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Abstract. This paper considers a Capacitated Location-Arc Routing Problem (CLARP) with Deadlines (CLARPD) and a 
fleet of capacitated heterogeneous vehicles. The proposed mixed integer programming model determines a subset of po-
tential depots to be opened, the served roads within predefined deadlines, and the vehicles assigned to each open depot. 
In addition, efficient routing plans are determined to minimize total establishment and traveling costs. Since the CLARP is 
NP-hard, a Genetic Algorithm (GA) is presented to consider proposed operators, and a constructive heuristic to generate 
initial solutions. In addition, a Simulated Annealing (SA) algorithm is investigated to compare the performance of the GA. 
Computational experiments are carried out for several test instances. The computational results show that the proposed 
GA is promising. Finally, sensitivity analysis confirms that the developed model can meet arc routing timing requirements 
more precisely compared to the classical Capacitated Arc Routing Problem (CARP).

Keywords: capacitated location-arc routing, mixed integer programming, deadlines, genetic algorithm, simulated anneal-
ing, heterogeneous fleet.

Introduction and problem definition

Design of a distribution network is a fundamental step in 
building an efficient supply chain. This process requires de-
cisions at different levels: the strategic level (e.g., location of 
depots); the tactical level (e.g., routing plans); and the opera-
tional level (e.g., vehicle and personnel scheduling). Several 
authors have warned of the incremental costs of considering 
these decisions separately (Frederickson 1979; Rand 1976; 
Salhi, Rand 1989). Location and routing decisions should 
be made as strategic and tactical decisions, respectively. The 
problem may be called the Location Routing Problem (LRP) 
or the Location-Arc Routing Problem (LARP), based on 
whether demands are located on edges or nodes of the net-
work. To the best of the authors’ knowledge, while the LRP 
has been much studied (Fazayeli et al. 2018; Prodhon, Prins 
2014; Fazel Zarandi et al. 2013; Lopes et al. 2013), less atten-
tion has been paid to the LARP (Levy, Bodin 1989; Ghiani, 
Laporte 1999; Hashemi Doulabi, Seifi 2013; Lopes et al. 2014; 
Riquelme-Rodríguez et al. 2016). Ghiani and Laporte (2001) 
surveyed the most important applications, such as garbage 

collection, mail delivery and road maintenance, and solution 
approaches for the LARP. One of important extensions of the 
LRP, according to real-world requirements, is considering 
the servicing time window for each node, which is called the 
LRP with Time Window (LRPTW). Time windows ensure 
that each customer is visited within a specific time interval. 
The LRPTW includes three well-known types: (1) The LRP 
with hard time windows (LRPHTW), in which customers 
must be served within specific time windows (Wasner, Zäpfel 
2004; Schittekat, Sörensen 2009; Gündüz 2011; Farham et al. 
2018); (2) The LRP with soft time windows (LRPSTW), in 
which customers can be served outside of their time win-
dows with a penalty (Nikbakhsh, Zegordi 2010; Gharavani, 
Setak 2015; Rabbani et al. 2018); (3) The LRP with one-sid-
ed hard time windows or deadlines (LRPD) (Aksen, Altinke-
mer 2008). In hard time windows, the vehicle can arrive at 
customers early. The wait times of the vehicle can be taken 
into account, with additional costs (Govindan et al. 2014) or 
without any cost (Setak et al. 2017).
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Generally, the ARP can be divided into three types:  
(1) the Chinese Postman Problem (CCP), in which all edges 
(or arcs) of a graph have positive demand and must be served; 
(2) the Rural Postman Problem (RPP), in which only a subset 
of edges (or arcs) have positive demand and must be served; 
(3) the Capacitated Arc Routing Problem (CARP) with ve-
hicle capacity constraints. The LARP is an extension of the 
CARP in which demands are located on edges (or arcs) in-
stead of nodes. The first formulation of the CARP with vehi-
cle capacity constraints was introduced by Golden and Wong 
(1981). They proved that the CARP is Non-deterministic 
Polynomial-time hard (NP-hard). Therefore, the LARP is 
also an NP-hard problem (Nagy, Salhi 2007). A review of the 
literature shows that, while the LRP with various extensions 
related to time windows has been considered, the LARP has 
been overlooked. Therefore, a research gap exists with regard 
to application of extensions to time windows for the LARP. 
In the current paper, a variation of the LARP, the Capacitated 
Location-Arc Routing Problem with Deadlines (CLARPD), 
is considered, where the service at each required edge must 
be started before a predefined deadline. 

A CLARPD is defined on an undirected graph G(N, E) in 
which N and E are sets of nodes and edges, respectively. Edges 
and nodes represent two-way roads and junctions (or depots), 
respectively. All required roads must be serviced only once 
from one direction and within predefined deadlines with a 
heterogeneous fleet of vehicles. It’s assumed that each depot 
has a special predefined covering radius. Thus, the first start-
ing edges from the depots are assumed to be covered by other 
existing facilities, so the vehicles that start from the depots 
don’t necessarily serve the edges that are after the depots. A 
feasible solution in an undirected network with 20 edges and 
3 potential depots is shown in Figure 1. Note that the deadline 
constraint must be satisfied for edges that are served.

The aim of the present paper is to determine a subset 
of potential depots to be opened, to allocate roads that are 
served within predefined deadlines to opened depots, and to 
specify efficient routing plans to minimize total establishment 
and traveling costs. Because this is an NP-hard problem, two 
popular and efficient algorithms of Genetic Algorithm (GA) 
and Simulated Annealing (SA) are employed to solve the 
problem. So, the main contributions of the current study can 
be stated as follows:

 – developing a mathematical model for the CLARPD 
in an undirected network, considering of the capacity 
for vehicles and depots, and heterogeneous fleet with 
deadline constraints;

 – using a GA with proposed mutation and crossover 
operators along with a constructive heuristic to gen-
erate initial solutions;

 – carrying out a sensitivity analysis on the effects of 
deadline characteristics on the proposed CLARPD 
model.

The rest of this paper is organized as follows. Section 1 
provides a brief review of the literature. The problem state-
ment and formulation of the proposed CLARPD is presented 

in Section 2. The solution algorithms for CLARPD are de-
scribed in Section 3. Computational experiments are given in 
Section 4. Finally, discussion and conclusions are presented 
in the last section.

1. Literature review

The literature review is divided into two parts. The first 
focuses on the Arc Routing Problem with Time Window 
(ARPTW). Then the integrated LARP is reviewed. 

