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Abstract. This work deals with the development of an adaptive multisensor data fusion technique for the accurate esti-
mation of the trains position and velocity. The proposed technique will work with the Train Collision Avoidance System 
(TCAS) used in Indian railways during Global Positioning System (GPS) outages. The determination of accurate position 
of trains is a challenging task for the TCAS during GPS outages. The accuracy of the proposed Volterra Recursive Least 
Square (VRLS) based adaptive multisensor data fusion technique is evaluated by generating two kinematic profiles for a 
passenger train running between Silchar–Lumding broad gauge route in Indian railways. The effect of accelerometer bias 
is also considered during the analysis. It is observed that the developed technique can provide a better estimate of the po-
sition and velocity for the TCAS especially during GPS outages and without using any additional railway infrastructure. 
The simulation results indicate that the proposed technique is superior to the earlier works in terms of achieving better 
positional accuracy in presence of accelerometer bias. 

Keywords: train positioning, multisensor data fusion, signal processing, train collision avoidance system, global position-
ing system, odometer, accelerometer.

Introduction

Multisensor data fusion technique refers to the process of 
combining observations from different sensors to improve 
the quality of the information of a process of interest so 
that in some sense the overall effect is greater than the 
sum of effects if considered individually (Mitchell 2007). 
The use of multisensor data fusion techniques also gained 
much popularity and found to be advantageous when used 
in intelligent transportation system (Walts 1988; El Faouzi 
et al. 2011; Bachmann et al. 2012; Khaleghi et al. 2013) 
especially in control and guidance of autonomous vehicles 
(Gregor et al. 2002; Chen, Han 2005).

In the recent years, the research related to the field of 
train positioning system is gaining more attention (Santos 
et al. 2005; Chang, Tsang 2008; Arunachalam et al. 2013; 
Hartwig et al. 2006). The positioning system can help the 
railway engineers in achieving higher safety. The naviga-
tion system becomes robust when the multisensor data 
fusion techniques are included in the system. The deter-
mination of the position of the train can be used to avoid 
major collisions viz. the Gaisal train accident in India.

The use of GPS for land vehicle navigation purposes 
have also increased due to its miniature size and low cost 

(Qin et al. 2012). However, the use of GPS got increased 
but, still there are many inherent shortcomings of GPS 
while using in the land vehicle positioning system (Zhao 
2011). The satellite-based GPS requires a line-of-sight be-
tween the satellites and receiver antenna. A good quality 
line-of-sight is always not guaranteed in case when a land 
vehicle is travelling through dense forest areas, mountain-
ous regions that hinders the satellite signals from reaching 
the antenna. The signal acquisition and tracking becomes 
difficult during GPS outages and which in turn affects the 
GPS navigation accuracy (Kaplan 1996). Thus, there is a 
requirement of an efficient technique that can be included 
in the train navigation system that will help in precisely 
localising the trains in case of unavailability of GPS in-
formation.

The TCAS is an autonomous system developed by 
Indian railways and is able to provide the location infor-
mation of trains using GPS (Mansukhani 2014). One of 
the major issue of the TCAS is the requirement of good 
quality GPS signal, which helps in locating the trains. A 
case study of the trains running in the Silchar–Lumding 
broad gauge route a hilly region in Indian railways is 
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chosen for the analysis. The problem associated with the 
phenomenon of GPS jamming due to the interference in 
signal coming from the satellite is one of the common 
problem occurring in this hilly route (Kim et  al. 2011; 
Prakash et  al. 2008). Moreover, there are also certain 
limitations with the techniques that are being used at pre-
sent for the train localization. The use of Kalman filter in 
train navigation system is reported by several researchers 
(Mirabadi et  al. 2003; Ernest et  al. 2004; Acharya et  al. 
2011). The working of Kalman filter mainly depends on a 
set of measurements and also it requires a proper initial 
knowledge of the dynamic model of the navigation system 
to provide an optimal estimation of the states. An optimal 
estimation is not guaranteed in presence of nonlinearities 
and also in case the input data does not fit well with the 
model (Kalman 1960). This problem can be solved by us-
ing an Extended Kalman Filter (EKF) (Cooper et al. 1994), 
but again the EKF works on the principle of linearization 
of the state transition matrix and the observation matrix, 
which can degrade the performance and divergence of the 
filter for highly non-linear systems (Ribeiro 2004). Hence, 
the investigation of a new adaptive multisensor data fu-
sion technique for the TCAS based train navigation sys-
tem becomes the motivation of this research.

