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Abstract. This paper shows mathematical results of three methods, which can be used for Unmanned Aerial Vehicle (UAV) 
to make transition from one flight leg to another. In paper, we present general equations, which can be used for generating 
waypoint-switching methods when for experiment purpose mathematical UAV model is used. UAV is modelled as mov-
ing dot, which eliminates all of the aerodynamics factors and we can concentrate only on the navigation problems. Lots 
of attention is dedicated to show possible flight path error values with representation of modelled flight path trajectories 
and deviations from the flight mission path. All of the modelled flight missions are done in two-dimensional space and all 
the results are evaluated by looking at Probability Density Function (PDF) values, as we are mostly interested in the prob-
ability of the error.
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Introduction

Present research shows lots of interest in Unmanned 
Aerial Vehicle (UAV) navigation, guidance, path track-
ing, mission and path planning algorithms (Maillot et al. 
2015). Research in these fields include UAV path plan-
ning under uncertainties, coordinated flight control, de-
tection of ground obstacles, mapping etc. On the other 
hand, at this moment small unmanned aerial vehicles have 
lots of restrictions for their flights released by national or 
international legal organizations. Due to this, new inno-
vations in previously mentioned research fields make big 
importance for the future UAV integration into national 
airspace (Zhong, Yan 2014). Altogether, with the integra-
tion of UAVs into national airspace it would allow us to 
use small UAVs for various practical applications like de-
livery of small cargo or electrical line monitoring, forest 
fire fighting (Casbeer et al. 2006). 

However, integration of the UAVs into national air-
space requires more detailed evaluation not just of the 
new and more sophisticated UAV autonomous naviga-
tion or path tracking algorithms, but also their accuracy 
(Dadkhah, Mettler 2012). Increase in accuracy could be 
later used for search and avoid algorithm, which is useful 
for ground obstacle avoidance. Otherwise, with current 

small UAV technology any failure to detect the obstacle 
or other airplane leads to an accident (Zhong, Yan 2014). 
The same is true for the guidance part of the search and 
avoid algorithm (Wang et al. 2016). For this reason, we 
need to pay more attention to flight path accuracy. In pa-
pers by Stojcsics (2014), Ariff and Go (2011), Capello et al. 
(2017), ideas of calculating flight path or cross track error 
is proposed, but not much attention is paid to look at the 
flight path error tendencies. In some of the papers, we can 
find that different track change algorithms could be used. 
Mostly all of the time new methods to use Dubins paths 
are being proposed (Owen et al. 2015). However, various 
modifications of these Dubins paths could be used too. In 
paper authors propose to use flight over navigation points, 
around waypoint or to use internally-tangent flight trajec-
tory near the waypoint (Capello et al. 2017). On the other 
hand, still not much attention is paid to flight accuracy. 

In order to reduce restrictions for UAV flights and to 
increase the knowledge of small UAV flight accuracy, the 
goal of this research is to evaluate general tendency of the 
three different UAVs autonomous waypoint-switching al-
gorithm ant their accuracy for UAV navigation during the 
flight mission.
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1. Autonomous flight mission  
execution model of the UAV

In this chapter, we present the UAV autonomous flight 
model used for further experiments. Block diagram of 
this model is showed in Figure 1. It has three structural 
blocks as described in research by Benghezal et al. (2015). 
Path follow block is used to describe UAV flight dynam-
ics and it contains all of the differential equations, which 
simulate UAV as a single mass object. From path follow 
block, we get all navigation data like UAV position, speed, 
heading, and flight path error. In this research, we choose 
single mass UAV model because it eliminates part of flight 
path error, which is caused due to aerodynamics. This way 
we can evaluate accuracy of the waypoint-switching algo-
rithms more accurately.

The second model block is path manager block. Previ-
ously calculated flight path error is provided for the path 
manager block. Flight path error value is used to calculate 
new UAV heading, which is used to correct and com-
pensate flight path error (Nelson et al. 2006; Wang et al. 
2016). Furthermore, this block keeps the information of 
which waypoint-switching algorithm is used and needs 
an input about the planned flight mission with all of the 
coordinates or waypoints. This information should arrive 
from the path planner block, which completes full circle 
of automation.

If we would look at this model from the perspective 
that the UAV is not able to make decisions according the 
environmental details like buildings, trees or other obsta-
cles, we can eliminate the path planner block (Chamsed-
dine et al. 2012). In our case, we are not using path plan-
ner block and all of the waypoints will be unchangeable 
during the mission.

2. Principles of UAV autonomous guidance

In this chapter, we present the UAV autonomous guidance 
method, which is used inside of this model for further 
research.