The Arc Routing Problem (ARP) is an NP-hard problem. 
Therefore, three approaches are used to solve it: exact, heuris-
tic and meta-heuristic algorithms. Exact approaches for the 
ARP have attracted less attention than the others. The first 
exact approach was presented by Hirabayashi et  al. (1992) 
and was limited to 20 edges. Approaches such as the path-
scanning heuristic (Golden et al. 1983), augment-merge heu-
ristic (Golden, Wong 1981) and Ulusoy’s heuristic (Ulusoy 
1985) were proposed to solve the problem in larger instances. 
Some meta-heuristic approaches have had better results, such 
as the Tabu Search (TS) algorithm (Brandão, Eglese 2008), 
GA (Arakaki, Usberti 2018), memetic algorithm (Zhang 
et al. 2017), ant colony (Santos et al. 2010), and guided lo-
cal search algorithm (Muyldermans, Pang 2010). For more 
studies on solution approaches and various aspects of the 
ARP, readers may refer to Wøhlk (2008). 

Figure 1. A sample feasible solution for a CLARPD instance

required edge, which is serviced from 
one direction in predefined deadlines

edge, which is traversed from one direction 

close depot

open depot

red – route 1
blue – route 2

green – route 3
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The ARPTW is a variant of the ARP where each required 
edge must be served within a predefined time window. The 
ARPTW has not been studied much in the literature. Theo-
retical aspects of the ARPTW were considered by Wøhlk 
(2005). Some of the related studies have considered the prob-
lem in a node-based structure, while others have considered 
it in the original arc-based structure. In the first approach, the 
main problem (ARPTW) is converted to the Vehicle Rout-
ing Problem with Time Windows (VRPTW) (Mullaseril 
1997; Wøhlk 2005; Tagmouti et al. 2007; Ciancio et al. 2018). 
Mullaseril (1997) investigated a CApacitated RPP consider-
ing Split Delivery and Time Windows (CARPSDTW). Two 
heuristics were used to solve it: the extended path-scanning 
heuristic, and the modified augment-merge heuristic with a 
column generation approach. Wøhlk (2005) presented two 
integer linear programming models for a CARP with Time 
Windows (CARPTW) in an undirected network; both node- 
and arc-based structures were used. This author developed a 
preferable neighbour heuristic for generating first solutions. 
Then the best solution was selected by a set covering prob-
lem. Tagmouti et al. (2007) studied a CARPTW in a directed 
network. They assumed that the service cost on each road is a 
linear function of the service start time. Then, they presented 
a nonlinear mixed integer programming model by transform-
ing the CARP into a Capacitated Vehicle Routing Problem 
(CVRP); a column generation approach was used to solve 
it. This model was applicable to salt spreading operations. 
Ciancio et al. (2018) considered a Mixed Capacitated Gen-
eral Routing Problem with Time Windows (MCGRPTW) in 
a mixed network. They assumed that a subset of nodes, arcs 
and edges with positive demand must be served in predefined 
time windows. Then the problem in a node-based structure 
was solved by a branch price and cut algorithm.

The CARPTW has some applications, such as waste col-
lection, street sweeping, winter road gritting and spreading, 
etc. Eglese (1994) studied a Multiple Depots Capacitated CPP 
(MDCCPP) for winter gritting operation, considering differ-
ent priorities for roads. A heuristic for generating initial solu-
tions with a SA algorithm was proposed to solve it. Haghani 
and Qiao (2001) presented a mixed integer programming 
model for a CARPTW, considering a salt spreading case in 
Maryland. Two proposed heuristics were used to generate 
initial solutions. Augment, delete, insert, and merge heuris-
tics were proposed to improve the solutions. Reghioui et al. 
(2007) presented a Greedy Randomized Adaptive Search 
Procedure (GRASP) with path relinking for a CARPTW in 
an undirected network. Two constructive methods, first a 
randomized path-scanning heuristic and then a heuristic 
based on a route first-cluster second, were used to obtain ini-
tial solutions, which is the first step for many meta-heuristics. 
Then, or-opt, swap, and 2-opt heuristics were proposed to 
obtain near optimal solutions. Johnson and Wøhlk (2009) 
considered various solution approaches for a CARPTW in 
an undirected network. They proposed a heuristic method 
with column generation to solve it. Afsar (2010) considered 
a CARP with soft time windows in an undirected network. 
A branch-and-price algorithm was used to solve different in-
stances. 

The LARP has been considered less often than the ARP. 
Levy and Bodin (1989) studied an LARP for the first time, 
considering a postal carrier delivery case in the United States. 
They presented two heuristics: location–allocation–rout-
ing and allocation–routing–location, to solve it. Ghiani and 
Laporte (1999) used an exact method, branch-and-cut, for 
solving a special case of the LARP in the context of a RPP in 
an undirected network. Amaya et al. (2007) considered a spe-
cial type of CARP with Refill Points (CARPRP) that is similar 
to the LARP. For this purpose, two types of vehicles are used. 
The first type is used to service the arcs, and is called a servicing 
vehicle. The second type is used to refill the servicing vehicle, 
and is called a refilling vehicle. They presented an integer lin-
ear programming model and solved it by a cutting-plane ap-
proach. Hashemi Doulabi and Seifi (2013) studied the LARP 
in a mixed network. They presented two mixed integer linear 
programming models for single and multiple depots. A SA 
algorithm with an insertion heuristic was proposed to solve it. 
Lopes et al. (2014) introduced several constructive heuristics 
for tackling the LARP, such as extended augment-merge and 
extended merge, and improvement heuristics such as reverse 
and relocate. They combined several meta-heuristics such as 
GRASP, TS and Variable Neighbourhood Search (VNS). The 
results showed that a combination of TS and GRASP have the 
best results. Riquelme-Rodríguez et al. (2016) studied a Pe-
riodic LARP with Inventory (PLARPI) in a mixed network. A 
mixed integer linear programming model was presented that 
is applicable to controlling dust on roads around open-pit 
mines. An Adaptive Large Neighbourhood Search (ALNS) 
was proposed to solve the problem. Chen et al. (2017) pre-
sented a mixed integer linear programming model for road 
maintenance operations as an LARP. A branch-and-cut al-
gorithm and a three-stage heuristic algorithm are applied to 
solve various instances. An overview of the literature is sum-
marized in Table 1.

The main research gap in the LARPs is the lack of time 
windows consideration. Table 2 provides a comparison of dif-
ferent aspects of the developed LARP models in the literature. 
Table 2 merely considers different aspects of the proposed 
model with previous studies in context of the LARP.

