimation based on sparse 
probe data, the aim of this article is to contribute to the 
estimation of delays at signalized intersection, making use 
of low-frequency trajectory data. 

As early as 1991, researchers explored the plausibility 
of using floating car data to estimate control delay at inter-
sections. Quiroga and Bullock (1999) proposed a forward-
and-backward-acceleration method for detecting critical 
delay points and then estimating control delays. Colyar 
and Rouphail (2003) improved the prediction accuracy of 
the Quiroga and Bullock (1999) method by accounting for 
the influence of traffic conditions. Ko et al. (2008) estimat-
ed delay components based on speed profiles. Čelar et al. 
(2018) developed a algorithm based on average accelera-
tion rate and deceleration rate and phase duration. The 
method aims to eliminate the delay that is not affected by 
traffic signals. Li et al. (2018) developed a virtual detection 
box methodology to generate control delay measures with 
high fidelity commercial probe vehicle trajectory data. The 
method did not encounter privacy issues, because no ac-
tual trajectory data would be transferred to the computer. 
However, these methods assume the sample frequency of 
Global Positioning System (GPS) data are 1 Hz, which are 
not always available in reality. 

Applying these methods with low-frequency GPS data 
results in low accuracy delay estimation. Liu et al. (2006) 
attempted to assess the sensitivity of delay to sample fre-
quency. The results show that delay measured from data at 
a sampling interval of 10 s are consistent with the values 
from an interval of 5  s for 74% of the cases. However, 
when the sampling interval is 60 s, the level of consistency 
drops to 37%. So the methods above are not suitable for 
low-frequency data. 

To accurately obtain control delay from low-frequen-
cy floating car data, the main challenge is how to detect 
where and when a vehicle starts to decelerate and stop 
accelerating. He and Ye (2014) proposed a method, which 
delimits the affected area of intersection on the basis of 
queue length and calculated the times when a vehicle en-
ters and leaves the affected area from low-frequency sam-
ple points. Although this method is simple and has a high 
computational efficiency, the affected area of the intersec-
tion in this article is assumed to be stable. The affected 
area of the intersection is related to the queue length and 

varies in different cycles. Wang et al. (2016) developed a 
piecewise model representing vehicle motion as it passes 
an intersection. An optimization method is used to deter-
mine the locations and times of the initiation of decelera-
tion and stoppage of acceleration. Their model assumes 
that a vehicle travels at free-flow speed before decelera-
tion. However, when traffic is congested this assumption 
may not hold. Some researcher proposed methods for 
reconstructing the trajectory with low-frequency floating 
car data. The critical points could be inferred from the tra-
jectory. Hao et al. (2014) proposed a model investigating 
all possible driving mode sequences between two consecu-
tive GPS updates. With likelihood quantified using an a 
priori distribution, a detailed trajectory is reconstructed 
and used to calculate delay. In principle, this should work 
well even for floating car data whose sample interval is 60 
s. However, the distribution of each scenario’s likelihood is 
difficult to obtain a priori. Wan et al. (2016) proposed an 
Expectation Maximum (EM) algorithm to reconstruct the 
maximum likelihood trajectory. However, the method has 
low computational efficiency and poor real-time perfor-
mance. The methods need the signal timing information, 
which is not always available. 

Several somewhat different approaches are developed 
by researchers. Liu et al. (2013) addressed the sparseness 
problem by introducing the Principle Curve method into 
the calculation of turn delay. In their study, the sampling 
interval of floating car data is 10 s. Ban et al. (2009) em-
ploy piecewise linear interpolation to obtain traffic de-
lays. However, traffic delay is different from control delay. 
Neumann et  al. (2010) computed turn-dependent delay 
times by introducing a simple linear model, which arises 
from the superposition of two types of turn-dependent 
delays and free flow travel time. Free flow speed and delay 
are estimated as model parameters. However, because of 
a lack of reference values, the results were not verified. 
Turn delay and traffic delay is different from control delay, 
so if these methods are used to estimate control delay, the 
performance is uncertain. 