For this research, the optimised Frenet–Serret coordi-
nate frame is used. In our situation, we put this coordinate 
frame inside of local North–East–Down (NED) frame. 
General idea of our coordinate frames and UAV guidance 
method are presented in Figure 2. If the UAV is flying in 

between two waypoints wi and wi+1 and is of track to the 
side by distance eN upwards or downwards from the de-
fined trajectory, the vectorial field attracts the UAV back 
to the path. More away from the path UAV is stronger 
vector field is (Wang et al. 2016).

This optimized and simplified UAV guidance vector 
field can be calculated by Equation (1):

( ) ( )
∞= − ⋅ ⋅

π ⋅

2 1
tan

d N
p N

X e X
k e

,  (1)

where: Xd – desired flight course; eN – flight path devia-
tion; X – flight course at infinite distance from the flight 
path; kp – Proportional Integral Derivative (PID) control-
ler coefficient.

From Equation (1) we can see that the course Xd is the 
function of flight path deviation eN and in calm condi-
tions Xd = h, where h – the flight course after wind drift 
compensation, which represents airplane heading to the 
next waypoint or to some intermediate point on the flight 
leg like P2, which is shown in Figure 3.

However, this straight-line tracking can be represented 
even without local NED frame. As this coordinate system 
is always attached to initial waypoint w for each flight seg-
ment, we do not need to make coordinate transformations 
to NED.

In that case, the modulus of the flight path error eN can 
be calculated by Equation (2). 

Figure 1. Block diagram of UAV autopilot, which is used  
to carry out autonomous flight mission
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Figure 2. Simplified idea of autonomous UAV guidance

Figure 3. Full idea of autonomous UAV guidance
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In Equation (2) we do not evaluate UAV vertical posi-
tion and do all calculations only in 2D space:

( )
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where: eN  – flight path error (deviation); xT, yT  – the 
lengths of the flight leg wiwi+1 in x and y directions; Pa – 
vector representing current UAV location; wi – waypoint 
from which UAV has departed. 

Next, by using vector form we can find the remaining 
distance from the current position to the next waypoint:

+ += −1 1a i i i aP w w w P ,  (3)

where: Pawi+1 – line connecting UAV location Pa and the 
second waypoint wi+1 in the UAV route; wiwi+1 – line con-
necting first waypoint wi and the second waypoint wi+1 in 
the UAV route; 
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where: Ptwi+1 – line connecting UAV location projection 
on the flight path route point Pt and the second waypoint 
wi+1 in the UAV route.

If we know vector from the present UAV coordinate to 
the next waypoint, we can make the appropriate change 
of the heading. On the other hand, by using this method 
track error can become too big and it would lead to a big 
overshoot. For this reason, additional coefficient M* can 
be used to correct that problem as shown in Figure 3. For 
this situation, correction should be calculated as in Equa-
tion (5):

( )= ⋅ *
min min , MD D L ,  (5)

where: D – vector from the current position on the track 
to the point on the track where UAV needs to return rep-
resented as Ptwi+1 in Figure 2 or as P1P2 in Figure 3; L – 
vector from the position of the UAV to the point of return 
to the track as Pawi+1 in Figure 2 or as PbP2 in Figure 3.

In our case, we will use optimized vector field with 
the reference coordinate NED frame. This method gives 
smaller overshoots and is more reliable (Beard, Humph-
erys 2011). 

3. Three methods of switching  
UAVs mission waypoints

In this chapter, we introduce three different methods for 
UAV to make waypoint transitions from one flight leg to 
another flight leg (Beard, Humpherys 2011). All three 
waypoint-switching methods later will be compared and 
flight accuracy will be evaluated by using UAV flight simu-
lation (Capello et al. 2009). 

The first of the methods is the classical, which is used 
till today in most of the autopilot systems. The idea is 
presented in Figure 4. In this case, UAV makes transition 
from one waypoint to another by entering the predefined 
sphere, which has the radius r.

This algorithm can also be represented by simple 
Equation (6). It states what if the difference between the 
coordinates of UAV and the coordinates of the waypoint 
is equal or less than the predefined sphere radius, UAV 
makes the transition.

( ) +− ≤1it rp w ,  (6)

where: ( )tp  – the coordinates of UAV; wi+1 – coordinates 
of the next waypoint; r – radius of the sphere.

This algorithm has an advantage of simplicity, but it 
has much more disadvantages:

 – the trajectory is unpredictable inside the sphere;
 – if the radius of the sphere is too big, accuracy of the 
flight can greatly reduce;

 – if the radius of the sphere is too small, UAV can never 
reach the waypoint and transition will not be made;

 – it does not present real flight path of the UAV inside 
of the sphere.

