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Abstract. Railcar asymmetric wheel wear leads to severe wear on one wheel but mild wear on the other wheel. The conse-
quences of the asymmetric wheel include accelerated wear, mechanical failure and downtime, and high financial penalties. 
Therefore, identifying the asymmetric wheel wear is critical not only for cost effective maintenance but also for safe opera-
tions. Fortunately, the increasing amount of various wayside detectors is instrumented along the railway that can monitor the 
health of railcar components and log plenty of detailed information about railroad operations. One can use this information 
to identify the asymmetric wheel wear in the early stage. However, most elliptically contoured distributions are effective in 
describing normal events but not in dealing with the outliers, which mainly locate in the tails of the distribution. Asymmet-
ric wheel wear requires effective anomaly detection that mainly focuses on the extreme values in the tail of a right-skewed 
distribution. In this paper, we employ the Extreme Value Theory (EVT), which handles the unusually high or low data in the 
distribution, to derive an extreme value score to identify asymmetric wheel wear. Experiment results show that identification 
of asymmetric wheel wear can generate huge monetary benefit in terms of reducing average maintenance times of railcars.

Keywords: railcar, asymmetric wheel wear, wayside detectors, railway maintenance, extreme value theory, anomaly detection.

Introduction

Rail is one of the essential transportation modes in the 
United States. According to the Association of American 
Railroads (AAR), America’s railroads are operating over a 
network of nearly 140000 miles and account for approxi-
mately 40% of intercity freight volume that is more than 
any other mode of transportation (AAR 2016). Safe and 
efficient railway operation is always the top priority for 
Federal Railroad Administration (FRA) and correspond-
ing railway accident such as derailment should be pre-
vented. One of the major causes of rail derailments comes 
from train wheels. The asymmetric wheel wear arises as an 
important issue during the vehicle/track interaction and it 
can cause severe wear on one wheel but mild wear on the 
other wheel (Fröhling 2006). However, asymmetric wheel 
wear has drawn very little attention in the past literature.

Asymmetric wheel wear has been found in the coal 
fleet, which is a high production and high mileage rail line 
segment associated with the railcar (Durham 1997). The 

primary cause of wheel wear asymmetrically with a conse-
quent degradation in the tracking properties of wheelsets 
and bogies and resultant accelerated is the action of the 
brake rigging and brake blocks on the wheel treads (Tour-
nay 2011). This phenomenon on a wheelset will cause rail 
rolling-contact fatigue, increase lateral wheel/rail forces, 
accelerate wheel flange wear and damage rail turnouts. 
Thus, asymmetric wheel wear accelerates the deteriora-
tion process of a wheelset and greatly shortens the life of 
a new wheelset since railroads tend to replace a wheelset 
instead of a single wheel. Moreover, asymmetric wheel 
wear will eventually lead to train derailments and result 
in significant costs to railway operations (Li, He 2015). 
Therefore, identifying and repairing those asymmetrically 
worn wheels not only save operation expenses but also 
improve transportation safety for people and goods.

There are three rolling stock maintenance models that 
are widely used by railroad operators. Those are mainte-
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nance scheduled separately by time, by mileage and by 
Condition-Based Maintenance (CBM). Maintenance by 
time or by mileage both pulls trucks or vehicles into a 
maintenance shop after a certain period or mileage. How-
ever, the maintenance sometimes is not necessary because 
it does not detect out asymmetric wheel wear problems 
most of the time, which waste not only the maintenance 
downtime but also unnecessary budget. The annual cost 
of replacement of wheelset in North America is approxi-
mately $ 800 mln in recent years, with 27% due to wheel 
wear, 65% due to high flanges and 22% due to thin flanges 
(Tournay 2011). One can see that lots of money have been 
spent on the traditional maintenance of the asymmetric 
wheel wear and the expenses can possibly be reduced by 
a more efficient maintenance strategy. Conditioned by the 
proper wheel wear identification by wayside detectors, we 
can reschedule the service cycle of a railcar with healthy 
wheels and thus save a lot of time and money.

In the rail industry, an increasing amount of various 
wayside detectors is instrumented along the railway that 
can provide large numbers of detailed real-time informa-
tion of railroad and railcar components. Such detectors 
can automatically identify potential railroad car compo-
nent failures, reduce rolling stock inspection times and 
maintenance costs, finally improve railway safety (Schlake 
2010). Benefit from a large amount of detection data, the 
causations and forming processes of the wheel wear can be 
unveiled and the corresponding maintenance strategy can 
be optimized by devised mathematic algorithms. CBM is 
a prevailing approach in machinery diagnostics and prog-
nostics (Ellis 2009; Jardine et al. 2006). The CBM can be 
performed after one or more indicators showing that a 
railcar component is about to fail or its running state is 
out of order.

In this paper, we aim to identify the asymmetric wheel 
wear mainly through Machine Vision (MV) detectors (e.g. 
video cameras), which report the profile of wheels includ-
ing flange height, flange width, rim thickness, flange angle, 
etc. Several major challenges of this task lie in (1) MV 
data are real-time recorded and the large amounts of data 
need to be effectively processed, (2) MV data could be 
of low quality and need to be pruned before application 
due to a variety of reasons (e.g. inclement weather, im-
age resolution, etc.), (3) asymmetric wheel wear is a rare 
event. It should be kept at a very low false alarm rate, (4) 
the proper quantification of the cost savings by the new 
identification of asymmetric wheel wear. To address the 
above challenges, we develop a statistical identification 
model based on Extreme Value Theory (EVT) and per-
form a novel benefit analysis.

