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Abstract. In this paper, a methodology based on Bayesian Network (BN) was proposed to deal with the difficulty of 
risk analysis in RoPax transport. Based on data collection and expert survey, BN model for RoPax sailing risk analysis 
was constructed first. Then the Expectation Maximization (EM) algorithm for parameter learning and Evidence Pre-
propagation Importance Sampling (EPIS) algorithm for reasoning were designed. Finally, a sensitivity analysis was 
conducted. To validate the model algorithms, a case study on the RoPax system of Bohai gulf in China was provided. 
Results indicate that the BN model can effectively address the problem of data deficiency and mutual dependency of 
incidents in risk analysis. It can also model the development process of unexpected hazards and provide decision sup-
port for risk mitigation.
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Introduction

RoPax ships have the roll-on and roll-off facilities for 
carrying private or commercial vehicles. Additionally, 
large accommodation space is designed for passengers 
(IMO 2008). RoPax ships usually sail on short voyag-
es, shuttled in strait and gulf. Since the 1950s, RoPax 
transport has been developed rapidly. Meanwhile, RoPax 
ships face serious maritime transport risk. In case of an 
accident, it will result in enormous personal injury and 
severe social impact. Therefore, enhancing safety man-
agement of RoPax transport is becoming an urgent issue 
in maritime industry.

In order to improve the safety of RoPax transport, 
extensive studies have been carried out over the past few 
decades. Some researchers investigated the overall risk 
level of RoPax transport with fault tree and event tree. 
The relationship between ship design and accidents were 
also studied thoroughly. However, RoPax transport is a 
complicated system with data deficiency and uncertain-
ties of incident rate. It is mainly due to the complex dy-
namic environment of maritime transportation. Moreo-
ver, complex dependency of various risk factors is also 
an important issue has not been addressed well till now. 
The complexity of RoPax transport brings difficulties to 
quantitative risk analysis. Thus, it is essential to propose 
a realistic and effective model reflecting up-to-date case. 

In this paper, a methodology based on Bayesian 
Network (BN) is proposed to deal with the difficulty 
of sailing risk analysis in RoPax transport. The paper 
is organized as follows. A literature review of previous 
studies is presented in Section 1 and the framework of 
BN is provided in Section 2. Methodology based on BN 
for RoPax sailing risk analysis is developed in Section 3, 
including network construction, parameter learning, 
network inference and sensitivity analysis. Numerical 
experiments on RoPax transportation system of Bohai 
gulf in China is conducted in Section 4 and conclusions 
are provided in final section.

1. Literature Review

Ever since RoPax transport became part of the maritime 
industry, the issue of safety operation has received con-
siderable attention. Extensive studies have been carried 
out for RoPax ships risk analysis (Konovessis et al. 2008; 
Konovessis, Vassalos 2008). As the sailing risk is related 
to ship structure, some researchers investigated the re-
lationship between ship design and accidents (Konoves-
sis, Vassalos 2007). Spanos and Papanikolaou (2012) 
also investigated the time dependence of survivability 
of RoPax ships. Santos and Soares (2002) proposed a 
Monte Carlo simulation method to generate the RoPax 
loading parameters, such as draught, centre of gravity 
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and permeability of deck. Based on these parameters, 
the ranking of ship survivability under different damage 
conditions was arranged and the most influential factors 
of ship survivability were evaluated.

As for the sailing risk, Vanem and Skjong (2004), 
Vanem et  al. (2009) analyzed the probability of colli-
sion, grounding based on event tree method. A criti-
cal evaluation of emergency evacuation measures was 
performed subsequently. Furthermore, fault tree was 
also a frequently-used method in risk analysis (Antão, 
Guedes Soares 2006). For the losses assessment, Otto 
et  al. (2002) took a specific Ro-Ro passenger ship as 
example to calculate the monetary loss in collision and 
grounding scenarios. As for the damage survivability, 
Konovessis and Vassalos (2007) designed a sequence of 
accident scenarios. In applying first-principle and life-
cycle approach, the damage survivability of RoPax ships 
was evaluated. In addition, Guarin et al. (2009) modeled 
the safety level of damaged RoPax ships and the cost-
effectiveness of risk control measures. Existing studies 
on risk evaluation of RoPax transport contributes greatly 
to improve the overall safety, while the high uncertainty 
in risk analysis has not been well addressed yet. 