The limitations of the methods above could be classi-
fied into three categories: (1) they do not account for ran-
domness of low-frequency sampling due to the dynamic 
nature of traffic flow, hence, the reliability of the results are 
not provided; (2) the data some model used are not always 
available, such as high-frequency probe vehicle data and 
signal timing information; (3) some models are designed 
to estimate turn delay or traffic delay, which may not be 
applicable for estimating control delay. This article aims 
to contribute to the estimation of signalized intersections 
with common low-frequency floating car data. This article 
addresses these data sparseness by introducing the Prin-
ciple Curve method and using the expected value instead 
of the estimated value for high accuracy vehicle control 
delay estimation. By using historical data, the deceleration 
and acceleration patterns of vehicles through an intersec-
tion are constructed with the Principle Curve method and 
combined with low-frequency data to compute the spatial 
and temporal ranges of the deceleration onset points and 
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acceleration end points. Using this information together 
with the control delay probability distribution function 
obtained based on the geometric probability model, the 
expected value of the control delay is calculated. 

The main contributions of this article are as follows:
1) the proposed method tackles the control delay esti-

mation problem of the signalized intersection with-
out fixed sensors; 

2) historical data are used to capture vehicle motion/
dynamics at signalized intersections to reduce sen-
sitivity to randomness of sampling and no assump-
tion is introduced;

3) the method developed calculates the expected value 
of vehicle control delay, resulting in the improve-
ment of both accuracy and stability.

1. Preliminaries 

As illustrated in Figure 1, control delay comprises three 
parts: (1) deceleration delay db; (2) stop delay ds; (3) ac-
celeration delay da. 

Td is the time when the vehicle begins to decelerate; 
Ts1 is the time when the vehicle stops decelerating; Ts2 is 
the time when the vehicle starts to accelerate; Ta is the 
time when the vehicle stops accelerating; Ld is the location 
where the vehicle’s deceleration process starts; Ls is the lo-
cation where the vehicle stops; La is the location where the 
vehicle’s acceleration starts; vf is the free-flow speed; db is 
the delay caused by the vehicle decelerating from Td to Ts1; 
ds is the stop delay when the vehicle is stationary; da is the 
acceleration delay caused by the vehicle accelerating from 
Ts2 to Ta; d is the control delay the vehicle experiences 
through the intersection and is the sum of the decelera-
tion, stop and acceleration delays. 

Each delays are calculated as follows:
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From the expressions above, the time and location 
when a vehicle starts to decelerate and stop accelerating 
are the most important for control delay estimation (i.e. 
the stoppage period is irrelevant in control delay esti-
mation). Hence, the two are often referred to as critical 
points. From low-frequency floating car data, it is not al-
ways possible to realize a complete picture of the vehicle 
through the intersection. Hence, the objective is to detect 
the critical points from the sparse floating car data.

2. Methodology

In order to address the limitation of data sparseness, 
historical data are used to explore the deceleration and 
acceleration patterns. This helps to capture the changes 
in vehicle motion or dynamics through intersections to 
obtain the space–time ranges of the critical points. From 
these data and based on the geometric probability model, 
the distribution function of the delay values is obtained, 
from which the expected value of delay is calculated. 

2.1. Travel pattern analysis in the spatial dimension

Detecting the “critical points” is the first prerequisite in 
control delay estimation. However, as Figure 2 shows, for a 
vehicle through an intersection only several sample points 
could be obtained, providing an incomplete trajectory. 
From such data the location of the critical points are un-
known making it impossible to accurately estimate control 
delay. Hence, more trajectory data are required. Therefore, 
we use historical data to capture the vehicle travel (mo-
tion or dynamics) patterns through intersections. When a 
vehicle passes through an intersection, the dwell time de-
pends on the arrival time of the vehicle and signal timing 
scheme, and has the characteristic of randomness. Decel-
eration and acceleration are relatively stationary processes 
largely not impacted by the environment. Therefore, the 
travel pattern of deceleration and acceleration processes 
were explored by mining historical data. In order to pro-
vide a reference for the historical values, the historical 
data must meet the two conditions that the instantaneous 
speed of historical sample points is above 0 and must be 
within the close position as the trajectory to estimate.