The rest of the paper is structured as follow: Section 1  
summarizes previous studies for asymmetric wheel wear 
and anomaly detection models. Section 2 introduces 
the datasets and reveals the underlying relationship be-
tween the bad truck and wheel wear. Section 3 presents 
the methodology developed for identifying asymmetric 
wheel wear. Section 4 discusses the numerical results and 

performs benefits analysis for the identification of asym-
metric wheel wear. Finally, this paper concludes and lists 
several directions for future research in the last section.

1. Literature review

To our best knowledge, there are very few previous studies 
that specifically address the issues in identifying asymmet-
ric wheel wear. Therefore, we review two kinds of related 
literature, including modeling and prediction of railcar 
wheel wear and failure, and anomaly detection and mod-
eling.

1.1. Modeling and prediction  
of wheel wear and wheel failures 

Several studies developed mathematical models, integrat-
ing dynamics and wear modeling to predict railway wheel 
profile evolution due to wear (Braghin et al. 2006; Li et al. 
2011; Lewis et  al. 2003). Some researchers explored the 
wheel sets wearing by experiment. They compared cut 
and flange wearing intensity between locomotives with 
and without lubrication. The comparison results indicated 
that the flange wearing intensity is twice as high as the cut. 
Therefore, the wearing of wheel flanges is the major factor 
of wheel deformation, which proves the information in 
the introduction. Moreover, they also found out that the 
flange wear runs fast at the beginning, then this process 
will slow down. It will accelerate again after it exceeds a 
threshold like 150000 km (Mikaliūnas et al. 2002). There 
are also some studies modeling the relationship of contact 
between wheel and rail. The process of calculation showed 
that the contact between the wheel and rail should be con-
sidered unstable. The higher speed will result in a stronger 
influence of instability (Dailydka et al. 2008). The finite 
element method also can be used to analyze the “railway 
vehicle wheel–track” dynamic system. Bogdevičius et al. 
(2015) expressed applying discrete elements to soil and 
vehicle. Most recently, a variety of wayside detectors were 
employed to predict railcar wheelset remaining useful life 
by using random forest (Li, He 2015; Ouyang et al. 2009). 
However, the aforementioned algorithms predict wheel 
profile or failures due to wear without consideration of 
asymmetric wheel wear.

Almost all of the models can describe data well as long 
as they normally behave (Broadwater, Chellappa 2010). 
However, there still exist some outliers that are taken as 
anomalies. Asymmetric wheel wear can be considered as 
anomalies because the data fall into the tail of a distribu-
tion. Therefore, we can leverage general anomaly detection 
methods for identifying asymmetric wheel wear.

1.2. Anomaly detection and modeling

The purpose of anomaly detection is to identify rare or ex-
treme events with minimum delay and fewest false alarm 
rate as far as possible (Singh et al. 2009). Three types of 
anomaly detection techniques have been developed in 
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the past few decades: specification-based, string-based 
and statistical-based (Ye et al. 2002). Specification-based 
and string-based techniques identify abnormal data when 
they deviate significantly from a norm profile that is built 
on logical reasoning. Statistical-based anomaly detection 
techniques detect anomaly when they deviate significantly 
from the norm profile that builds on statistical properties 
(e.g. mean and variance). One advantage of the statisti-
cal-based techniques over the other two is that statistical-
based techniques have the capability of explicitly repre-
senting and handling variations and noises inherited in 
activities of the information system. There are two kinds 
of algorithms to detect and model anomaly detection with 
statistical techniques. One is the parametric method, and 
the other one is t non-parametric method. Parametric 
methods assume an approximate distribution and estimate 
the parameters from the historical data. For example, Ye 
et al. (2002) implemented Hoteling’s T-squared test that is 
a generalization of student’s t-statistic used in multivari-
ate hypothesis testing to detect an intrusion action. Non-
parametric methods do not assume that the data follows 
a specific distribution. Akoglu et al. (2012) introduced a 
non-parameter method: COMPREX, that builds a data 
compression model using multiple dictionaries for encod-
ing, and reports the data points with high encoding cost 
as anomalous. This algorithm has lower running times for 
large datasets and higher accuracy. However, this model 
needs to update coded tables to capture the trending pat-
terns of time-evolving data efficiently.

In this paper, we will use EVT that is a statistical-based 
method. EVT has been used in many areas to detect ab-
normal phenomena such as extreme temperature changes 
(Min et al. 2013), extreme storms (Kunkel et al. 2013) and 
extreme waves (Caires et al. 2009). However, this method 
has never been used in railway anomaly detection and 
modeling.

2. Data preparation and analysis

2.1. Data description

In this paper, wayside detector data were collected from a 
US Class I Rail Network in 27 months from January 2010 
to March 2012. The raw data contain MV data for wheel 
profile measurements, Optical Geometry Detector (OGD) 
data for truck hunting and alignment measurements, bad 
order data, and maintenance (teardown) data. MV systems 
mainly use a video acquisition system to record digital im-
ages of railcar components. Based on these images, the 
system can detect the irregularity and defects of wheels, 
brakes, springs and so on (Camargo et al. 2011; Li et al. 
2014). OGD is a laser/vision based system to measure the 
relationship between the wheel flange and the rail gauge 
and assess the performance of suspension assembly for 
axles and wheels of railcars (Tournay 2008; Li et al. 2014). 
Critical measurements of MV and OGD are illustrated in 
Table 1. We collected bad order data to obtain the failure 
details, and teardown data to understand actual repair 

actions and validate failures identified by bad orders. As 
soon as a bad order is issued, the equipment is scheduled 
to set out from the train for further inspection in a work-
shop. The details of the repairs will be recorded in the tear-
down data. Such data can be used to acknowledge the true 
reason for repairs and verify if the bad order is generated 
as a false alarm. There is total of 6466 records composed 
of 1832 bad orders and 4634 good records. Therefore, the 
number of observations is sufficient enough for this study.