BN is a methodology that has been widely used in 
fault diagnosis, reliability analysis and economic fore-
casting, etc. Since 2001, the application of BN is expand-
ed to risk analysis (Weber et al. 2012). For example, Nor-
rington et al. (2008) studied the network construction 
procedures intensively to improve the reliability of risk 
analysis. By applying the probability inference theory to 
the network topology, BN can be used to identify the 
most influential factors (Hänninen, Kujala 2012; Zhao 
et  al. 2012). All of these indicate that BN is a power-
ful decision-support tool (Eleye-Datubo et  al. 2006). 
Specifically, the application of BN in maritime industry 
is also promising (Montewka 2012). For example, BN 
has been used to evaluate the overall transportation risk 
of dangerous goods (Zhao et  al. 2012) and oil tanker 
(Martins, Maturana 2013). The consequence assessment 
of maritime accident was also conducted by Montew-
ka et al. (2011). Trucco et al. (2008) further integrated 
the Bayesian Belief Network (BBN) with fault tree by a 
dummy variable. The model proposed is to evaluate the 
effect of Human and Organizational Factors (HOF) on 
maritime risks.

As a powerful probabilistic inference tool in arti-
ficial intelligence, BN can be used to the comprehen-
sive risk evaluation of RoPax transportation system. Al-
though the application of BN in maritime sector is still 
at its initial stage, extensive studies have highlighted that 
the BN can effectively evaluate the critical event occur-
rence under high uncertainty.

2. Bayesian Network

BN, also called Bayesian Belief Network (BBN), is a 
power tool in risk inference. It can properly overcome 
the difficulty of data deficiency and high uncertainty. It 
can serve as a suitable tool for risk analysis.

The principle of BN can be illustrated as a Directed 
Acyclic Graph (DAG). The DAG consists of nodes set 

and directed edges. The nodes are a set of state vari-
ables. The directed edges represent the interdependent 
relationship between variables, which are indicated by 
Conditional Probability Table (CPT). CPT is the quan-
titative part of BN. 

A simple example of BN is given in Fig. 1, where, 
X1 is the ‘parent’ node of X3; X3 is the ‘child’ node of X1 
and X2; X2 is the ‘root’ node.

Let ( )1 2X , , , nX X X=   be the variable set in BN. 
Then the joint probability distribution of random vari-
able set X can be expressed as:
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where: ( )ipa X  is the parent node of iX ; ( )1 2, , , nP X X X 
( )1 2, , , nP X X X  reflects the properties of BN. To capture the 

information for every possible combination of variable 
( )1 2, , , nP X X X , it can be calculated by computing the 

marginal probability and conditional probability. This is 
the noted chain rule of BN.

With limited, incomplete and uncertain informa-
tion, the posterior probability of random nodes in BN 
can be updated given an observation variable. Hence, 
BN is also known as belief network. According to Thom-
as Bias theorem, the posterior probability can be calcu-
lated in Eq. (2):

( ) ( ) ( )
( )

,
P e H P H

P H e
P e

=   (2)

where: e is an evidence, that is, a new information re-
ceived from external observation. Evidence information 
of a random variable could cause a value change in pos-
terior probability ( )P H e  through network propaga-
tion. ( )P H  is the prior probability of target node, usu-
ally based on historical data and expert experience. The 
conditional probability density function H is expressed 
as ( )P e H , usually a likelihood function.

3. Methodology

RoPax ships frequently operate in narrow coastal waters 
and sail at night. The specific navigation characteristic 
increases the sailing risk to some extent. Therefore, it is 
crucial to perform a risk analysis towards RoPax sailing 
stage. On the basis of these considerations, we define the 
scope of this study. In this paper, we focus on the sailing 

Fig. 1. Sample of BN
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risk during the transition and navigation in coastal wa-
ters. The loading and unloading process is out of scope.