The objectives of the present work are as follows:
 – to develop a localization technique for the TCAS 
used in Indian railways that can accurately localize 
the trains during GPS outages;

 – to analyse the proposed VRLS based adaptive mul-
tisensor data fusion technique by considering a case 
study of a train running in the Silchar–Lumding 
broad gauge route in Indian railways;

 – to study the comparative performances of the pro-
posed technique with three other available tech-
niques considering two different kinematic profiles 
and including the effect of various accelerometer 
bias and noise adopted from (Noureldin et al. 2013; 
Groves 2013).

1. An overview of TCAS in Indian railways 

The TCAS is developed under Automatic Train Protection 
System (ATP) that works as an autonomous system and is 
capable of providing the longitudinal position informa-
tion of the running trains (Mansukhani 2014). The design 
specifications as shown in Figure 1 are based on European 
Train Control System (ETCS) Level-I as per Research De-
sign and Standard Organisation (RDSO) (Mangal 2013). 

Quality assessment and short trials with the TCAS have 
been conducted in the joint supervision of RDSO and M/s 
HBL, Hyderabad in 2012 in Southern region of Indian 
railways (Mangal 2013). 

Some of the shortcomings with the current version of 
TCAS are given below: 

 – the use of Radio-Frequency IDentification (RFID) 
tags in determining the position of the train in this 
kind of harsh environments may not be a suitable 
choice and there are certain limitations as discussed 
in (Zhang et al. 2010); a brief survey of RFID appli-
cation in railway industry is presented in (Malakar, 
Roy 2014); 

 – the error related to the GPS or Global Navigation Sat-
ellite System (GNSS) receiver may increase whenever 
the train passes through dense forest, tunnels or GPS 
dark regions Bajaj et al. (2002);

 – the degraded adhesion between the wheel and rail 
contacts, which commonly occurs in this kind of 
hilly routes may affect the performance of tachom-
eter (Wang et al. 2014; Government of India 2012).

2. Dynamic modelling 

In this work, the Wiener-process acceleration model is 
used to derive the discrete state equations (Bar-Shalom, 
Li 1993). The Wiener process acceleration model assumes 
the acceleration to be a Wiener process (Bar-Shalom, Li 
1993). The corresponding discrete-time equivalent state 
equation with a sampling time interval of Δt is given by:

1k k k k kx F x P a w+ = ⋅ + ⋅ + ,  (1)
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In Equation (1) above, the three state variables are dk, 
vk and bk, which represent the position, velocity and bias 
of the accelerometer respectively. In Equation (1), the ac-
celeration ak measured by the accelerometer at the k-th 

sample is assumed to be a known input. The quantity ak – 
bk gives the measure of true acceleration. It is obvious that 
this kind of choices works effectively as described in re-
searches by Ernest et al. (2004) and Acharya et al. (2011). 
The accelerometer used in this work not only acquire the Figure 1. Architecture of the TCAS installed in locomotive
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true kinematic acceleration profile but at the same time 
also includes the components of: 

 – acceleration due to gravity; 
 – disturbances raised from the vibrations and angular 
accelerations; also, the effects of climbs and descends 
in a grade is continuously compensated and is in-
cluded in the analysis. 

The covariance matrix Qk with the discrete-time pro-
cess noise wk is given by:

( ) 2
3covk k wQ w T= = σ ⋅ ,  (2)

where: 2
wσ  represents the autocorrelation of the scalar 

white noise wk;
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The output equation by considering the Gaussian 
measurement noise ek is given by:
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3. Proposed technique for localization of trains

In this work, a localization system is developed for the 
TCAS to determine the position of trains during the 
unavailability of GPS information without relying on any 
trackside aids.