2. Problem statement and formulation

The CLARPD is defined on an undirected graph ( ),G N E  in 
which N and E are the sets of all nodes and edges, respective-
ly. The set N contains a non-empty subset J of potential depot 
locations ( )⊆J N . The edge set ( ){ }= ∈ ≠, : , ,E i j i j N i j  
includes two-way roads. Let ⊆RE E  be the set of re-
quired edges that must be serviced only once from one 
direction. Each edge ( ),i j  can be replaced with two arcs 
( ),i j  and ( ),j i . Therefore, directed graph ( )′ = ,G N A  
is constructed from graph G where arc set A is defined as 

( ) ( ) ( ){ }= ∈, , , ,A i j j i i j E  and ⊆RA A is the set of required 
arcs. Each edge with positive demand can be deadheaded if 
it is passed without being served by a vehicle. For instance, 
arcs ( ),k i  and ( ),i j  are deadheaded in Figure 2b. For each 
required edge ( )∈, Rk i E , traversal and servicing times are 
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Table 1. A summary of previous related studies problem type

Authors

C
A

RP
TW

C
A

RP
SD

TW
M

D
C

C
PP

TW
*

M
C

G
RP

TW
C

A
RP

RP
LA

RP
PL

A
RP

I

Solution approach

Exact Heuristic Meta-heuristic

Levy, Bodin (1989) – – – – – √ – – location–allocation–routing and 
allocation–routing–location –

Eglese (1994) – – √ – – – – – proposed heuristic SA

Mullaseril (1997) – √ – – – – – column generation path scanning and augment 
merge –

Ghiani, Laporte 
(1999) – – – – – √ – branch and cut – –

Haghani, Qiao (2001) √ – – – – – – – proposed heuristics, augment, 
delete, insert and merge –

Wøhlk (2005) √ – – – – – – set covering preferable neighbour heuristic –
Amaya et al. (2007) – – – – √ – – – cutting plane –
Tagmouti et al. (2007) √ – – – – – – column generation – –

Reghioui et al. (2007) √ – – – – – – – path scanning, route first cluster 
second, or-opt, swap and 2-opt

GRASP with path 
relinking

Johnson, Wøhlk 
(2009) √ – – – – – – column generation proposed heuristic –

Afsar (2010) √ – – – – – – branch and price – –
Hashemi Doulabi, 
Seifi (2013) – – – – – √ – – insertion heuristic SA

Lopes et al. (2014) – – – – – √ – – augment-merge, merge, reverse 
and relocate GRASP, TS and VNS

Riquelme-Rodríguez 
et al. (2016) – – – – – – √ – – ALNS

Chen et al. (2017) – – – – – √ – branch and cut three-stage heuristic –
Ciancio et al. (2018) – – – √ – – – branch price and cut – –

Note: MDCCPPTW – Multiple Depots Capacitated CPP (MDCCPP) with Time Window

Table 2. Different aspects of developed LARP models in previous studies

Authors

Network

M
ul

ti 
de

po
t

C
ap

ac
ita

te
d 

de
po

t

C
ap

ac
ita

te
d 

ve
hi

cl
e Vehicle Hard time 

window

Pe
rio

di
c

Pi
ck

 u
p 

&
 d

el
iv

er
y

Sp
lit
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el

iv
er

y
In

ve
nt

or
y

U
nc

er
ta

in
ty

Methodology

Application

U
nd

ire
ct

ed
D

ire
ct

ed
M

ix
ed

H
et

er
og

en
eo

us

H
om

og
en

ou
s

Tw
o 

sid
ed

O
ne

-s
id

ed
 

(d
ea

dl
in

e)

Ty
pe

 o
f m

od
el

So
lu

tio
n 

ap
pr

oa
ch

Levy, Bodin 
(1989) √ – – √ – – – √ – – – – – – – – heuristic postal carrier 

delivery
Ghiani, Laporte 
(1999) √ – – √ – – – √ – – – – – – – ILP branch and cut –

Amaya et al. 
(2007) – – √ – – √ √ – – – – – – – – ILP cutting plane road marking

Hashemi 
Doulabi, Seifi 
(2013)

– – √ √ – √ – √ – – _ _ _ _ _ MILP SA, insertion 
heuristic –

Lopes et al. 
(2014) √ – – √ √ √ – √ – – – – – – – – GRASP, TS and 

VNS –

Riquelme-
Rodríguez et al. 
(2016)

– – √ √ – √ – √ – – √ – – √ – MILP ALNS controlling dust 
on road

Chen et al. 
(2017) – √ – √ – √ – √ – – – – – – – MILP

branch and 
cut three-stage 

heuristic

road 
maintenance 
operations

Current paper √ – – √ √ √ √ – – √ – – – – – MILP GA and SA salt spreading 
operations

Notes: ILP – Integer Linear Programming; MILP – Mixed Integer Linear Programming.
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shown by ttki and stki, respectively. As shown in Figure 2 the 
arrival time for arc ( ),i j  is actually defined as the beginning 
node arrival time of the arc ( ),i j  shown by ATij. The arrival 
time of each arc is calculated according to its predecessor 
served or traversed arcs.

It is assumed that each required edge i.e., edge ( )∈, Ri j E
 
, 

is associated with two deadlines, one for each direction. The 
deadline of each required arc ( )∈, Ri j A  is defined as time 
window  

 0, ijb , in which bij represent the latest beginning 
service time for arc ( ),i j . It is important to note that the 
deadline constraint corresponding to arc ( ),i j  in Figure 2a 
must be satisfied. Unlike Figure  2a, in which required arc 
( ),i j  is serviced, in Figure 2b, required arc ( ),i j  is only tra-
versed; therefore, it is not essential that the deadline be satis-
fied. The assumptions of current study are as follows: 

 – each required edge must be serviced only once, from 
one direction, by one vehicle;

 – a specific vehicle cannot traverse each edge more 
than once;

 – vehicles are heterogeneous;
 – depots and vehicles have predefined capacities; 
 – each edge that is serviced by a vehicle must satisfy 
a deadline; 

 – each vehicle should start from depot m ( )=1, ...,m J  
in the beginning of a time horizon and returns to the 
same depot.

2.1. Notations

The sets, parameters and decision variables are introduced 
as follows.

Sets:
 N – set of nodes; 
 J – set of potential depot locations ( )=1, ...,m J ;
 AR – set of required arcs ( ⊆RA A,

          
( ) ( ) ( ){ })= ∈, , , : ,A i j j i i j E ;

 K – set of vehicles ( )=1, ...,k K .