In case to eliminate some of the disadvantages, an-
other algorithm could be used. Second algorithm does 
not depend on the radius of the sphere. It depends on 
the position of the plane H. This algorithm is represented 
in Figure 5. In this case, UAV makes the transition from 
one waypoint to another by crossing the predefined plane 
H. Because plane H is infinite, UAV will never miss the 
waypoint. The accuracy of the flight near the waypoint 
depends only on the accuracy of the UAV, but not on the 
algorithm itself. 

For this algorithm, we need to mathematically define 
plane H. In order to do this, few unit vectors q are being 
used. Vectors qi and qi+1 in Equations (7) and (8) show 
direction of the present and future flightpath. Both vectors 

Figure 4. Visualization of the classical UAV autonomous 
navigation algorithm when the airplane makes waypoint 

transition by entering predefined radius sphere
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are calculated by using coordinates of three waypoints: 
past, present and future. 
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where: wi – coordinates of the previous waypoint; wi+1 – 
coordinates of the current waypoint; qi  – unit vector 
showing the direction of the current flight leg;
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where: wi+2 – coordinates of the next waypoint; qi+1 – unit 
vector showing the direction of the next flight leg.

Next, the unit vector n is calculated, which can be 
used to find the orientation of the plane H. Vector n is 
calculated by Equation (9) using values of unit vectors qi 
and qi+1. The plane H always divides angle a, which is in 
between two flight mission segments wiwi+1 and wi+1wi+2. 
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where: ni  – unit vector showing orientation of the de-
signed plane H.

The Equation (10) tells what if the UAV position is on 
one of the plane H coordinates or beyond it, UAV must 
make a turn:

( ) ( )+∈ 1,i it Hp w n .  (10) 

While this method in general looks much better, we 
still do not know is it more accurate than the classical one 
or not. On the other hand, it still can be upgraded and 
made more sophisticated.

The third of the waypoint transition methods is made 
by using Dubins paths (Yeol, Hwang 2016; Owen et  al. 
2015). It is composed by using straight-line and circular 
arc segments. We can see Dubins paths transition method 
in Figure 6.

For Dubins paths waypoint-switching algorithm we 
need to make some additional calculations. First of all, 
angle a must be found. It depends on the geometry of the 
flight path and shows the difference between two straight-
line segments of the flight mission. It can be calculated by 
using Equation (11):

( )+

∠ =
− ⋅ 1

1
cos T

i i
a

q q
,  (11)

where: a – the angle showing difference between the cur-
rent and the next flight legs.

When we have the value of angle a, it can be used for 
calculation of distance vector k. This vector is added or 
subtracted from the next waypoint wi+1 and gives the co-
ordinates where the planes H1 and H2 should be located. 
Finally, by using Equation (14) we can find centre position 
of the imaginable Dubins circle. It is used for generating 
circular flight segment. By changing the radius of this 
circle we can increase or decrease the smoothness of the 
transition from one flight leg to another flight leg.
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r
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where: k – vectorial distance showing at which coordinate 
from the next flight mission waypoint UAV must start a 
turn into the next flight leg.

+
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By using further Equation (14) coordinates of the 
turning trajectory circle can be calculated. It will help to 
visualise the geometry of the predicted flight trajectory 
during the turn.

Figure 5. Visualization of UAV autonomous navigation algorithm 
when the airplane makes waypoint transition by crossing the 
plane (H – plane for waypoint transition; wi – coordinates of the 
waypoint; qi – unit vector, which show the direction of the flight 

leg; ni – unit vector for orientation of plane H)
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where: c – coordinates of the circle representing the UAV 
flight path during the turn.

It is useful to mention that Dubins paths waypoint-
switching method has an advantage over the classical or 
“plane” method by providing the most predictable UAV 
flight path. We can still expect to see some UAV drift to 
the side from the flight path, but we can predict that the 
biggest flight path error in this case would appear due to 
an algorithm itself. We can see that for this method there 
is also one disadvantage  – UAV will never fly directly 
above the waypoint. The circular arc – fillet (Kothari et al. 
2014) does not allow that.

4. Flight path accuracy results

In this chapter, we will look at the experiment results 
when comparing all three waypoint-switching methods.