Extracting historical data according to the aforemen-
tioned conditions, the historical sample points were divid-
ed into two parts: (1) before a vehicle stops; (2) after a ve-
hicle stops. The deceleration and acceleration patterns are 

Figure 1. Vehicle dynamics at a signalized intersection
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investigated separately. Considering that historical data 
consist of discrete sparse points with uncertain quantities, 
the Principle Curve method is adopted for curve fitting 
for use to generate the required sample points to enable 
the determination of the critical points. In practical terms, 
the Principle Curve method is used to deal with raw data 
noise and non-uniform distribution, common phenomena 
in traffic data. As illustrated in Figure  3, the horizontal 
axis represents the distance from the centre of the inter-
section, and the vertical axis represents the instantaneous 
speed. Points A and B represent the critical points whose 
locations are to be estimated. The stars represent the cur-
rent sampling points. The dots are the historical sample 
points. From Figure 3, it can be seen that adding historical 
data better captures the travel patterns. The fitting func-
tion represents the vehicle’s speed distribution at differ-
ent locations on the road. Hence, the function could help 
increase the number of sample points at each stage of the 
vehicle’s movement. The distance and speed range of the 
critical points could be determined also. When new data 
comes, the fitting function could be updated.

2.2. Spatial-temporal range delineation

To determine the critical points automatically from the 
profile of speed versus distance, we adopt a forward accel-
eration method proposed by Quiroga and Bullock (1999). 
It should be noted that the forward and backward average 
acceleration method was proposed to automatically detect 
the critical points from the acceleration profile. In this ar-
ticle, the fitting function based on the historical data is the 
speed-distance curve. 

The acceleration is defined as the differential velocity 
to distance:
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where: ai is the acceleration associated with point i; vi–1, 
vi are speeds at points i–1 and i; si–1, si are positions at 
points i–1 and i.

It should be noted that ai is different from the common 
acceleration a = Dv/Dt. Next we prove that when a vehicle 
decelerates or accelerates, ai will show the same trend of 
change with a, which is the differential velocity to time; it 

is assumed that a vehicle travels at a deceleration rate ai, 
its initial speed is v1, initial position is s1, and after Dt, its 
speed is v2, and position is s2. Then:
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When the vehicle travels at a constant speed, ai = 0, 
when the vehicle decelerates, ai will increase, and as the 
speed becomes smaller, ai increases gradually. Similarly, 
when the vehicle accelerates, ai reduces gradually, and if 
the vehicle restores free-flow speed, ai = 0. ai performs the 
same variation tendency with the common acceleration a. 

Firstly, the distance is discretized into N equal spatial 
cells resulting in N + 1 discrete points. The derivative val-
ues, of ( )1 1, ..., na a +  these N + 1 points are calculated based 
on the fitting function:  
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where: i = 1, 2, ..., N – n + 1. 
The expression above can be used to determine the 

acceleration that is significantly different from zero. Fur-
thermore, the deceleration onset point could be detected. 
However, the expression only applies to the deceleration 
process. For the acceleration process, the backward meth-
od is adopted as follows:
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where: i = n + 1, n + 2, ..., N + 1. 
Different from the forward average acceleration meth-

od, the backward average acceleration algorithm is used 
to determine when the acceleration is essentially zero, 
enabling the acceleration end point to be detected. There-
fore, using the forward acceleration and backward accel-
eration methods, the spatial range of the critical points’ 

Figure 3. Deceleration (a) and acceleration (b) patterns in the spatial dimension
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is determined. For convenience, as shown in Figure 3, 
let A and B represent the critical points identified by the 
method. Their spatial and speed ranges are ( )1 2,a a as s s= , 