After examining the dataset carefully, we identify two 
significant observations. The first one is the variations of 
MV measurements, and the second one is the correlations 
between bad trucks and wheel failures.

1)  The variations of MV measurements. In the MV 
dataset, the variations of the measurement are 
found to be quite large. The MV measurements 
over time for the same component show significant 
discrepancies due to both internal (e.g. the wheel 
and the railway material will have deformations 
between 0.1 and 0.13  mm when the loading of a 
wheel is 13 t) and external factors (e.g. weather 
and temperature) (Li, He 2015; Fröhling 2006). For 
instance, the wheel rim thickness measurement 
from MV is usually not accurate during inclement 
weather. The snow in winter or the mud after rain 
will adhere to the edge of the rim and affect the ac-
curacy of readings for wheel rim thickness. Figure 1  
shows the plot of the rim thickness of 8 wheels in the 
same equipment. As one can see, the readings fluc-
tuate unpredictably over time. Therefore, identifying 
asymmetric wheel wear solely by MV measurements 
will be not reliable. To achieve accurate identifica-
tion, we need to include more related data, such as 
truck measurements from OGD. However, a question 
naturally arises: is there any relationship between 
truck measurements and wheel measurements?

2)  Correlations between bad trucks and wheel failures. 
It is well known that among railcar components, 
wheels, journal bearings and truck components are 
not isolated from each other (Li, He 2015). Asym-
metric wheel wear results in fatigue of truck com-
ponents on account of the fact that truck is prone 
to be loaded more under asymmetric wheel profile 
conditions and this further deteriorates rapidly. 

Table 1. Critical measurements of detectors

Detector Critical measurements

MV
Wheel flange height
Wheel flange thickness
Wheel rim thickness

OGD

Truck hunting peak to peak
Truck inter-axle misalignment
Truck rotation measurement
Truck tracking error
Truck shift measurement
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Vice versa, bad trucks will cause asymmetric load 
and stress, which cause asymmetric wheel wear. 
Therefore, we may possibly leverage truck readings 
to identify asymmetric wheel wear. First, we have 
to validate the relationship between bad trucks and 
general wheel failures.

As an initial investigation, we calculate the correlations 
between wheel profile measurements and truck measure-
ments, shown in Table 2. 

One can see that there exist relatively high correla-
tion values, marked by “*”, between “Flange thickness” 
and “Truck tracking error”, “Flange height” and “Truck 
shift”, “Truck tracking error” and “Truck inter-axle mis-
alignment”, respectively. Therefore, truck defects show a 
significant relationship with the degradation of the wheel 
profile.

Furthermore, we employ logistic regression to verify 
whether or not truck measurements are significant vari-
ables in predicting wheel failures:

( )− b +b ⋅ +b ⋅ +b ⋅ +
=

+0 1 1 2 2 3 3 ...
1 ,

1x x x
p

e
  (1)

where: p is the probability of wheel failure in 3 months; xi 
is i-th truck measurements; bi the model coefficient of xi.

The explanatory variables are monthly aggregated 
truck measurements, which can be separated into two 
categories. One is the 90-th percentile of the truck meas-
urements in a month, and the other one is the percentage 
of truck measurements greater than a threshold that ob-
tained from historical data.

The results of the logistic regression are shown in Table 3.  
Only “90-th percentile of rotation/speed” and “Percentage 

Figure 1. Plot of rim thickness in inches of 8 wheels in the same equipment over time, where:  
L – indicates the left wheel; R – indicates the right wheel, and red dashed line represents the maintenance time

Table 2. Correlations of wheel profile measurements and truck measurements

  Truck hunting  
peak-to-peak Truck shift Truck tracking  

error
Truck inter-axle 

misalignment
Truck rotation  

error
Flange thickness –0.102 –0.294 –0.476* –0.230 –0.151
Flange height 0.094 0.380* 0.430* 0.311* 0.114
Rim thickness –0.131 –0.212 –0.192 –0.206 –0.040

Note: * – relatively hight correlation value.

Table 3. The results of logistic regression between truck measurements (explanatory variables)  
and wheel failures (dependent variable)

Predictors Abbreviation Estimate Std. error z p-value Significance#

Description (intercept) –4.59108 0.020419 –224.841 2.00×10–16 **
90-th percentile of peak-to-peak/speed PTP.SPD.per90% 6.476269 0.198645 32.602 2.00×10–16 **
90-th percentile of tracking error/Speed TE.SPD.per90% 0.633454 0.049483 12.801 2.00×10–16 **
90-th percentile of shift/speed SPD.per90% 1.279228 0.112054 11.416 2.00×10–16 **
90-th percentile of rotation/speed SPD.per90% 0.0432 0.584981 0.074 0.94113 *
90-th percentile of inter-axle misalignment/speed IAM.SPD.per90% 7.438507 1.069041 6.958 3.45×10–12 **
Percentage of peak-to-peak greater than  
a threshold (>3.9)

HighPTP_per –0.08309 0.047422 –1.752 0.079743 *

Percentage of inter-axle misalignment greater 
than a threshold (>0.7)

HighIAM_per 0.210569 0.047615 4.422 9.77×10–6 **

Percentage of rotation greater than a threshold 
(>0)

HighROT_per 0.459908 0.127678 3.602 0.000316 **

Percentage of tracking error greater than a 
threshold (>13)

HighTE_per 1.183915 0.035514 33.336 2.00×10–16 **

Percentage of shift greater than a threshold (>6) HighSHFT_per 0.843808 0.042644 19.787 2.00×10–16 **
Note: #predictor significance defined by p-value: 1 for “*” and 0 for “**”.
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of peak-to-peak greater than a threshold” are not signifi-
cant with wheel failures. All the other features display very 
strong significance in predicting the wheel failures. As a 
consequence, we can draw a conclusion that bad trucks 
will lead to wheel wear and wheel failures.