Parameters:
 Dij – demand of edge ( ),i j ;
 om – opening cost of a depot at node ∈m J ;

 cam – capacity of a depot at node ∈m J ;
 fk – fixed cost for vehicle k;
 cij – distance between nodes i and j;
 Qk – capacity of vehicle k;
 ttij – traversal time of arc ( ),i j ;
 stij – servicing time of arc ( ),i j ;
 bij – latest beginning service time or deadline for arc ( ),i j ;
 M – a sufficiently large positive number.

Variables:

 
k
ijx  – takes 1 if an arc ( ),i j  is traversed by vehicle k, and 0,

     otherwise;

 
k
ijy  – takes 1 if an arc ( ),i j  is serviced by vehicle k, and 0,

             otherwise;
    zm – takes 1 if depot m is to be opened, and 0, otherwise;
 wijm – takes 1 if the arc ( ),i j , which is serviced by its assigned 
              depot m, and 0, otherwise;

    
k
iu  – an auxiliary variable for sub-tour elimination;
k

ijAT  – an arrival time to arc ( ),i j  by vehicle k.

2.2. Mathematical programming model

The model of a CLARPD is proposed as follows:
Minimize:

( )∈ ∈∈

= ⋅ + ⋅ +∑ ∑ ∑
,

k
m m ij ij

m J k Ki j A
Z o z c x

( )∈ ∈

⋅∑ ∑
,

k
k mj

k K m j A
f x   (1)

subject to: 

∈
+ =∑ 1k k

ij ji
k K

y y , ( ) ( )∀ ∈, , , Ri j j i A ;  (2)

≥k k
ij ijx y , ( )∀ ∈, Ri j A , ∀ ∈k K ;  (3)

( )∈
⋅ ≤∑

, AR

k
ij ij k

i j
d y Q , ∀ ∈k K ;  (4)

( ) ( )∈ ∈

− =∑ ∑
: , A : , A

0k k
ji ij

j j i j i j
x x , 

∀ ∈i N , ∀ ∈k K ;  (5)

( )∈
≤∑

: , A
1k

mj
j m j

x , ∀ ∈k K , ∀ ∈m J ;  (6)

− + ⋅ ≤ −1k k k
i j iju u N x N , ( )∀ ∈,i j A , 

∀ ∈, \i j N J , ∀ ∈k K ;  (7)

( )∈
+ ≤∑

: ,

k k
ij ijmmh

h m h A
x y w , ∀ ∈( , ) Ri j A , 

∀ ∈m J , ∀ ∈k K ;  (8)

( )
∈

+ =∑ 1ijm jim
m J

w w , ( ) ( )∀ ∈, , , Ri j i j A ;  (9)

( )∈
≤∑

, R

ij ijm m m
i j A

d w ca z , ∀ ∈m J ;  (10)

+ ⋅ + ⋅ −k k k
ij ij ij ij ijAT tt x st y

( )⋅ − − + ⋅ ≤1 k k k k k
ij ij ij ij jlM x y x y AT ,

Figure 2. Graphic representation of arrival time  
in arc routing problem

k i j
stki

AT  = AT  + tt  + stij ki ki kiAT  ki

ttki

[0, b ]ki [0, b ]ij

edge, which is serviced from one direction 
in predefined deadline

a)

k i j

AT  = AT  + ttij ki kiAT  ki

ttki

edge, which is traversed from one direction

b)
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( ) ( )∀ ∈, , ,i j j l A, ∀ ∈, \i j N J , 

∀ ∈l N , ∀ ∈k K ;  (11)

+ ⋅ + ⋅ −k k k
ij ij ij ij ijAT tt x st y

( )⋅ − − + ⋅ ≤1 k k k k k
ij ij ij ij jlM x y x y AT ,

( ) ( )∀ ∈, , ,i j j l A , ∀ ∈, \j l N J , 

∀ ∈i J , ∀ ∈k K ;  (12)

= 0k
mjAT , ( )∀ ∈,i j A, ∀ ∈m J ,

∀ ∈ \j N J , ∀ ∈k K ;  (13)

( )− − ≤1k k
ij ij ijAT M y b , 

( )∀ ∈, Ri j A , ∀ ∈k K ;  (14)

{ }∈ 0,1k
ijx , ( )∀ ∈,i j A, ∀ ∈k K ;  (15)

{ }∈ 0,1k
ijy , ( )∀ ∈, Ri j A , ∀ ∈k K ;  (16)

{ }∈ 0,1mz , ∀ ∈m J ;  (17)

{ }∈ 0,1ijmw , ( )∀ ∈, Ri j A , ∀ ∈m J ;  (18)

≥ 0k
ijAT , ( )∀ ∈,i j A, ∀ ∈k K .  (19)

Objective function (1) minimizes the total depot open-
ing and vehicle fixed costs and also total traveling costs. Con-
straint (2) guarantees that each required edge is serviced only 
once, by one vehicle, from one direction. Constraint (3) states 
that arc ( ),i j  can be serviced by vehicle k only if that vehicle 
traverses arc ( ),i j . Constraint (4) considers vehicle capac-
ity. Constraint (5) shows that routes should have continuity. 
Constraint (6) states that each vehicle may have at most one 
link from a depot. Constraint (7) eliminates illegal sub-tours. 
Constraints (8) and (9) guarantee that an edge serviced from 
one direction must only be assigned to a depot if there is a 
route between that depot and that edge. Constraint (10) con-
siders depot capacity. Constraints (11) and (12) calculate ar-
rival time for arc ( ),i j , which is either serviced or traversed 
by vehicle k. Constraint (13) expresses that arrival times for 
arcs starting from a depot are zero. Constraint (14) guar-
antees service at each required edge must be started before 
a predefined deadline. Therefore, servicing time limits are 

considered using Equations (11)–(14). Constraints (15)–(19) 
define types of variables. Since constraints (11) and (12) have 
nonlinear terms because they are a product of two binary 
variables k

ijx  and k
ijy , they are transformed to linear forms by 

replacing the binary variable k
ijzz  as follows:

= ⋅k k k
ij ij ijzz x y , ( )∀ ∈,i j A, ∀k .  (20)

Then, linear constraints (21) and (22) should be added to 
the mathematical model, as follows:

+ − ≤1k k k
ij ij ijx y zz , ( )∀ ∈,i j A, ∀ ∈k K ;  (21)

⋅ − − ≤2 0k k k
ij ij ijzz x y , ( )∀ ∈,i j A, ∀ ∈k K .  (22)

3. Solution approach

LARP is classified in NP-hard problems, so it is neces-
sary to propose an efficient solution algorithm to solve the 
problem in medium and large size instances. Here, two 
popular and efficient algorithms are employed which are 
GA and SA. First we describe a solution representation 
of the problem which is essential step in designing of an 
algorithm then related operators and descriptions about 
the algorithm is presented in following subsections.