Different approaches can be used to evaluate flight 
path accuracy (Brezoescu et al. 2011; Avellar et al. 2015; Li 
et al. 2015). However, our idea was to choose random con-
stant speed of 10 m/s for UAV flight (which is as normal 
flight speed for small UAV) and compare the flight path 
error values for all free waypoint-switching methods while 
the same triangular route was used. All of the flight legs 
are 500 m long. From previous research we know, that the 
increase or decrease in speed has the same influence on 
the flight path error. It means if the speed increases, UAV 
flight path error will also increase or vice versa. Flight path 
error dependency on flight speed is presented in Figure 7.

From Figure 7 we find that for any waypoint-switching 
method, flight path error will always increase by quadratic 
tendency. In this experiment, we want to check how flight 
path error changes due to changing waypoint-switching 
method and the radius of the sphere or circle. We choose 
to make changes to the sphere radius size because it is 
the main variable of the waypoint-switching algorithm. 

Changes to this radius can lead to smaller or bigger over-
shoots during the waypoint transition.

Experiment results are presented in Figure 8. Results 
of switching waypoints by using “plane” method are in all 
cases the same. It is because there is no radius involved in 
this algorithm. We only compare “plane” switching meth-
od result with all other algorithm combinations when us-
ing other waypoint-switching sphere or radius sizes. For 
smaller radius values, we get more accurate results, when 
fillet technique is used. For 10 m/s speed, it becomes op-
timal for the radius of 20 m. However, classical method 
with an increase of the sphere radius becomes more accu-
rate and if we would compare results for 30 m radius, most 
accurate is the classical algorithm. In this case, filleted 
Dubins paths algorithm is not an optimal choice. Besides 
that, switching the waypoints by using “plane” method, 
proofs that it gives biggest overshoots and it would give 
the same results as the situation of the classical algorithm 
with 0 m radius sphere.

All of the flight path error results can be presented in 
a time line graphs. For general visualization purpose we 
include two extreme cases for 5 m radius and 30 m radius 
experiments. In Figure 9, we can compare flight path error 
values for different waypoint transition algorithms more 
precisely. It is clear that average flight path error with 5 m 
radius is smaller for Dubins paths waypoint-switching al-
gorithm, but for another extreme case, classical waypoint-
switching method would give smaller average flight path 
error.

From the data in Figure 9, it is not possible to see 
probability of the flight path error if one or another way-
point transition method is used. For this reason and to 
prove our results we choose to check one more time with 
Probability Density Function (PDF). General idea of this 
method can be expressed in Equation (15):

( ) −
ρ = ⋅

⋅ π

2

2
1
2

x
x e ,  (15)

where: x is flight path error value; ( )ρ x  represents prob-
ability density for this error to appear. 

Figure 7. Average flight path error values and standard deviation ranges for different airspeeds
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Figure 8. Flight path error values for the three waypoint-switching methods when radius r of the sphere or circle is used:  
a – r = 5 m; b – r = 10 m; c – r = 15 m; d – r = 20 m; e – r = 25 m; f – r = 30 m
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Results of the extreme cases are presented in Figu-
re 10.

Results in Figure 10a prove that up to the radius of 
20 m Dubins paths waypoint-switching method is much 
more accurate, but for bigger sphere radius values classi-
cal method has a tendency of smaller average flight path 
errors. In Figure 10a we can see that PDF is slightly bigger 
if we use Dubins method. This difference is bigger for the 
flight path error values, which are close to 0 m.

However, from Figure 10b we can see, that PDF of 
classical method grows very steep when UAV flight tra-
jectory is not overshooting flight path, which is near the 
waypoints. We can observe this situation also in Figure 8f.  
It proves that for bigger sphere or Dubins circle radius 
values, the classical waypoint-switching algorithm is much 
more accurate.

To do the last check, we made more experiments using 
flight missions of different shapes. The same radius values 
and the same 10 m/s flight speed were used. In these cases 
UAV needed to make more, but less sharp turns in the 
range from 45 (octagonal shape mission) to 90° (quadran-
gle shape mission). Flight mission length was always the 

same – 1500 m. All the results are shown in Figure 11 for 
classical algorithm and Figure 12 for Dubins waypoint-
switching algorithm.

Figure 11 shows that when the classical waypoint-
switching algorithm is used, (but different mission shape 
should be flown), optimal sphere radius would also be dif-
ferent. For equilateral triangle, we have 28 m but for octa-
gon shape mission it is only 7 m. For other flight missions 
optimal results are in between 7 and 28 m as it is shown 
in Figure 11.