The BN based methodology used in this paper 
is composed of three major modules (Fig. 2), namely:  
1) BN construction, based on historical data and expert 
judgement; 2) Network updating, including parameter 
learning and network inference; 3) Risk analysis, aimed 
at estimating the most influential risk factors. 

Details are given in Sections 3.1–3.3.

3.1. Bayesian Network Construction
In this paper, the RoPax sailing risk is addressed. Ac-
cident database is established according to historical ac-
cidents. For factors such as human and organizational 
factor, the statistical data are not sufficient. Thus, ex-
perts experience is essential. With expert judgement, 
the Bayesian model can lay a more accurate foundation 
for the relations and dependencies between incidents.

The IMO (2008) survey report on RoPax ships in-
dicates that collision, fire/explosion, grounding and cap-
sizing are the most serious accident scenarios of RoPax 
ships. Thus, these four accident categories are selected 
for further risk analysis. Based on data collection, the 
influencing factors and their relations with accident 
scenarios are primarily determined. Then expert judge-
ments are used to examine the structure of BN. Experts 
are organized in a Delphi session to judge the logical 
relations among different factors. After the Delphi ses-
sion, a list of 30 scenarios or failures is selected as causes 
of the sailing risk. Fig. 3 shows the graphical network of 
BN. The structure can be divided into three levels. The 
top-level node is total sailing risk of RoPax. The most Fig. 2. Flow chart of BN risk analysis

Fig. 3. Graphical network of BN for RoPax sailing risk analysis
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sensitive risk factor to sailing risk of RoPax is the ulti-
mate goal we expect to achieve. The second-level nodes 
are about the accident scenarios. This level consists of 
four types of accident, i.e. grounding, fire/explosion, 
collision and capsizing. This level is built for accident 
identification. Moreover, the third-level includes all the 
failures and dangerous scenarios. The failures and dan-
gerous scenarios are exactly the basic events which re-
sult in the complexity of BN. Additionally, conditional 
probability which indicates the dependency correlation 
of variables (nodes in Fig. 3) is calculated based on his-
torical data and expert judgements. The CPT is obtained 
afterwards.

3.2. Network Updating
Since the CPT is obtained from historical data and ex-
pert judgment, subjectivity and uncertainty exist. Thus, 
the conditional probability should be updated according 
to the real truth. At this stage, parameter learning and 
network inference is conducted to acquire more accurate 
posterior probability distribution. 

3.2.1. Parameter Learning
Parameter learning of BN is mainly based on the existing 
training data. But in practice, there is hardly any com-
plete data used for learning. Therefore, modifications 
based on mathematical method are essential to improve 
the accuracy of network parameters. Here, Expectation 
Maximization (EM) algorithm (Kjærulff, Madsen 2012) 
is applied. As an algorithm for parameter adjustment, 
algorithm can be used to maximise the likelihood esti-
mation with incomplete data. By iterating the expecta-
tion step and maximization step, the EM algorithm can 
repair missing data and refine it gradually until the data 
likelihood value reaches a local optimal. The process is 
given in Fig. 4.

Given the BN structure S; the incomplete data vari-
able set X, { }1 2, , , NX X X X=  , 1X  is the first incom-
plete data variable set; { }1 2, , , ND D D D=   is the com-
plete data set, D X∈ .

Step 1: Expectation step:

, ,t
ijkijkN E N X S = θ = 

( )( )
1

, , , ,
N

i ip v k pa v j X S= = θ∑   (3)

where: q is the parameter to be estimated; vi is the 
child node i, { }1,2,3, ,i k=  ; ( )ipa v is the parent 
node of vi, ( ) { }1,2,3, ,ipa v j=  ; Nijk is the count of 

( )( ) ( ), ,i iv pa v k j= . The E-step of the EM algorithm is 
to calculate the expected sufficient statistics for a com-
plete database.

Step 2: Maximization step:

( )arg maxt
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where: qt is the new parameter. The maximization step 
is to compute the maximum likelihood estimate of qt, 
expressed by Nijk.