( )1 2,a a av v v=  and ( )1 2,b b bs s s= , ( )1 2,b b bv v v= .    sa is the 
distance from point A to the centre of intersection. sb is 
the distance from point B to the centre of the intersection. 
Points 1, 3, 4 are the sample points of the trajectory to 
estimate. On the basis of the definition of control delay, if 
ta1 (the travel time between A and 1), tb3 (the travel time 
between B and 3) are known, the control delay can be 
calculated. From the literature (Clement et al. 2004), it is 
assumed that a vehicle travels between A and 1, and B and 
3 at a constant acceleration. Prior knowledge consists of 
historical deceleration and acceleration values. Its lower 
and upper bounds are a1 and a2 respectively.
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In Figure 3, if point 3 does not exist and only point 4 
is known, tb4 (the travel time between B and 4) could be 
calculated as follows:
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The number of sample points do not have impact on 
the calculation of time range. Our methods could work 
under different sample scenarios. 

2.3. The expected value of delay

Based on the existing information, the control delay d of 
the trajectory can be calculated as:

1 3 13
a b

a b
f
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t t t
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+
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where: t13 is the time between sample points 1 and 3; vf is 
the free flow speed. 

To compute the expected value of control delay, the 
theory considered here is the geometric probability model. 
In this model, all possible results for the random experi-
ment are infinite, and the probability of each basic result is 
the same. The magnitude of the probability is reflected by 
the length of the line segment that intersects the line with 
the feasible area. For convenience, the range of ta1 + tb3 + 
t13 is expressed as ( ),s et t , the range of sa + sb is expressed 
as ( ),l us s , and the value and probability of delay is shown 
in Figure 4.

The shaded area represents the feasible region. The 
length of the line formed by the intersection between the 
objective function and square represents the possibility 
that d is equal to a certain value. When the objective func-
tion passes ( ),l es t , it is equal to d4 and the probability is 0. 
As the value of the objective function decreases from d4, 
the probability increases gradually. When the delay (the 
value of objective function) is equal to d3, the probability 

is the largest. When the delay is between d3 and d2, the 
probability is the largest and fixed. When the delay re-
duces from d2 to d1, the probability is linearly reduced to 
0. The probability density curve shown in Figure 5.

According to probability normalization:
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The probability density function is represented as:
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The expected value of delay is then obtained by the 
following formula:
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4

1

d
d

d

E d d f dd= ⋅∫ .  (15)

3. Experimental tests

In order to capture the deceleration and acceleration dy-
namics of the vehicle through the intersection, historical 
low-frequency trajectory data of five months were adopt-
ed. The data contains longitude, latitude, speed, time and 
direction. The historical data is based on temporal sample 

Figure 4. Probability change for different control delay value

Figure 5. Probability density curve of delay
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and the sample frequency is 1/30 Hz. The process of his-
torical data contains the following steps:

1) the trajectories, which the vehicles experience ob-
vious stop are selected. It is judged by the speed 
of sample points. If there is a point whose speed is 
smaller than 5  km/h, the vehicle is considered to 
have a stop. The trajectory is divided into two parts: 
deceleration and acceleration; 

2) the distance between the vehicles stop and the cen-
tre of the intersection are calculated for all the se-
lected trajectories. The trajectories are grouped ac-
cording to the equal distance interval. In our study, 
the interval is 20 m; 

3) the speed before deceleration and after acceleration 
of a trajectory is estimated. For trajectory of decel-
eration, if there is one point, the speed of the sam-
ple point is seen as the speed before deceleration. If 
there are two or more sample points, the speed be-
fore deceleration is the max speed among the speed 
of the first two sample points and the average speed 
between the two sample points. For acceleration, if 
there is one point, the speed of the sample point is 
regarded as the speed after acceleration. If there are 
two or more sample points, the travel speed after 
acceleration is the max speed among the speed of 
the last two sample points and the average speed 
between the two sample points. The deceleration 
trajectory will be classified according to the speed 
before deceleration and the acceleration trajectory 
will be classified according to the speed after ac-
celeration;

4) the trajectory of deceleration and acceleration will 
be divided into multiple subsets according to the 
speed and stop position. Each subset will be fitted 
with the Principle Curve method to capture vehicle 
dynamics;

5) for a new trajectory, the distance between where the 
vehicle stops to the intersection is calculated and 
the speed before deceleration and after acceleration 
are estimated. Combined with the corresponding 
curve, the expected value of control delay could be 
calculated with the proposed method. The param-
eters like 5 km/h, 20 m are chosen according to the 
field experience. 