The proposed data fusion technique for train locali-
zation system consists of three on-board sensors namely 
longitudinal accelerometer, odometer and GPS receiver 
unit that are installed in the locomotive. The data fusion 
scheme for the navigation system installed in the loco-
motive serves as a means of providing the longitudinal 
position of the train along the track. The working of the 
proposed Localization system is shown in the Figure 2. 

The slip and slide errors due to poor wheel-rail adhe-
sion are very common in this hilly regions and are in-
cluded in the analysis while estimating the position and 
velocity during GPS outages (Mirabadi et al. 2002). The 
slip and slide errors modelled by ek in Equation (3) can 
also affect the performance of the odometer.

Following are the two cases considered when poor ad-
hesion between the wheel and rail occurs and which are 
as follows:

 – when there is no slip and slide error modelled by ek 
occurs in the odometer, then the adaptive filter is able 
to estimate the optimal accelerometer bias and by in-
tegrating this bias value one can get the velocity and 
again integrating gives the position of the train; 

 – when the slip and slide error modelled by ek is large 
the true velocity measurement from the odometer 
can be ignored by choosing a large measurement 
noise covariance in the adaptive filter and the veloc-
ity and position can be obtained from using only the 
acceleration measurement. 

These two above considered cases will work only if 
one could determine when ek is having a larger value. This 
kind of assumptions are already found to be useful for the 
fusion strategies as given in the researches by Ernest et al. 
(2004) and Acharya et al. (2011). 

The fourth source of information is provided by the 
digital map, which includes the geographical and geo-
metrical information of the railway network. In case of 
the unavailability of GPS information the position is esti-
mated by the on-board system installed in the locomotive.

Thus, an analysis will be carried out for the TCAS us-
ing the above sensors configuration to evaluate the perfor-
mance of the proposed technique in the following subsec-
tions. 

3.1. Adaptive datafusion scheme  
for localization of trains

An adaptive filtering technique is mainly concerned with 
designing of time-varying adaptive filters capable of tun-
ing themselves to optimally process the non-stationary 
signals in a dynamic environment (Diniz 2013). Adaptive 
filters are proved to be one of the promising technique 
when applied in case of non-stationary systems and noisy 
environments. Adaptive filters are also successfully im-
plemented in several applications that include: (1) system 
identification, (2) inverse system modelling, (3) signal pre-
diction and interference cancelation. A combination of the 
data fusion with the proposed adaptive algorithm for the 
Indian railway TCAS is shown in Figure 3. The filter coef-
ficients are obtained by the adaptive filtering algorithm, 
which in turn accurately estimates the mean square of the 
position and velocity error.

The error e(n) is calculated as d(n) – y(n). An objective 
function is developed using this error information that is 
required by the adaptation algorithm in order to deter-
mine the appropriate updating of the filter coefficients. 
After going through various iterative processes, if there 
is a minimization of the objective function then it can be 
concluded that the adaptive-filter output is matching with 
the desired position and velocity. The adaptive algorithm 
is mainly responsible for the adjustment of the adaptive-
filter coefficients and which generally help in the reduc-
tion of the prescribed criterion. Figure 2. Working of the proposed localization system

Accelerometer Odometer Track map

CPS receiver unitData fusion unit

GPS satellites

Position

Velocity



Transport, 2019, 34(4): 508–516 511

3.2. VRLS algorithm

The Volterra series model is widely accepted and is found 
to be one of the most promising model for nonlinear sys-
tems (Diniz 2013). 

According to the Volterra series expansion, the rela-
tionship between the input and output of a nonlinear sys-
tem consisting of non iterative series is given by:
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where: w0i (l1, l2, ..., li) , for i = 0, 1, ..., ∞, are the coef-
ficients of the nonlinear filter model based on the Volt-
erra series; d ′(k) is used for system identification purpose 
and represents the unknown system output in absence of 
measurement noise.