3.1. Solution representation

In the current paper, a solution representation is composed 
of K  vectors. Each vector corresponds to a vehicle and is 
made up of two parts. The first determines the sequence 
of traversing/servicing arcs traversed by a vehicle starting 
from an opened depot. The second includes binary values 
to determine the status of traversing (0)/servicing (1) arcs 
corresponding to the tour in part 1. Suppose that n1, n2, …, 
nk are the number of nodes to be visited by vehicles 1, 2, 
…, k. Correspondingly, the second part for each vehicle will 
contain nk – 3 binary values. Therefore, each chromosome is 
made up of ( )⋅ + +…+ − ⋅1 22 3kn n n K  genes. To clarify 
the encoding, consider the undirected network illustrated in 
Figure 1. It includes 9 required edges with three vehicles, and 
three potential depots. The encoding of a solution including 
3 vehicles is shown in Figure 3. V11, V21 and V31 are the tour 
plans of vehicles 1 to 3, respectively, as chromosome 1. In 
the following, the pseudocode of the constructive heuristic 
to generate initial solutions is depicted in Figure 4. 

Figure 3. An illustrative example of solution representation for the CLARPD
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V21

V31
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required edge, which is serviced from one 
direction in predefined deadlines

edge, which is traversed from one direction open depot
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3.2. Genetic algorithm
GA is a population-based search approach that arises from 
a natural selection process. It was introduced by Holland 
(1992). GA has been more popular due to its contribution in 
obtaining good solutions for complicated optimization prob-
lems in a reasonable amount of time (Cheng, Wang 2009). 
It has seen in various applications of combinatorial optimi-
zation problems, including different types of vehicle routing 
problem, especially where time windows are included (Baker, 
Ayechew 2003). In addition, Bräysy and Gendreau (2005) de-
clare that during the past few years, numerous papers have 
been published on solving the VRPTW efficiently by the GA. 
Main reasons of using the GA in this paper can be stated 
as following:

 – because of existing of three main operators (selection, 
crossover and mutation) in the GA, it searches solution 
space and this makes the algorithm converge towards 
high quality solutions within a few generations by well 
tuning of its parameters (Wang, Deng 2018);

 – it should be noted that while the GA is inherently dis-
crete, some algorithms, like Particle Swarm Optimiza-
tion (PSO) are inherently continuous and should be re-
designed to consider discrete design variables (Hassan 
et al. 2005); 

 – our investigation of solution approaches for routing 
problems revealed that there are lots of published pa-
pers on the topic that have used GA, SA and PSO. This 
encouraged us to use two algorithms, GA and SA, in the 
CLARPD problem.

Unlike conventional search approaches, a GA begins with 
a set of solutions or individuals, called the initial popula-
tion. First, chromosomes are selected by the roulette wheel 
method, in which the probability of choosing an individual is 
directly proportional to its fitness value. Then pairs of selected 
chromosomes are crossed over. The resulting chromosomes 
are called offspring. Eventually, the offspring are modified by 
a mutation operator. It should be noted that each generated 
chromosome (solution) during the algorithm is considered to 

Algorithm 1: Constructive heuristics (Num_Vehicle, Required_ Edges, Popsize)
# First part

For (k=1: Popsize) 
Active_Depots ← Randomly selects a set from potential depots based on a randomly defined number of depots 
For (j=1: Num_Vehicle) 
Selected _Depot ← Randomly selects a depot among Active_Depots 
Assign jth vehicle to the Selected_Depot in a random way.
PopTour(k,j) ← Tour finder (Selected_Depot)
End for 

# Second part 
Set Exist_Postion_Edge=Exist_Vehicle=0;
For (m=1: size(Required_ Edge)) 

For (j=1: Num_Vehicle) 
if (Required_ Edge m exists in one of directions in PopTour (k,j) )

Exist_Vehicle (j)=1; 
Exist_Positon_Edge (j) ← Position of Required_ Edge m in PopTour (k,j)

End if
End for 

if (Exist_Vehicle≠ᴓ)
Selected_Vehicle ← Randomly selects a vehicle among vehicles with the value of one of the vector Exist_Vehicle
Postion ← Exist_Postion_Edge (Selected_Vehicle)
Corresponding gen in second part of PopTour (k, Selected_Vehicle) considering Postion ← 1

End if
End for 

End for
Algorithm 2: Tour finder (Selected _Depot)
Step1: Set Tour=[], Current_ Node=Selected _Depot;
Step2: In the graph remove all arcs that enter or exit to/from depots except selected depot.
Step3: In the graph specify all possible nodes that have a link to the Current_Node. If these nodes do not exist in the

Tour, they can be added to Tour. The indices of these nodes are put in a set named Qualified-Nodes.
Step4: if (Qualified_Index≠ᴓ), then randomly select a node from this set and calls it Selected_Node. 
Step5: if (Selected_Node≠Selected _Depot), then remove the edge linking the current node to the Selected_Node in the

graph and update it, then add the Selected_node to the end of the Tour vector, also set the Current_node=Selected_node
and then go to Step3.
else End. 

Figure 4. Pseudocode of the constructive heuristics
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meet all constraints, like the servicing time limitation. In the 
case of a violation of a constraint, a penalty value is added to 
the objective function value based on the violation amount. 
This consideration leads the final chromosomes to serve 
their assigned edges in the predefined time limitations and 
achieve other constraints limitations. The pseudocode of the 
proposed GA algorithm is depicted in Figure 5. Additional 
details about the fitness function and these operators are pro-
vided in the next subsections.

3.2.1. Selection
There are different methods for selecting parents in an 
algorithm, such as tournament selection, fitness propor-
tionate selection, and rank selection. In this paper, a rou-
lette wheel selection operator is applied to create the next 
generation. In this approach, the probability of selecting 
an individual is directly proportional to its fitness value.

3.2.2. Crossover operator
For two selected parents, each time, the crossover opera-
tor starts with the first vehicle for both chromosomes and 
continues until the last vehicle. Two crossover operators 
are presented and analysed, single-point and heuristic 
crossovers. These proposed crossovers are performed for 
all vehicles of two parents to generate two offspring. The 
operators are described in more details as follows.