A field experiment was conducted to validate the 
method proposed. The study site is the intersection of 
Songshan and Huanghe roads in Harbin (China). Both 
roads are arterials. There is a large shopping centre nearby, 
and therefore, the traffic conditions are complex with ob-
vious changes at different times of the day. The speed limit 
is 50 km/h on both roads.

In order to evaluate the accuracy and reliability of the 
method proposed, a set of high-frequency trajectory data 
were collected on 13 September 2017. Eight probe vehicles 
were equipped with GPS receivers to collect GPS data at 
1 Hz. The vehicles were driven in the north-south direc-
tion traversing straight through the intersection repeat-

edly during the periods 07:00…10:00 and 16:00…19:00, 
capturing the morning and evening peaks respectively. 
The morning peak was from 07:00…09:00 and the evening 
peak from 17:00…19:00. The process lasted for six hours 
generating 144 valid high frequency GPS tracks. 

Low-frequency floating car data were subsequently 
generated from the high frequency data at the typical in-
terval of 30 s. It should be noted that the trajectory data 
constitute the GPS points generated from the time the 
probe vehicle enters the intersection to the time when the 
vehicle departs the intersection. The discretization of dis-
tance is at the 20 m level. This is based on a series of tests 
undertaken on the sensitivity of control delay accuracy to 
distance accuracy and computational efficiency. 95% of 
the vehicle’s acceleration and deceleration rates were less 
than 2.8 m/s2 in field observations. In Haas et al. (2004), 
for speed ranging from 20 to 25 mph, the average decel-
eration rate is 0.1⋅g, but when speed ranges from 35 to 
40 mph, the average deceleration rate is 0.18⋅g. To make 
estimation results insensitive to the parameters and guar-
antee the assumption’s robustness, the acceleration and ac-
celeration range is selected to be between 0.1⋅g and 0.2⋅g. 
Control delays from the low-frequency probe vehicle data 
were computed using both the method proposed in this 
article and the reference method, based on the low-fre-
quency floating car data. 

4. Results, analysis and discussion

4.1. Accuracy of individual probe  
vehicle control delay

Given the fact that the behaviours of a vehicle traveling at 
different speeds are different, the GPS tracks were classi-
fied into two categories according to the speed at which 
the vehicle starts to decelerate. Above 30 km/h is classi-
fied as high-speed pattern, otherwise, the class is low-speed 
pattern. 

The observed control delay value is calculated from 
the high-frequency floating car data. The low-frequency 
floating car data are generated by resampling the high-
frequency floating car data. The low-frequency data are 
then processed to generate control delay values for each of 
the classes using both the methods proposed in this article 
and the reference method.

Figure  6 shows the comparison of the observed and 
estimated control delay values for different speed patterns 
from the proposed and reference methods. The horizontal 
axis and the vertical axis represent the observed and esti-
mated control delay values, respectively. The black dotted 
line is the 45-degree line, which means that the closer the 
points are to the dotted line, the more accurate the estima-
tion method. As shown in Figure 6, the proposed method 
has a better performance than the reference method for 
both the low-speed pattern and high-speed patterns. For 
both methods, the accuracy for the high-speed pattern is 
higher than the low-speed pattern. For the low-speed pat-
tern, the vehicle’s speed is relatively small and the traffic 
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volume is large. Under this circumstance, vehicle move-
ment is complex. For example, a vehicle may experience a 
second stop delay, which means that it does not pass the 
intersection in a signal cycle.