2.2. Data pre-processing

The overview of the proposed algorithm for the identifi-
cation of asymmetric wheel wear is presented in Figure 
2. In this section, we process the unorganized data from 
three datasets (MV, OGD and maintenance) to obtain the 
potential features in the identification model.

In order to reduce the errors from locating incorrect 
wheel positions, we only focus on 2-truck equipment that 
has 4 axles and 8 wheels. Raw MV data distinguishes the 
left and right wheels. Since we shall examine the asymme-
try of the wheel profile, the first step of data pre-processing 
is to check data variability for the differences between two 
wheels on the same axle and combine them to the axle lev-
el. As discussed above, bad trucks will lead to wheel fail-
ures. Therefore, it is necessary to combine MV data with 
truck measurements from OGD together. We aggregate 
data into monthly level (using min, max, percentile func-
tions, etc.) to ensure the accuracy of identification. On the 
one hand, in order to describe MV data with small bias, 
we aggregate individual MV measurements into monthly 
data by taking the median. One the other hand, we aggre-
gate OGD readings into monthly data by taking the 95-th 
percentile of absolute values of readings to study the worst 
case of truck components. Then we extract the unique 
truck ID between MV and OGD data. After this, we com-
bine MV and OGD of the same truck together by truck 
ID. Finally, we merge maintenance data with combined 
MV and OGD data to obtain the validation results. In this 
paper, we assume that the asymmetric wheel wear is vali-
dated if a wheel failure is observed within a specific time 
window of the identification event by the proposed model.

3. Proposed methodology

3.1. Model of methodology

EVT is a branch of statistics that cares about the unusu-
ally high or low data of distribution (e.g. data locates in 
the tails of a distribution) (Markou, Singh 2003). Since the 
extreme data points can represent the outlying regions of 
normal events against anomaly detections, these points are 
important for further investigation (Roberts 1999).

Assume Xi are independence identically distributions 
with a distribution:

( ) { }= ≤ .iF x P X x   (2)
Let:

{ }= 1 2max , , ...,n nM X X X   (3)
represents the maximum value of the n observations. It 
follows that the nth order statistic is given as follow:

{ } ( )≤ =Pr .n
nM x F x   (4)

Under certain conditions, there exist normalizing con-
stants an > 0 and bn, which can normalize Mn as follow:

−
=* .n n

n
n

M b
M

a
  (5)

Then the distribution function becomes:

{ } − ≤ = ≤ + = 
  

Pr Prn n
n n n

n

M b
x M a b

a

( ) ( )⋅ + → .n
n nF a x b H x   (6)

The three types theorem (Fisher–Tippett–Gnedenko) 
asserts that it must be one of three types if nondegenerate 
H exists:

( ) ( )= –exp – xH x e ,     ∈x R;  (7)

( ) ( )a
<=  >

–
0, 0;
exp – , 0;

x
H x x x   (8)

( ) ( )a <= 
>

exp – , 0;

1, 0.

x xH x
x

  (9)

Equations (7)–(9) are called Gumbel distribution, Fré-
chet distribution, and Weibull distribution, respectively. 
Moreover, in Fréchet distribution and Weibull distribu-
tion, a > 0. All three distributions are called General Ex-
treme Value (GEV) distributions, and their general form is:

( ) x
 
  m m s x = + x   s   

 

1–
–; , , exp – 1 xG x ,  (10)

where: m is the location parameter ( )m∈R ; s is the scale 
parameter ( )s > 0 ; x is the shape parameter ( )x∈R .

Asymmetric wheel wear lies in the right tail part of a 
distribution, which means it is the extremely bad case of 
data and only has a small portion. In order to describe 
asymmetric wheel wear, we employ perk-over-threshold 
of EVT to fit a Generalized Pareto Distribution (GPD) for 
each feature.

Figure 2. Flow chart of the proposed algorithm  
for identification asymmetric wheel wear

 

Data merge Merge MV and OGD data for each 
wheelset level
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 1. asymmetric wear measurement

2. max wear measurements
3. truck measurements

Extreme value score aggregation Derive a weighted anomaly score
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Data cleaning and aggregation Aggregate MV and OGD data into 
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For the distribution ( )m s x; , ,G x  has a high thresh-
old u. Xi is peak over value, when Xi > u. When Xi < u, Xi 
follows GEV distribution. When Xi > u, let = − >|y x u x u ,

( ) ( ) ( )
( )

+ −
=

−1
F u y F u

F y
F u

.  (11)

As ( ){ }→ = <sup : 1Fu w x F x  often finds a limit:

( ) ( )≈ s x; ,F y G y ,  (12)

where G is called GPD with parameters s – scale and x – 
shape,

( )
x


  + x ⋅ x ≠  ss x =  

  − x =  s 

1–

1– 1 , 0;
; ,

1 exp – , 0.

y
G y

y
  (13)

We consider a Xi serves as an input for parameter esti-
mation of GPD once it excesses the threshold (Ortiz et al. 
2009). Figure 3a depicts the concept of GPD and Figure 3b  
displays the Cumulative Distribution Function (CDF) of 
GPD.