The single-point crossover is used only for cases where 
similar depots exist for the k-th vehicle in both parents. The 
proposed single-point crossover is performed for two vectors, 
Vk1 and Vk2, corresponding to the k-th vehicle with the same 
depot of the first and second selected chromosomes. During 
this operator, tour plans of the k-th vehicle for both parents 
are considered. The identical nodes in the first part of both 
chromosomes for the k-th vehicle are extracted. One is ran-
domly selected, and then the right side of the second parent 
tour is joined to the left side of the first parent tour. The same 
procedure is applied to generate the second offspring. Accord-
ingly, second parts of offspring are inherited from their par-
ents. During the crossover operation, some duplicated nodes 
may appear in the solution, so a repair approach is used to fix 
it. Suppose that there are two vectors, namely V11 and V12, 
corresponding to the first vehicle of chromosomes 1 and 2,  
which are shown in Figure 6.

Initialize Popsize, Maxgen, Crossover probability (PC), Mutation probability(PM), Erate and Drate
Generate initial population by constructive heuristic. 
Set initial gen to 1;
While (gen<Maxgen)
Calculate the fitness value for the initial population.
Select parents from the current population in size {(1-Erate-Drate)* Popsize} based on the Roulette wheel selection approach.

For i=1:2:(1-Erate-Drate)*Popsize
if (rand<PC)

Select two parents P1 and P2. 
If they have the same depot, then do the single-point crossover operator to create offspring O1 and O2. 
If they have different depots, then do proposed heuristic crossover to create offspring O1 and O2. 
Add offspring to the new population. 

End if
End for

For i=1:(1-Erate-Drate)*Popsize
if (rand<PM)

Select two chromosomes from among the generated offspring and do a mutation operator on each of them.
Add them to the new population.

End if
End for

%Elitism
Transfer the elite chromosomes of the current generation to the next generation in size of Erate*Popsize.
%Diversification
For the remaining population for the next generation select chromosomes from the current population randomly to
also appear in the next generation. 

gen=gen+1;
End while
Report the best solution found among the population of all generations.

Figure 5. Pseudocode of the proposed GA

Figure 6. Example of the proposed single-point crossover 
operator

Gen randomly selection
Duplicated nodes

Join

Repair

V11
V12

https://en.wikipedia.org/wiki/Tournament_selection
https://en.wikipedia.org/wiki/Fitness_proportionate_selection
https://en.wikipedia.org/wiki/Fitness_proportionate_selection
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A crossover point is selected for the first identical node 
in the first part of the chromosomes (node 6). Then two off-
spring are generated, but one needs some repair. Finally, the 
second parts of the new offspring should be defined by inher-
itance from their parents, as illustrated in Figure 6.

As mentioned before, the first crossover operator needs to 
have the same depots to be performed. However some cases 
may involve different depots, so a heuristic crossover is pro-
posed that does not require depot uniqueness. The algorithm 
starts with the first parent, and the offspring inherits the first 
parent’s genes until the same node is observed in both par-
ents. Then the left/right gene of the same node is transferred 
to the offspring. This scheme is repeated until completion of 
a tour. The second part of the offspring is inherited from their 
parents, as described before. To clarify, the crossover steps are 
described in an example. Suppose that there are two vectors: 
V31 and V32, corresponding to the third vehicle of chromo-
somes 1 and 2, which are shown in Figure 7.

3.2.3. Mutation operator
The proposed mutation operator is performed on generat-
ed offspring chromosomes by a heuristic method. During 
the proposed mutation, a gene of a chromosome is ran-
domly selected. Then the left side of the first part remains 
unchanged, while the right side of a new chromosome is 
reconstructed by a constructive heuristic (# first part) ap-
proach. Then the values of the second part of the solution 
are defined according to the previous chromosome, before 
the selected gene and the value of the other remaining 
genes are randomly assigned. This approach ensures the 
feasibility of the solution. An illustrative example for the 
proposed mutation operator is shown in Figure 8.

3.3. Simulated annealing

The SA starts with an initial solution at a given temperature, 
called the initial temperature. Then, it searches the neigh-
bourhood of the current solution in each iteration. If the 

new solution is not worse than the current solution, then the 
current solution will be replaced by the new solution. Other-
wise, the new solution may be accepted with the Boltzmann 

probability function  
 D
− 

⋅ 
exp

B

F
C T

 in which parameters 

DF, CB and T are the difference of objective function val-
ues for the mentioned solutions, the Boltzmann constant 
and temperature. The acceptance of the worse solution leads 
to preventing getting trapped in the local optimum. This it-
erative procedure is continued until the maximum iterations 
are met. Finally, the temperature is reduced using a cooling 
strategy (i.e., = ⋅ 0CT R T ) and the algorithm is continued to 
search the neighbourhood of the current temperature until 
the stopping criterion (final temperature) is met. Note that 
at the beginning of the search, when the temperature is high, 
new solutions are easily accepted. However, near the end of 
search process, the acceptance probability of new solutions 
decreases. In this paper, we use the mutation operator as the 
neighbourhood search mechanism for the SA.

3.4. Fitness function evaluation 

The fitness function evaluates the quality of the solutions. 
This function includes total traveling and establishment 
costs, as well as total penalties for constraint violations, in-
cluding vehicle or depot capacities, deadlines, and servic-
ing of required edges. The algorithms try to find solutions 
that have both optimality and feasibility. As mentioned 
previously, a penalty approach was utilized for constraints 
violations. Total penalty for a solution x is calculated by 
following equation:

( ) ( )
=

= a ⋅∑
4

1
cons_violationi

i
P LT xENA Y x ,  (23)

where: a is a constant parameter that reflects per unit cost 
of a constraint violation (mentioned parameter was tuned 
like other parameters of the algorithms and the tuning re-
sults have been reported Figures 11 and 12).

4. Computational experiments 

Numerical experiments and the results obtained are dis-
cussed in this section. First, the numerical instances are 
introduced. Then sensitivity analyses are performed and 

Figure 7. Example of the proposed heuristic crossover operator

Figure 8. Example of the proposed mutation operator
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the results are reported to show the validity of the pro-
posed model. The proposed CLARPD model is compared 
with the classical LARP model to show the effectiveness 
of the proposed model. The proposed algorithm tuning 
results are also presented. Finally the performance of the 
considered algorithms is compared. 

There are no benchmark instances in the context of LARP. 
So some sets of instances are generated randomly, which are 
shown in Table 3. Other instances were taken from the CARP 
literature (https://www.uv.es/belengue/carp.html) with some 
modifications, as defined in Table 4.