The necessary computational steps required by the 
VRLS algorithm for updating the weights of the unknown 
parameters is given below:

 – Step 1. Initialization (set parameters for vector ini-
tialization):

  SD (–1) = dI, 
where: d – inverse of an estimate of the position and 
velocity; SD – inverse of the deterministic correlation 
matrix of the input vector; I – identity matrix;

 – Step 2. Compute the true kinematic acceleration pro-
file by considering various slip factors;

 – Step  3. Compute the measured acceleration: meas-
ured acceleration = true acceleration + accelerometer 
bias + accelerometer noise;

 – Step 4. Compute the velocity from odometer: veloc-
ity = (true velocity + slip) × odometer scale factor (SF);

 – Step 5. Assign the filter parameters Q, R and v;
 – Step 6. ( ) ( )1 1 0 0 ... 0

T
x w  − = − =   , do for n ≥ 0;

 – Step 7. Calculate e(k) using the relation:
( ) ( ) ( ) ( )1Te n d n x n w n= − ⋅ − ,

where: e(n) is the error;
 – Step 8. Calculate: ( ) ( ) ( )1Dn S n x nψ = − ⋅ ,

   where: x(n) is input vector;
 – Step 9. Calculate inverse of the deterministic correla-
tion matrix of the input vector:
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where: l is an exponential weighting factor that 
should be chosen in the range of 0 ≤ l ≤ 1;

 – Step 10. Update w matrix:

  ( ) ( ) ( ) ( ) ( ) 1 Dw n w n e n S n x n= − + ⋅ ⋅ ,
where: w(n) are coefficients of the non-linear filter 
model based on the second order of the Volterra se-
ries expansion;

 – Step 11. If necessary, compute y(n) matrix:

  ( ) ( ) ( )Ty n w n x n= ⋅ ,
   where: y(n) is adaptive filter output;

  ( ) ( ) ( )n d n y nε = − ,
where: e(n) is mean square error.

The selection of the suitable coefficients of the adap-
tive filter is done by the Recursive Least Square (RLS) 
algorithm so that the output y(n), will try to match the 
desired position and velocity in the least-squares sense. 
The process of minimization is similar to the Least Mean 
Square (LMS) case and can be adjusted easily for the non-
linear adaptive filtering case through reinterpretation of 
the entries of the system input vector and the coefficient 
vector (Diniz 2013). 

As discussed earlier, the TCAS is a satellite based 
navigation system, which employs RFID tags and GPS or 
GNSS that basically assist to locate the trains on a track. 
Both of these systems are found to be unsuitable for the 

Figure 3. Multisensor datafusion scheme for train localization: n – iteration number; x(n) – the adaptive-filter input;  
y(n) – adaptive-filter output; d(n) – the desired position and velocity; e(n) – error
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trains running in the northeast region of Indian railways 
due to various environmental factors and may result in 
poor positional accuracy (Government of India 2015). On 
the other hand, the accuracy of tachometer for measur-
ing the speed especially in this kind of hilly routes is also 
suffered by the error generated by the slipping and sliding 
due to wheel-rail contacts (Mirabadi et al. 2002; Geistler, 
Bohringer 2004). It is observed from the present analysis 
that VRLS based adaptive multisensor data fusion tech-
nique can effectively estimate the position and velocity in 
presence of accelerometer bias and noise. 

4. Dynamic simulation of the localization system

4.1. Kinematic profile 

The kinematic profile is obtained for a passenger train 
running between Silchar–Lumding route in the North-
Eastern region of Indian railway. The accuracy of the pro-
posed technique is analysed for two different kinematic 
profiles that are generated for two different journeys. The 
assumed kinematic profiles that are obtained for the pas-
senger train while passing through two different stations 
is given in Table 1. 

The acceleration profiles are generated for the two 
journeys named A and B for different accelerometer bias 
and noise and are given below in Table 2.

The kinematic profile both true and estimated for all 
the cases including the bias and accelerometer noise are 
shown in Figure 4, and the technique discussed in research 
by Acharya et al. (2011), is mainly used to synthetically 
generate the profiles. The present journeys (Journey-A and 
Journey-B) also include acceleration, cruising, coasting, 
mild braking, deceleration and stop at different velocities. 

The assumed kinematic profile can be further inte-
grated to compute the distance travelled. The acceleration 
kicks as shown in the Figure 4 in the negative direction 
shows the phenomenon of the wheel slippage due to the 
poor wheel–rail adhesion, which is also considered during 
the analysis (Wang et al. 2014).