4.2. Estimation accuracy of the control  
delay of the intersection

To further demonstrate the effectiveness of the method 
proposed in this article a reference approach developed by 
He and Ye (2014) is adopted. The reason why we choose 
this as reference method is the method is not sensitive 
to the low-frequency sample points and it could achieve 
a satisfying accuracy, with 85% of the control delay es-
timation results within 10  s in terms of absolute error. 
The reference method delineates the affected area of the 
intersection according to the historical queue length. It 
is assumed that the vehicle travels at free flow speed out 
of the affected area. When the vehicle enters the affected 
area, it starts to decelerate, and restores its free flow speed 
on exiting the area. As shown in Figure  7, a trajectory 
through points P0, P1, P2 generated during a vehicle trav-
elled through the intersection. The area between S and E 

is the affected area of the intersection. It is assumed the 
vehicle travels at a uniform speed outside the area. The 
real travel time from S to E could be calculated as follows:
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where: L1 is the distance between point P0 and point S; 

Figure 6. Comparison between estimated and observed control delay values under: a – high-speed pattern for the proposed method; 
b  – high-speed pattern for the reference method; c  – low-speed pattern for the proposed method; d  – low-speed pattern for the 

reference method
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Figure 7. Schematic of the control delay calculation  
for reference method

E S

L2 L1L

P (v , t )2 2 2 P (v , t )1 1 1 P (v , t )0 0 0



530 H. Wang, C. Gu. Vehicle trajectory based control delay estimation at intersections using low-frequency floating car ...

L2 is the distance between point E and point P2; t0 and v0 
are the time and speed of point P0; t2 and v2 are the time 
and speed of point P2; te and ts are the time of point E and 
point S respectively; tse is the real travel time of the vehicle 
from point S to E.

The control delay could be calculated as:
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L L LD t t t t
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,  (19)

where: L is the distance between point S and E; vf is free 
flow speed. 

To quantitatively evaluate the accuracy of the estima-
tion results, the Root Mean Square Error (RMSE) is se-
lected as the evaluation indicator and provides an estimate 
of the goodness of fit between the estimated value and 
observed values according to:

2

1

ˆ1
ˆ

n
i

i

x x
RMSE

n x=

− 
= ⋅  

 
∑ ,  (20)

where: xi is the i-th estimated control delay value of the 
intersection; x̂  is the i-th observed delay value of the in-
tersection.

We list the RMSE for proposed method and reference 
method compared to the truth value of control delay in 
peak hour and off-peak hour in Table 1. 

For low-frequency probe car data, the sample is ran-
dom, which means that for a trajectory, there may exist 
many different sample point sequences. To test the stability 

of the proposed and reference methods, for each observa-
tion interval, all high-frequency trajectories were sampled 
10 times at a low-frequency and control delay value of the 
intersection was calculated 10 times by the proposed and 
reference methods respectively. The results are presented 
in Table 2. The results show that the proposed method 
improves the accuracy of the reference method by 14% in 
the peak hour and 26% in off-peak period.

In Table 2, it can be seen that the standard deviation of 
the estimated control delays using the method proposed is 
smaller than that with the reference method. This shows 
that the method is more reliable. 

To better demonstrate the reliability of the proposed 
method, a box plot is adopted to show the distribution 
of the control delay estimation results from 16:00…19:00.

Figure 8 presents the estimated control delay value dis-
tribution of the intersection with the proposed and refer-
ence methods. The blue point is the ground-truth control 
delay value of the corresponding time period. P repre-
sents the proposed method and R, the reference method. 
12 time periods, 15 min each, between 16:00…19:00 were 
generated. For each time period, the control delay of the 
intersection was estimated ten times by resampling the 
high-frequency trajectories at 30 s interval. As shown in 
Figure 8, for most time periods, the estimated control de-
lay value distribution is more consistent than the control 
delay value distribution estimated by the reference meth-
od. Besides, in general, the mean value of the result ob-
tained by proposed method is closer to the ground-truth 
value than the results from reference method. This shows 
that the proposed method has a better reliability. 