Then we identify the asymmetric wheel wear by using 
the EV scores. We compute EV scores CDF for the fitted 
GPD for each feature:

( ) ( )( )= s x; , .EV y CDF G y   (14)

After this, we aggregate the scores of all features. 
Weights wi for feature i could be determined by prefer-
ences between false alarm rate and the number of identi-
fied asymmetric wheelsets (Dykes 2012):

( )l = ⋅∑ .i i
i

w EV y   (15)

Then we define an anomaly detection threshold u for 
asymmetric wheel wear identification: 

Asymmetric wheel wear l ≥=  l <

1, ;
0, .

uAsymmetric wheel wear u   (16)

Once l of a wheelset measurement exceeds u, it is 
identified as asymmetric wheel wear.

3.2. Identification analysis and modeling

Data pre-processing generates many potential features that 
fall into two categories: respectively the wheel level data 
from MV and truck level data from OGD. In this section, 
we create several new features by using these two feature 
types. Then we use appropriate features to obtain the iden-
tification model, shown in Table 4.

1)  Identification features selection. MV measures the 
information in wheel level, and we cannot use raw 
MV data directly. In order to describe the asymme-
try of wheel wear and obtain identification model, 
two types of new features are created. They are 
asymmetric wheel wear and max wheel wear in a 
wheelset. Where xL and xR are the data of left and 
right side wheels, respectively. We use the absolute 
value of the difference between the left wheel and 
the right wheel to describe the degree of asymmet-
ric wheel wear. The max wheel wear, representing 
the worst case between two wheels, is calculated 
based on the dimensions of a new wheel (rim thick-
ness = 1.75 inch, flange thickness = 1.375 inch, and 
flange height = 1.1 inch). 

From Section 3.1, it is found that wheel wear 
correlates with truck measurements and bad trucks 
will lead to potential wheel failures. Therefore, we 
should also consider truck level features in the 
model, shown in Table 4. 

2)  Identification modeling. Choosing an appropriate 
threshold u is a challenge when we model the GPD for 
identifying asymmetric wheel wear. If u is too large, 
there will be few data points exceeding this threshold.  
Thus, the number of identified wheels is very small. 

Figure 3. Distributions: a – probability distribution F (left) and 
extreme value distribution (GPD) (right); b – the CDF of GPD

Table 4. Features for identification modeling

Feature 
category Feature name Equation

Asymmetric 
wheel wear

wear differences 
of rim thickness −L Rx x

wear differences 
of flange 
thickness

−L Rx x

wear differences 
of flange height −L Rx x

Max wheel 
wear in a 
wheelset

max wear of rim 
thickness ( )( )−max 1.75 min  , , 0L Rx x

max wear of 
flange thickness ( )( )−max 1.375 min  , , 0L Rx x

max wear of 
flange height ( )( )−max max , 1.1, 0L Rx x

Truck mea-
surements

truck hunting 
peak-to-peak normalized by truck speed

truck shift
truck tracking 
error
truck rotation 
error
truck inter-axle 
misalignment

0

1

u

u

a)

b)
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If u is too small, the estimated model for asymmet-
ric wheel contains lots of false alarms. Therefore, 
we shall balance between hit rates and false alarms.

In this paper, we set threshold equals to several pos-
sible values first, and then determine the scale and shape 
parameters for GPD distribution for each feature with 
each threshold. After this, we calculate CDF for every fea-
ture and each threshold and obtained the weighted sum l 
with Equation (15). Weight wi for feature i is determined 
by preferences between false alarm rate and the number 
of identified asymmetric wheelsets. Once l is greater than 
the threshold u, we regard it as asymmetric wheel wear. 
Further, we calculate false alarm rate for each threshold:

=false alarm rate

,
+

number of false postivie
number of false positive number of true negative

 

(17)

where: the number of false positive is the difference be-
tween the number of identified asymmetric wheels and 
true asymmetric wheelsets, and the number of true nega-
tive is the difference between the number of measured 
wheelsets and the number of validated wheelsets in tear-
down data. 

For the false alarm rate, the smaller the better. 
The entire algorithm can be summarized as follows:
 – step 1: set threshold equals to predefined values;
 – step 2: determine scale and shape parameters for 
GPD distribution for each feature with each thresh-
old;

 – step 3: calculate CDF for every feature and each 
threshold;

 – step 4: calculate summation of extreme value score of 
each feature by weight;

 – step 5: once l is greater than the threshold u, asym-
metric wheel wear is identified;

 – step 6: choose appropriate threshold u that has both 
low false alarm rate and reasonable identified asym-
metric wheelsets.

4. Numerical examples
4.1. Identification results

Figure 4 illustrates the number of identified asymmetric 
wheels and the number of true asymmetric wheels with 
different threshold u. As one can anticipate, the false 

alarm rate keeps decreasing when u increases. It reaches a 
desirable value when threshold equals to 0.9 or 0.95. How-
ever, with threshold 0.95, the number of identified is very 
small to keep a low variance of GPD model. In addition, 
when the threshold is equal to 0.90, the results show that 
the inspection team needs to examine around 50 wheels 
in a month, which sounds very reasonable for a Class I 
railroad. Therefore, 0.9 has been selected as the threshold.