Computational experiments results for two aforemen-
tioned groups of small and large size instances are reported 

in this section. Randomly generated instances are described 
more here. Ten instances are randomly generated for each 
group, and the coordination of the considered nodes are ran-
domly located in the interval of [90, 140]. A density index of 
0.7 is considered to generate edges in the graph. Some of the 
edges are randomly determined as required edges. Demand 
of each required edge is randomly generated by a uniform 
distribution [100, 600]. The vehicles have capacities of 3000, 
2000, 1500 and 1000 units of weight and fixed costs of 300, 
200, 150 and 100, respectively. Traversal and service times are 
uniformly drawn from interval [0, 2]. Deadlines are distribut-
ed uniformly in interval [1, 40]. Other properties of instances 
are summarized in Table 3. 

Table 3. Properties of randomly generated instances

Problem 
size Problem N E R Number 

of depots
Depots 
capacity Fixed cost for potential depots

Small

#S, 8, 15, 9, 2 8 15 9 2

3000

1000, 2000

#S, 8, 15, 10, 2 8 15 10 2
#S, 8, 16, 8, 2 8 16 8 2
#S, 8, 18, 10 ,2 8 18 10 2
#S, 8, 19, 11, 2 8 19 11 2
#S, 8, 20, 9, 2 8 20 9 2
#S, 8, 20, 13,2 8 20 13 2
#S, 10, 19, 9, 3 10 19 9 3

1000, 2000, 3000

#S, 10, 20, 8, 3 10 20 8 3
#S, 10, 23, 8, 3 10 23 8 3

Large

#L, 11, 25, 15, 3 11 25 15 3
#L, 11, 34, 18, 3 11 34 18 3
#L, 12, 43, 26, 3 12 43 26 3 5000
#L, 15, 54, 31, 4 15 54 31 4 5000 1000, 2000, 3000, 4000
#L, 17, 70, 33, 5 17 70 33 5 6000

1000, 2000, 3000, 4000, 5000
#L, 20, 89, 47, 5 20 89 47 5 6000
#L, 25, 116, 51, 8 25 116 51 8 5000

1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000#L, 25, 135, 88, 8 25 135 88 8 7000
#L, 25, 164, 83, 8 25 164 83 8 8000
#L, 30, 212, 108, 10 30 212 108 10 9000 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000

Table 4. Properties of modified instances based on the CARP literature

Problem 
size Problem N E R Number  

of depots
Depots 
capacity

Fixed cost for 
potential depots

Vehicles 
capacity Fixed cost for vehicles

Small

Kshs–1 8 15 8 2 400 200 100, 150 60, 90
Gdb–4 11 19 11 2 10 20 5, 7 1, 2
Gdb–20 11 22 9 2 40 60 20, 27 5, 10
Gdb–1 12 22 14 2 10 20 5, 7 1, 2
Gdb–10 12 25 12 2 15 25 7, 10 2, 4
Gdb–5 13 26 14 3 10 20 5, 7 1, 2

Large

Gdb–22 11 44 22 2 70 100 20, 27 5, 10
Bccm–1B 24 39 20 3 150 150 30, 40 10, 20
Bccm–5A 34 65 32 4 200 200 30, 40, 50 10, 20, 30
Bccm–4A 41 69 42 4 200 200 30, 40, 50 10, 20, 30

https://www.uv.es/belengue/carp.html
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4.1. Sensitivity analysis

First, the effect of servicing deadlines on the routing 
scheme is considered. It was analysed for the #S, 8, 15, 
9, 2. Deadlines were investigated in the following cases, 
which are shown in Table 5: Case0 (Ordinary), Case1 
(Less tight), Case2 (Tighter) and Case3 (Even tighter). 

In cases with tighter deadlines, ignoring arc deadlines 
causes a significant number of un-served required arcs, which 
has an increasing trend, as shown in Figure 9. This shows the 
necessity of considering deadlines in the proposed model.

Figure 10 shows the effect of tightening deadlines on the 
number of traversing arcs and total costs. Tightening dead-
lines increases the number of traversing arcs to meet the 
predefined deadlines; consequently, total costs increase. In 
the last case of tightening deadlines, the number of travers-
ing arcs decreases because of an increase in the number of 
vehicles from 3 to 4. Increasing the number of traversed arcs 
in the case of tighter deadlines is reasonable. A vehicle must 
traverse more arcs to achieve the arc deadlines. As an exam-
ple, suppose that in the salt spreading case, there is an arc 
where salt needs to be spread within a tight deadline because 
of regional weather conditions. In this case, it is obvious that 
the salt spreader vehicle should traverse more arcs to serve 
the mentioned arc before its deadline, while the cost will in-
crease, too.

4.2. Comparison of the proposed model  
with the classical LARP

As shown in Table 6, it is evident that the proposed mod-
el can serve all demands of all required arcs within their 
corresponding deadlines. It can be seen that the servic-
ing scheme determined by the LARP model cannot serve 
all demands of arcs within their corresponding deadlines. 
This comparison confirms effectiveness and necessity of 
the proposed model. According to the performed analy-
sis, in the case of tight deadlines, the mentioned models 
behave differently, while in the case of loose deadlines, 
both models show similar behaviour. This means that in 
cases like salt spreading, involving freezing weather and 
snow, it is more reasonable to use the CLARPD model to 
ensure safe roads.

Figure 9. Effects of the tighter the deadlines on number  
of un-served required arcs

Figure 10. Effects of the tightening deadlines on the number of traversing arcs and total costs

Table 5. Values of deadlines for different arcs in Cases0, Cases1, 
Cases2, Cases3 on instance #S, 8, 15, 9, 2

Arcs deadlines 
Cases (3, –) (4, –) (5, –) (6, –) (7, –) (8, –)

Case0 3 5 8 6 4 9
Case1 3 2 8 6 4 9
Case2 3 2 8 2.4 1.5 9
Case3 3 2 6.5 2.4 1.5 5.4

Table 6. Comparison effects of the tighter the deadlines of the proposed model with classical LARP

Problem Number of un-served required arcs  
in the CLARPD

Number of un-served required arcs in the LARP

Ordinary Less tight Tighter Even tighter
Gdb–1 0 1 2 3 5
Gdb–4 0 3 3 4 4
Gdb–20 0 1 2 3 4
Gdb–10 0 1 2 4 6
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4.3. Parameter setting for the  
proposed meta-heuristics

The performances of the proposed meta-heuristics depend 
on the values of their parameters. Population size (Popsize), 
number of generations (Maxgen), crossover probability PC, 
mutation probability PM, and penalty for each unit of con-
straint violation were considered to be tuned for the GA. 
Furthermore, the parameters of the proposed SA that were 
considered to be tuned were as follows: initial temperature 
T0, final temperature TF, cooling schedule RC, maximum it-
erations at each temperature IM, and penalty for each unit of 
constraint violation. In this paper, the Taguchi method is ap-
plied for setting parameters. There, the three different levels 
for each parameter to be considered are shown in Table 7. 
The result of this experimental design are shown in Figures 
11 and 12. 