The computer efficiency is another factor to be evalu-
ated. The computer used in data processing and analysis 
had Intel® Core™ I5-8250 4 Cores 1.6GHz CPU, 4Gb memo-
ry, 1T Hard Disk and Windows 10 64 bit operation system. 
For an arterial with five intersections, link length is about 
800 m. Five months historical data were used to capture 
vehicle dynamics through each signalized intersection. 

Table 1. Control delay estimation error

Time interval Method Number of time 
periods RMSE [s]

peak hour proposed 16 11.8
peak hour reference 16 13.7
off-peak hour proposed 8 9.3
off-peak hour reference 8 12.5

Table 2. Statistical results of control delay values from low-frequency sample point sequences

Time interval Observed value
Reference method Proposed method

Mean [s] STD [s] Mean [s] STD [s]
07:00…07:15 23 25.9 4.7 25.4 3.9
07:15…07:30 36.2 37.4 6.54 35.2 4.96
07:30…07:45 45.1 42.1 5.12 47.5 3.68
07:45…08:00 60.4 56.5 6.49 63.2 5.72
08:00…08:15 71.2 65.4 5.22 68.5 5.58
08:15…08:30 83.2 76.2 6.05 79.5 5.45
08:30…08:45 90.3 96 7.22 94 5.98
08:45…09:00 100 92.7 11.2 105 10.5
09:00…09:15 89.6 77.5 12.4 97.7 9.6
09:15…09:30 67 60.6 8.43 72 5.27
09:30…09:45 54 46.4 4.54 48.1 3.95
09:45…10:00 46 50 6.2 43.7 3.23
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The computational time of this is from 5…10 min, but it 
only needed to be calculated once. Calculating control de-
lay of each intersection takes about 7 s. These figures show 
that our approach has a satisfying computer efficiency and 
could be used in real time.

Given that there may be a concern that the sample in-
terval may affect accuracy and reliability, we analyse the 
sensitivity of the sample interval to accuracy. For all the 
time periods, control delay of the target intersection was 
estimated with low-frequency trajectory data for different 
sample intervals, and the RMSE calculated. The results are 
shown in Figure 9.

As shown in Figure 9, although the RMSE increases as 
the sample interval becomes longer, the rate of growth is 
low and hence, at least for the range of sampling interval 
analysed (from 30 to 60 s), the accuracy of control delay 
estimation is largely insensitive to the sample interval.

Conclusions and recommendations

This article presents a novel method to estimate control 
delay at road intersections from low-frequency floating car 
data. In order to address the limitations of data sparseness, 
historical data are used to explore the deceleration and 
acceleration patterns. This helps to capture the changes 

in vehicle motion or dynamics through intersections to 
obtain the space–time ranges of the critical points. From 
these data and based on the geometric probability model, 
the distribution function of the delay values is obtained, 
from which the expected value of delay is calculated. 

Both the proposed method and a reference method 
are compared against the truth control delay value of the 
target intersection for different time periods. The results 
show that proposed method has an RMSE of 11.8 s com-
pared to 13.7 s for the reference method for the peak pe-
riod. The corresponding values for the off-peak period are 
9.3 s and 12.5 s. In addition to a better accuracy, the mean 
and standard deviation statistics show that the proposed 
methods outperforms the reference method. 

The method proposed in this article could be used to 
estimate the control delay at road network intersections 
from sparse data (e.g. from floating cars), which is im-
portant for traffic management and control, and hence the 
improvement of the overall of operational efficiency of a 
road network. However, there are some limitations with 
the research methodology should be highlighted in order 
to enhance its applicability and transferability. First, as 
observed control delay is not easy to obtain, the statistical 
analysis is based on the observation result at a selected in-
tersection for six hours. More data are needed to validate 
our conclusion. Second, the sample size of the trajectory 
data is not considered in our research. It may have im-
pact on the performance of our method. The relationship 
between the sample size and performance of our method 
will be investigated in the future. 
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