4.2. Pareto frontier

Pareto frontier is a line consisting of different Pareto ef-
ficient values that are all the potentially optimal solutions. 
The Pareto frontier for asymmetric wheel wear represents 
the lowest false alarm rate that can be obtained for a cer-
tain number of identified asymmetric wheelsets, shown 
in Figure 5.

In Figure 5, the x-axle represents the reciprocal of the 
number of identified asymmetric wheelsets and y-axle 
represents the false alarm rate. When the number of iden-
tified asymmetric wheelsets is small, the false alarm rate 
is also small. When the number of identified asymmet-
ric wheelsets approaches positive infinity, the false alarm 
rate goes up rapidly. Railroads can choose their preferred 
number of monthly alerts based on their available inspec-
tion resources.

4.3. Benefit analysis for asymmetric  
wheel wear identification

We make the assumption for the benefit analysis as fol-
lows  – the railcars with asymmetric wheel wear require 
more annual maintenance times than normal railcars. 

Figure 4. Identification results with different threshold u (the false alarm rates are indicated in the labels of x-axis)
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According to the above assumption, if we can identify 
asymmetrically worn wheelsets and repair them, we can 
reduce the total annual maintenance times for a railcar 
with asymmetric wheel wear to be the same level of nor-
mal railcars, so that the yearly maintenance costs will be 
reduced eventually. In this paper, the benefit is defined as 
the annual amount of dollars saved by the reduction of 
maintenance times:

( )= ⋅ − ⋅0 ,ABenefit N MR MR c   (18)

where: NA is the number of railcars identified with asym-
metric wheel wear; MR represents maintenance rate (the 
number of maintenance times divided by NA) for railcars 
with asymmetric wheelsets; MR0 is basic maintenance 
rate for normal railcars, which is equal to the number of 
maintenance times divided by the number of randomly 
selected railcars from database; c stands for the average 
cost of pulling a railcar through a maintenance shop. 

Table 5 validates the above assumption from the main-
tenance data. It is found that the number of maintenance 
rate (maintenance times divided by unique railcar) for 
railcars with asymmetrically worn wheelsets is almost 
twice as high as the randomly selected ones. If we identify 
50 (80) unique railcars with asymmetric wheel wear every 
month, their maintenance rate is 2.134 (2.078). In con-
trast, the maintenance rate for randomly selected railcars 
is 1.08. One can see that more frequent wheel failures are 
observed for railcars with asymmetric wheel wear.

Based on a rough estimation from a Class I railroad, we 
assume that the average cost of pulling a railcar through 
a maintenance shop is approximate $ 1000 each time. 
Without loss of generality, if one has another accurate 
estimation for different railroads, the approach proposed 
for benefit-cost analysis still stands. Table 5 shows that 
the railroad can save almost $ 1 mln annually by fixing  
80 identified railcars with asymmetric wheel wear mon-
thly.

Conclusions

Railroad wayside detectors can automatically capture rich 
information of locomotive and railcar components, in-
cluding wheels, axles, and trucks. In this paper, based on 
data from wayside detectors, we present a mathematical 
model for identifying asymmetric wheel wear. A benefit 
analysis is performed to verify that our model can greatly 
reduce the expenses accordingly. Several important find-
ings are worth discussing:

First, the readings of the MV detector are not always 
accurate. The variations of the MV measurement are 

found to be quite large. The readings of the rim thickness 
of 8 wheels in the same equipment fluctuate unpredictably 
over time. The correlation study shows that there exist a 
relatively high correlation between “Flange thickness” and 
“Truck tracking error”, “Flange height” and “Truck shift”, 
“Truck tracking error” and “Truck inter-axle misalign-
ment”, respectively.

Second, a logistic regression analysis shows that almost 
all the features of truck measurements show strong sig-
nificant levels in predicting the wheel failures. The results 
clearly show that bad trucks will lead to wheel wear even 
wheel failures.

Third, we leverage inspection data from MV and OGD 
and aggregate them together on the wheelset (axle) level 
to identify asymmetric wheel wear with EVT. We intro-
duce peak over threshold theorem to model the tail of the 
distribution, which is corresponding to asymmetric wheel 
wear. The GPD is proved to be the proper distribution to 
model the tail for each feature.

Fourth, we develop an extreme value score to identify 
asymmetric wheel wear. Wheelsets with high scores are 
identified as asymmetric wheel wear. The false positive 
rate is generally very low. We also obtain a Pareto fron-
tier, which represents the lowest false alarm rate under a 
certain number of identified asymmetric wheelsets. Based 
on the Pareto frontier, the railroads can choose their pre-
ferred number of monthly alerts based on their available 
inspection resources. After maintenance, the number of 
maintenance times of railcar with asymmetric wheels will 
be lowered to the same level as normal railcars.

Finally, we perform a novel benefit analysis to calcu-
late the savings by comparing the maintenance times of 
normal railcars and railcars with asymmetric wheel wear. 
Assuming that the average cost of pulling a railcar through 
a maintenance shop is approximate $ 1000 each time, early 
identification and repair of asymmetric wheel wear will 
approximately save $ 1 mln each year for fixing 80 rail-
cars with asymmetric wheelsets monthly. The advantages 
of doing this not only save maintenance expenses but also 
improve railway safety.