The CLARPD for small sizes was solved by the CPLEX 
solver in GAMS 23.4.3. It was solved by the proposed GA and 
SA algorithms, too coded in MATLAB version 7.14.0.739 
(R2012Aa) for large-size instances. All computations were 

run in an IntelR Core i5 2.5 GHz PC with 6 GB of memory. 
Its results are compared with the results of an exact solution, 
as reported in Table 8, and Figures 13 and 14. The current 
paper uses the Relative Percentage Deviation (RPD) that is 

calculated as −( ) ( )
( )

OFV Sol OFV Best
OFV Best

, where Sol is the final 

solution found by the algorithms used to investigate the qual-
ity of the solutions obtained from the considered algorithms. 

Table 7. GA and SA parameters and their levels

GA SA

Parameters Values Parameters Values
Popsize {50, 100, 200} T0 {200, 500, 1000}
Maxgen {100, 200, 300} RC {0.8, 0.85, 0.9}
PC {0.8, 0.85, 0.9} IM {50, 100, 200}
PM {0.05, 0.1, 0.2} TF {0.01, 0.1, 0.2}
Penalty {2940, 3810, 4300} Penalty {2230, 2940, 3810}
Erate {0.1, 0.15, 0.2}
Drate {0.1, 0.15, 0.2}

Figure 11. Main effects plot for SN ratio of the GA

Figure 12. Main effects plot for SN ratio of the SA
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To examine the efficiency of the proposed algorithm, a 
95% confidence interval graph of the RPD is depicted in Fig-
ure 15. It can be concluded that the RPD of the GA algorithm 
is much less than that of the SA. Thus, the GA algorithm is 
better than the SA algorithm in terms of solution quality. 

However, the SA requires less computational time, as illus-
trated in Figure 16. The result for large instances is shown in 
Table 9. As can be seen, the SA also shows weak performance 
compared to the GA in large instances.

Table 8. Performance comparison of GA and SA algorithms with an exact solution in small-sized instances

Problem 
number Problem

GAMS GA (20 times run ) SA

OFV CPU time [s] Absolute gap OFVa CPU time [s] RPD OFVa CPU time [s] RPD

1 #S, 8, 15, 9, 2 4143* 421.5 0 4143* 126.3 0 4202 6.5 1.42

2 #S, 8, 15, 10,2 3907* 742 0 3907* 199.5 0 3955 7.9 1.23

3 #S, 8, 16, 8, 2 3808* 1112.9 0 3808* 126.8 0 3926 10.4 3.1

4 #S, 8, 18, 10, 2 3729* 6113.1 0 3729* 122.2 0 3801 8.8 1.93

5 #S, 8, 19, 11, 2 3871* 113480 0 3880 87.6 0.23 4053 9.8 4.7

6 #S, 8, 20, 9, 2 3723* 20349.6 0 3737 129.1 0.38 3755 8.9 0.86

7 #S, 8, 20, 13, 2 3797* 40720 0 3797* 204.3 0 3889 7.4 2.42

8 #S, 10, 19, 9, 3 3816* 1362.3 0 3816* 164.5 0 4756 12.5 24.63

9 #S, 10, 20, 8, 3 3704* 2930.1 0 3706 185.3 0.05 3826 9.2 3.29

10 #S, 10, 23, 8, 3 3657* 5226.7 0 3675 251.2 0.49 3885 10.1 6.23

11 Kshs–1 6936* 39.725 0 6936* 331.6 0 7104 6.7 2.42

12 Gdb–4 249* 184.83 0 249* 268.5 0 271 5.3 8.83

13 Gdb–20 207* 563.1 0 207* 102.4 0 224 7.9 8.21

14 Gdb–1 270* 616.1 0 270* 98.6 0 356 6 31.85

15 Gdb–10 226* 1930 0 231 106.2 2.21 238 6.7 5.31

16 Gdb–5 273* 17103.6 0 280 447 2.56 314 8.7 15.02

Notes: *optimal solution; aobjective function value.

Figure 13. Computational results for small-sized instances
Figure 14. Comparison of computational times for the GAMS 

and the GA algorithm in small-sized instances
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Figure 15. Mean and interval plots for the RPD of the GA  
and the SA algorithms

Figure 16. Comparison of computational times for the GA  
and the SA algorithms in small-sized instances
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Conclusions

This paper considers a location-arc routing problem in an 
undirected network. During the past decades, studies of 
more general types of the LARP have appeared. There-
fore, we develop a mathematical programming model in 
which depots and vehicles have a limited capacity and 
roads should be serviced within predefined deadlines by 
a heterogeneous fleet. 

The developed model can be used in real-life applications 
such as salt spreading operations. It can be used by planners 
for locating salt storage depots and specifying efficient rout-
ing plans for salt spreader trucks so as to minimize total costs, 
while some arcs need to be served within their deadline to 
prevent roads from icing up and to ensure safe roads. 

Some sensitivity analyses were performed considering the 
effect of related parameters; the results illustrate the neces-
sity and validity of the proposed CLARPD model. Then the 
proposed CLARPD model was compared with the classical 
LARP. The results confirm that the proposed model can serve 
all demands of all required arcs within their corresponding 
deadlines, while the servicing scheme determined by the clas-
sical LARP model cannot serve all demands of arcs within 
their corresponding deadlines. Because of the complexity of 
the problem, a GA with proposed operators and a SA algo-
rithm, along with a constructive heuristic for initial solutions, 
are proposed. The proposed algorithms were tested on two 
group instances: benchmark sets from the CARP literature 
and random generated instances in small and large sizes. To 
confirm the validity of the model, the results of the GA and 
SA algorithms were compared with the result of the CPLEX 
solver. It was shown that the GA performs more efficiently. 

This study has the following limitations: 
 – numerous surveys of node routing problems have 
been done, while reviews of arc routing problems 
are quite rare; 

 – because of nature of the considered problem, exist-
ing sub-tour elimination schemes cannot be used 
directly; 

 – inability of the CPLEX solver to solve the problem in 
large instances. 

Consideration of sustainable development in LARP 
problems and network user preferences and interests could 
be appropriate directions for future study. Investigation of 
other servicing time limitations, such as soft and hard time 
windows for the proposed model, is another direction for fu-
ture research. Finally, another study area could be developing 
more efficient solution algorithms, such as other greedy algo-
rithms, and developing new math-heuristics and comparing 
them with existing meta-heuristics.
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