For Dubins flight paths waypoint-switching algorithm 
tendency is slightly different. If we would choose smaller 
fillet radius, flight would be more accurate for the mis-
sion where smaller course change angles are needed – like 
octagon shape mission. For bigger fillet radiuses it is also, 
the same – more accurate flight would be if we would fly 
mission where smaller course change angles are needed. 
However, optimal fillet radius would be almost the same 
for all types of flight missions. As we can see from Figure 
12 this range is from 16.5 up to 18 m. This proves that 
Dubins paths would be better choice if we care about flight 
path accuracy.

Figure 9. Flight path error values with respect to time with radius r, when different waypoint-switching method is used:  
a – r = 5 m; b – r = 30 m
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On the other hand, if we would compare results from 
Figure 11 with the results in Figure 12, they would prove 
that there is no optimal flight mission setup, which would 
ensure smallest flight path errors. For every flight mission 
we can find optimal sphere or fillet radius. The differ-
ence between some of these optimal values can be large 
enough, as for example: for octagon mission with classi-

cal algorithm the sphere radius is about 7 m, but for the 
same mission when Dubins flight path algorithm is used 
it would be about 18 m. However, if we would use Dubins 
flight path algorithm instead of the classical, we could at 
least approximately choose the optimal fillet radius (which 
fits all flight missions) and use it for further research.

Figure 10. PDF for different waypoint-switching methods, when radius r is used: a – r = 5 m; b – r = 30 m

Figure 11. Dependency of average flight path error on sphere radius for different flight trajectories  
when classical waypoint-switching algorithm is used

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pr
ob

ab
ili

ty
 d

en
sit

y

3
1
2

0

2

4

6

8

10

12

2
3

1

Path error [m]
1–10 0–10 010 1100

1 – turn by using 5 m radius circle
2 – turn by using plane
3 – turn by using 5 m radius llet

1 – turn by using 30 m radius circle
2 – turn by using plane
3 – turn by using 30 m radius llet

Pr
ob

ab
ili

ty
 d

en
sit

y

Path error [m]
1–10 0–10 010 1100

a)       

b)       

5 10 15 20 25 30
Sphere radius [m]

–4

–2

0

2

4

6

8

Av
er

ag
e 

ig
ht

 p
at

h 
er

ro
r [

m
]

3

6
5
4

1
2

1 – equilateral triangle
2 – quadrangle
3 – pentagon
4 – hexagon
5 – septagon
6 – octagon



660 R. Kikutis et al. Autonomous unmanned aerial vehicle flight accuracy evaluation for three different path-tracking ...

Conclusions

From all of the experimental results we can make con-
clusions that the mean flight path error could be small-
est either for the classical waypoint-switching method or 
for the filleted waypoint-switching method. This depends 
generally on UAV configuration (mainly flight speed) and 
the sphere or Dubins paths fillet radius. When UAV flies 
the mission where waypoints make equilateral triangle 
with side length of 500 m, the maximum and minimum 
errors are changing from 22 up to 26 m for classical algo-
rithm and from 20 up to 45 m for the fillet. On the other 
hand, average values in most cases are better for Dubins 
paths method with fillets. Addition to that, if we increase 
sphere or fillet radius, probability density (to have mean 
flight path error 0) initially is better for Dubins algorithm, 
but for bigger radiuses tendencies change to the classical 
algorithm. It is due to the fact that, the Dubins paths try 
not to overshoot the trajectory. For classical algorithm and 
large sphere radiuses probability density becomes more 
than 10. It is due to the fact, that in this case classical algo-
rithm is much more flight path error efficient than others 
and tends to look like Dubins trajectory.

In addition, we could say that UAV would make small-
est drift near waypoints if the combination of waypoint-
switching methods would be used. UAV needs automati-
cally choose appropriate waypoint-switching method ac-
cording to the radius it needs to fly during the mission. 
The second option to increase flight path accuracy could 
be if we would provide an option for UAV to choose 
waypoint-switching algorithm automatically for every 
waypoint (especially if these waypoints have differently 
defined sphere or circle radiuses). In that case, UAV could 
use database values presented in Figures 11 and 12.

From Figures 11 and 12 we can also see that Dubins 
paths algorithm is more predictable. UAV flight path error 
could be reduced just by choosing approximately optimal 
fillet radius, which is almost the same for all types of flight 
missions. For the flight speed of 10 m /s, this fillet radius 
is in the range from 16.5 up to 18 m.

Figure 12. Dependency of average flight path error on Dubins circle (fillet) radius for different flight trajectories,  
when Dubins paths waypoint-switching algorithm is used

For further research current database of flight path ac-
curacy values could be extended by evaluating wind factor 
or used for generating more advanced automated flight 
UAV algorithms (more advanced ground obstacle avoid-
ance, time and distance optimal paths).
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