For future work, with the rapid development of way-
side detectors and other monitoring technologies, we can 
obtain more data to improve accuracy and decrease the 
false alarm rate. Moreover, with additional detailed main-
tenance and repair data, the truck maintenance study can 
expand from the asymmetric wheel wear to other rail safe-
ty related topics such as the rail track maintenance etc. 
The proper selection of repair type between replacement 
and turning for wheel maintenance is also a worthy topic 
in the future study.

Table 5. The results of benefit analysis

Maintenance railcar type No of unique railcars NA No of maintenance times M Maintenance rate =
A

MMR
N Benefit

Railcars identified with 
asymmetric wheel wear annually

602 (50 per month) 1285 2.134 $ 635 k
961 (80 per month) 1997 2.078 $ 959 k

Randomly selected railcars 8219 8876 1.080 (MR0) n/a



Transport, 2019, 34(5): 569–578 577

Contribution 

In this paper, based on data from wayside detectors, we 
present a mathematical model for identifying asymmetric 
wheel wear with EVT. We associated truck readings with 
wheel readings to predict wheel failure, and found that 
bad trucks will lead to bad wheels. A novel maintenance-
times based benefit analysis is performed to verify that our 
model can greatly reduce the expenses accordingly.

Disclosure statement 

We claim that we do not have any competing financial, 
professional, or personal interests from other parties.

References

AAR. 2016. Economic and Public Benefits. Association of Ameri-
can Railroads (AAR). Available from Internet: 
https://www.aar.org 

Akoglu, L.; Tong, H.; Vreeken,  J.; Faloutsos, C. 2012. Fast and 
reliable anomaly detection in categorical data, in CIKM’12: 
Proceedings of the 21st ACM International Conference on In-
formation and Knowledge Management, 29 October – 2 No-
vember 2012, Maui, Hawaii, US, 415–424. 
https://doi.org/10.1145/2396761.2396816 

Bogdevičius,  M.; Žygienė,  R.; Dailydka,  S.; Bartulis,  V.; 
Skrickij, V.; Pukalskas, S. 2015. The dynamic behaviour of a 
wheel flat of a railway vehicle and rail irregularities, Transport 
30(2): 217–232. 
https://doi.org/10.3846/16484142.2015.1051108 

Braghin,  F.; Lewis,  R.; Dwyer-Joyce, R. S.; Bruni, S. 2006. A 
mathematical model to predict railway wheel profile evolu-
tion due to wear, Wear 261(11–12): 1253–1264. 
https://doi.org/10.1016/j.wear.2006.03.025 

Broadwater, J. B.; Chellappa, R. 2010. Adaptive threshold estima-
tion via extreme value theory, IEEE Transactions on Signal 
Processing 58(2): 490–500. 
https://doi.org/10.1109/TSP.2009.2031285 

Caires, S.; Groeneweg, J.; Sterl, A. 2009. Past and future changes 
in the North Sea extreme waves, in Proceedings of the 31st 
International Conference on Coastal Engineering, 31 August –  
5 September 2008, Hamburg, Germany, 547–559. 
https://doi.org/10.1142/9789814277426_0046 

Camargo, L. F. M.; Resendiz, E.; Hart, J.; Edwards, J. R.; Ahuja, N.; 
Barkan, C. P. L. 2011. Machine Vision Inspection of Railroad 
Track. USDOT Region V Regional University Transportation 
Center Final Report. NEXTRANS Project No 0281Y02. 46 p.

Dailydka,  S.; Lingaitis, L. P.; Myamlin,  S.; Prichodko, V. 2008. 
Modelling the interaction between railway wheel and rail, 
Transport 23(3): 236–239. 
https://doi.org/10.3846/1648-4142.2008.23.236-239 

Durham, A. 1997. Case study: the coal line wheel and rail inter-
action strategy, in Proceedings of the Sixth International Heavy 
Haul Railway Conference, 6–10 April 1997, Cape Town, South 
Africa, 405–415.

Dykes, S. G. 2012. An extreme value theory approach to anomaly 
detection (EVT-AD). Poster, in IEEE Symposium on Security &  
Privacy, 20–23 May 2012, San Francisco, CA, US, 1–2.

Ellis, B. A. 2009. The Challenges of Condition Based Maintenance. 
The Jethro Project Consulting Group. 4 p.

Fröhling, R. D. 2006. Analysis of asymmetric wheel profile wear 
and its consequences, Vehicle System Dynamics: International 
Journal of Vehicle Mechanics and Mobility 44: 590–600. 
https://doi.org/10.1080/00423110600879296 

Jardine, A. K. S.; Lin,  D.; Banjevic, D. 2006. A review on ma-
chinery diagnostics and prognostics implementing condition-
based maintenance, Mechanical Systems and Signal Processing 
20(7): 1483–1510. 
https://doi.org/10.1016/j.ymssp.2005.09.012 

Kunkel, K. E.; Karl, T. R.; Brooks, H.; Kossin, J.; Lawrimore, J. H.;  
Arndt, D.; Bosart, L.; Changnon, D.; Cutter, S. L.; Doesken, N.; 
Emanuel,  K.; Groisman, P. Y.; Katz, R. W.; Knutson,  T.; 
O’Brien,  J.; Paciorek, C. J.; Peterson, T. C.; Redmond,  K.; 
Robinson,  D.; Trapp,  J.; Vose,  R.; Weaver,  S.; Wehner,  M.; 
Wolter, K.; Wuebbles, D. 2013. Monitoring and understand-
ing trends in extreme storms: state of knowledge, Bulletin of 
the American Meteorological Society 94(4): 499–514. 
https://doi.org/10.1175/BAMS-D-11-00262.1 

Lewis, R.; Braghin, F.; Ward, A.; Bruni, S.; Dwyer-Joyce, R. S.; Bel 
Knani, K.; Bologna, P. 2003. Integrating dynamics and wear 
modelling to predict railway wheel profile evolution, in 6th 
International Conference on Contact Mechanics and Wear of 
Rail/Wheel Systems (CM2003), 10–13 June 2003, Gothenburg, 
Sweden, 1–11.