Figure 4. Kinematic profiles for journeys with profiles:  
a – Journey-A with Profile-1; b – Journey-A with Profile-23; 
c – Journey-A with Profile-3; d – Journey-B with Profile-4;  
e – Journey-B with Profile-5; f – Journey-B with Profile-6

Table 1. Journey details of the passenger train 

Journey name Distance ~[km] Travel time ~[h:min]
Journey-A 26 1:20
Journey-B 46 1:30

Table 2. Accelerometer bias and noise considered during the 
analysis for Journey-A and Journey-B

Journey  
name

Type of 
profile

Accelerometer 
bias Ab [m/s2]

Accelerometer 
noise An [m/s2]

Journey-A
Profile-1 0.20 0.05
Profile-2 0.26 0.02
Profile-3 0.30 0.05

Journey-B
Profile-4 0.10 0.02
Profile-5 0.20 0.01
Profile-6 0.25 0.01
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The true velocity obtained from the assumed kinemat-
ic profiles is shown in Figure 5. For the comparison of 
various results, the odometric profile given in research by 
Acharya et al. (2011) is used.

4.2. Dynamic simulation for performance analysis

4.2.1. Estimation of velocity error
The position and velocity are estimated using the VRLS 
based adaptive multisensor data fusion technique in pres-
ence of three different accelerometer bias and noise each 
for Journey-A and Journey-B as given in Table 2. The 
results of the comparative performances of the available 
techniques for the representative cases along with the pro-
posed one with respect to the velocity estimation error are 
shown in Figure 6 and rest of the results are given in Table 
3. The best values of filter parameters for VRLS technique 
are determined experimentally on a trial and error basis, 
i.e. Q = 0.5 m2/s4, R = 10 m/s2, ν = 0.01 m/s2 and odom-
eter scale factor SF = 0.98. In Figure 6, the time scale for 
some selected regions are enhanced for a better visibil-
ity. The comparative performance of the fusion-filtering 
techniques for velocity estimation error for the assumed 
kinematic profiles are presented in Table 3. 

It can be observed from Table 3 that the absolute peak 
velocity error estimated by the VRLS based adaptive mul-
tisensor data fusion technique for the assumed kinematic 
profiles with various bias and accelerometer noise along 
with larger wheel slippage is much lesser when compared 
with the Observation Error Based Approach (OEBA), 
Bounded Offset Based Approach (BOBA) and Pseudo-
Measurement State Constraining (PMSC) techniques. 
The detailed results of the analysis are given in Table 3. 
It further reveals some interesting information regarding 
the performance of the proposed technique while estimat-

Figure 5. Velocity profiles for journeys:  
a – Journey-A; b – Journey-B
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Figure 6. Estimations of velocity error for journeys  
with profiles: a – Journey-A with Profile-1; b – Journey-A  

with Profile-2; c – Journey-B with Profile-5

ing the velocity error with various accelerometer bias and 
noise.

Thus, it can be concluded from the analysis that for 
the assumed kinematic profile for the Journey-A and 
Journey-B, with various values of accelerometer bias and 
noise the velocity error estimated by the VRLS based 
adaptive multisensor data fusion technique comes out to 
be the least.

4.2.2. Estimation of position error
The performance of the proposed VRLS based adaptive 
multisensor data fusion technique for the estimation of 
position error is shown in Figure 7. The results shown in 
Figure 7 are only for the representative cases. So, the com-
parative performance of the fusion-filtering techniques for 
the estimation of position error for the assumed kinematic 
profile are tabulated in Table 4.

The techniques as discussed in researches by Acharya 
et al. (2011) and Ernest et al. (2004) used for the purpose 
of estimation of position and velocity errors have some 
limitations. The accuracy of both the techniques in the 
work reported by Ernest et al. (2004), i.e. the OEBA and 
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Table 3. Comparative performance of the fusion-filtering 
techniques for velocity error estimation

Journey name Technique Absolute peak 
velocity error [m/s]