Li, H.; Parikh, D.; He, Q.; Qian, B.; Li, Z.; Fang, D.; Hampapur, A.  
2014. Improving rail network velocity: a machine learning 
approach to predictive maintenance, Transportation Research 
Part C: Emerging Technologies 45: 17–26. 
https://doi.org/10.1016/j.trc.2014.04.013 

Li, X.; Jin, X.; Wen, Z.; Cui, D.; Zhang, W. 2011. A new integrated 
model to predict wheel profile evolution due to wear, Wear 
271(1–2): 227–237. https://doi.org/10.1016/j.wear.2010.10.043 

Li, Z.; He, Q. 2015. Prediction of railcar remaining useful life by 
multiple data source fusion, IEEE Transactions on Intelligent 
Transportation Systems 16(4): 2226–2235. 
https://doi.org/10.1109/TITS.2015.2400424 

Markou, M.; Singh, S. 2003. Novelty detection: a review – part 1:  
statistical approaches, Signal Processing 83(12): 2481–2497. 
https://doi.org/10.1016/j.sigpro.2003.07.018 

Mikaliūnas, Š.; Lingaitis, L. P.; Subačius, R. 2002. Analysis of lo-
comotive wheel sets wearing, Transport 17(1): 3–7. 
https://doi.org/10.3846/16483480.2002.10414003 

Min, S.-K.; Zhang,  X.; Zwiers,  F.; Shiogama,  H.; Tung, Y.-S.; 
Wehner, M. 2013. Multimodel detection and attribution of 
extreme temperature changes, Journal of Climate 26(19): 
7430–7451. https://doi.org/10.1175/JCLI-D-12-00551.1 

Ortiz, E.; Babbar, A.; Syrmos, V. L. 2009. Extreme Value Theory 
for engine health monitoring and diagnosis, in 2009 IEEE 
Control Applications, (CCA) & Intelligent Control, (ISIC), 8–10 
July 2009, St. Petersburg, Russia, 1069–1074. 
https://doi.org/10.1109/CCA.2009.5280957 

Ouyang,  Y.; Li,  X.; Barkan, C. P. L.; Kawprasert,  A.; Lai, Y.-C. 
2009. Optimal locations of railroad wayside defect detection 
installations, Computer‐Aided Civil and Infrastructure Engi-
neering 24(5): 309–319. 
https://doi.org/10.1111/j.1467-8667.2008.00584.x 

Roberts, S. J. 1999. Novelty detection using extreme value sta-
tistics, IEE Proceedings – Vision, Image and Signal Processing 
146(3): 124–129. https://doi.org/10.1049/ip-vis:19990428 

Schlake, B. 2010. Impact of Automated Condition Monitoring 
Technologies on Railroad Safety and Efficiency. MSc Thesis. 
University of Illinois at Urbana-Champaign, Champaign, IL, 
US 143 p.

https://www.aar.org
https://doi.org/10.1145/2396761.2396816
https://doi.org/10.3846/16484142.2015.1051108
https://doi.org/10.1016/j.wear.2006.03.025
https://doi.org/10.1109/TSP.2009.2031285
https://doi.org/10.3846/1648-4142.2008.23.236-239
https://doi.org/10.1080/00423110600879296
https://doi.org/10.1016/j.ymssp.2005.09.012
https://doi.org/10.1175/BAMS-D-11-00262.1
https://doi.org/10.1016/j.trc.2014.04.013
https://doi.org/10.1109/TITS.2015.2400424
https://doi.org/10.1016/j.sigpro.2003.07.018
https://doi.org/10.3846/16483480.2002.10414003
https://doi.org/10.1175/JCLI-D-12-00551.1
https://doi.org/10.1111/j.1467-8667.2008.00584.x
https://doi.org/10.1049/ip-vis:19990428


578 Y. Cui et al. Using extreme value theory to identify railcar asymmetric wheel wear and its benefit analysis

Singh, S.; Tu, H.; Donat, W.; Pattipati, K.; Willett, P. 2009. Anom-
aly detection via feature-aided tracking and hidden Markov 
models, IEEE Transactions on Systems, Man, and Cybernet-
ics – Part A: Systems and Humans 39(1): 144–159. 
https://doi.org/10.1109/TSMCA.2008.2007944 

Tournay, H. 2011. Integrated freight car truck design concept, in 
WCRR 2011: 9th World Congress on Railway Research, 22–26 
May 2011, Lille, France, 1–11.

Tournay, H. 2008. The development of algorithms to detect poor-
ly performing vehicles at wayside detectors, in WCRR 2008: 
8th World Congress on Railway Research, 18–22 May 2008, 
Seoul, Korea, 1–11.

Ye,  N.; Emran, S. M.; Chen,  Q.; Vilbert, S. 2002. Multivariate 
statistical analysis of audit trails for host-based intrusion de-
tection, IEEE Transactions on Computers 51(7): 810–820. 
https://doi.org/10.1109/TC.2002.1017701

https://doi.org/10.1109/TSMCA.2008.2007944
https://doi.org/10.1109/TC.2002.1017701