Journey-A
with accelerometer  
bias = 0.20;
accelerometer  
noise = 0.05

OEBA 8.023
BOBA 5.616
PMSC 3.209
VRLS (proposed) 0.6918

Journey-A
with accelerometer  
bias = 0.26;
accelerometer  
noise = 0.02

OEBA 6.152
BOBA 3.845
PMSC 2.307
VRLS (proposed) 0.5645

Journey-A
with accelerometer  
bias = 0.30;
accelerometer  
noise = 0.05

OEBA 7.482
BOBA 5.985
PMSC 2.993
VRLS (proposed) 0.5394

Journey-B
with accelerometer  
bias = 0.10;
accelerometer  
noise = 0.02

OEBA 8.618
BOBA 5.171
PMSC 3.016
VRLS (proposed) 0.5887

Journey-B
with accelerometer 
bias = 0.20;
accelerometer 
noise = 0.01

OEBA 7.188
BOBA 4.672
PMSC 2.516
VRLS (proposed) 0.4681

Journey-B
with accelerometer 
bias = 0.25;
accelerometer 
noise = 0.01

OEBA 8.244
BOBA 6.229
PMSC 2.290
VRLS (proposed) 0.5294

Table 4. Comparative performance of fusion-filtering 
techniques for position error estimation

Journey name Technique
Absolute peak 

position  
error [m]

Final 
position 

error [m]

Journey-A
with accelerometer 
bias = 0.20;
accelerometer  
noise = 0.05  

OEBA 122.1 –64.65

BOBA 73.13 –38.88

PMSC 37.71 –20.05

VRLS 
(proposed)

10.97 –5.832

Journey-A
with accelerometer 
bias = 0.26;
accelerometer  
noise = 0.02

OEBA 114.9 –96.47

BOBA 69.72 –58.85

PMSC 32.00 –27.01

VRLS 
(proposed)

9.196 –7.72

Journey-A
with accelerometer 
bias = 0.30;
accelerometer  
noise = 0.05

OEBA 145.0 –80.32

BOBA 84.56 –46.85

PMSC 48.32 –26.74

VRLS 
(proposed)

12.07 –6.692

Journey-B 
with accelerometer 
bias = 0.10;
accelerometer  
noise = 0.02

OEBA 194.2 –111.0

BOBA 121.4 –69.56

PMSC 48.57 –27.82

VRLS 
(proposed)

19.52 –11.10

Journey-B
with accelerometer 
bias = 0.20;
accelerometer  
noise = 0.01

OEBA 211.5 –163.3

BOBA 141.0 –108.8

PMSC 56.21 –43.55

VRLS 
(proposed)

14.12 –10.90

Journey-B
with accelerometer 
bias = 0.25;
accelerometer  
noise = 0.01

OEBA 256.9 –74.10

BOBA 154.0 –44.47

PMSC 82.19 –23.70

VRLS 
(proposed)

30.83 –8.893

Figure 7. Estimations of position error for journeys with Profiles: a – Journey-A with Profile-1;  
b – Journey-A with Profile-2; c – Journey-B with Profile-5
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BOBA mainly depends on choosing the appropriate value 
of filter parameters. In case of choosing an inappropriate 
value of the filter, parameters may result in an error in the 
estimation of position, which may grow with time. 

In the work reported by Acharya et al. (2011), the lim-
iting factor in case of the PMSC technique is noise. The 
navigation system while using in railway environments 
(due to slip and sliding of wheels) needs more accuracy 
and the noise may again give rise to an erroneous result 
in the estimation of position error. It thus becomes clear 
from Table 4, that the position error estimated by the 
proposed VRLS based adaptive multisensor data fusion 
technique outperforms for the chosen kinematic profiles 
for Journey-A and Journey-B, when compared with other 
works available in the literature.

Conclusions

In this work, a VRLS based adaptive multisensor data fu-
sion technique is proposed for the TCAS used in Indian 
railways for the precise localization of trains during GPS 
outages. 

For the TCAS in Indian railways, which works as an 
autonomous system the velocity and positional accuracy 
are the two major requirements. It is clear from the pre-
sent analysis that the developed scheme is an effective one 
that can work with the TCAS during the GPS outages for 
the purpose of accurate train localization. 

Future research work on this topic may concentrate 
on the real-time implementation and testing of the TCAS 
against various GPS receiver errors to further enhance the 
accuracy and robustness of the proposed technique. 
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