3.2.2. Network Inference
BN inference is event-triggered. Once there is evidence 
or observation input, the value of the observation node 
will be modified. The value change can pass updating 
information on to other nodes. Generally speaking, the 
updating information is up to the mutual relations be-
tween adjacent nodes. Hence, it can extensively reflect 
the correlations of various nodes. Here, an Evidence 
Pre-propagation Importance Sampling (EPIS) algorithm 
proposed by Yuan and Druzdzel (2003) is used. The in-
ference mechanism can be described as follows:

On receiving information from external sources, 
the evidence node will propagate the change to its ad-
jacent nodes, by means of sending message l, p. With 
the message l, p receiving from child nodes and parent 
nodes respectively, all the random variables will recalcu-
late their confidence level, and subsequently propagate 
this change to their own child and parent nodes. Based 
on the CPT and information l, p received from adja-
cent nodes, all the random nodes can update its belief. 
This continuous propagating process will repeat until all 
nodes are updated, i.e. the posterior probability is equal 
to priori probability.

Assuming evidence e is observed, the posterior 
probability ( )P Y E  of non-evidence nodes Y is ( )Bel Y . 
According to the characteristic of BN inference, ( )Bel Y  
can be calculated by Eq. (5):

( ) ( ) ( ),i i iBel Y Y Y= αλ π   (5)

where: a is a normalization factor; ( )iYλ  is the infor-
mation obtained from the child nodes; ( )iYπ  is the in-
formation obtained from parent nodes;

( ) ( ),i j i
j

Y Yλ = λ∏
 

 (6)

where: ( )j iYλ  is the information transferred from the 
j-th child node to node Yi;

( ) ( ) ( ),i i j j
j

Y P Y X P Xπ =∑
  

(7)

where: ( )i jP Y X  is the conditional probability of Yi 
given parent nodes Xj; ( )jP X  is the probability of par-
ent nodes Xj.

3.3. Risk Analysis
During the risk analysis process, marginal and joint 
probability of all random variables are obtained, on the 
basis of network construction and network updating. 
Since the exact probability of an accident scenario can-

Fig. 4. Flow of EM algorithm
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not be predicted precisely, due to uncertainty, investi-
gating the cause of hazards is a reasonable and feasible 
approach to manage risks. Thus, a sensitivity analysis 
is carried out. By changing the confidence level of ob-
served or evidence nodes uniformly, the posterior prob-
ability of target nodes (i.e. the sailing risk of RoPax) is 
obtained. Under this high-level and generic risk analysis, 
preventive measures can be proposed pertinently for de-
cision-makers, and thus improve risk defence capabili-
ties of RoPax transport. 

4. Numerical Experiments

The RoPax transport of Bohai gulf in China is selected 
to illustrate the validity of proposed method in this pa-
per. The Bohai gulf has a northern climate. Rough seas 
conditions, fleet aging and other complex causes result 
in high accident frequency. Since 1989, there is a total 
of 16 major accidents happened, as presented in Table 1. 

With high accident frequency and high losses, the Ro-
Pax shipping safety in Bohai gulf is receiving increasing 
attention.

Based on data collection and expert survey, the 
qualitative model and quantitative models of BN are 
developed. Then the key factors affecting the sailing risk 
of RoPax ships in Bohai gulf are provided. Details are 
given as follows.

4.1. Data Collection
Data such as the meteorological and hydrological con-
ditions, port conditions, fleet conditions, accident situ-
ations etc. are collected first. Then the database of Bo-
hai gulf RoPax transport is established. The main data 
sources are China Maritime Safety Administration, IMO 
report, statistical yearbook and relevant accident reports. 
Part of the data is presented in Table 1. According to the 
database, the initial BN model is developed.

Table 1. 1989–2010 RoPax ship’s accidents in Bohai gulf1

No. Incident 
date Vessel name

Beaufort 
wind 
scale

Main reasons
Accident category

No. of
fatalities Collision     Fire/explosion

 Grounding  Capsizing
1 1989/8/11 –2 – – – –

2 1989/8/28 TIANE – Boiler ventilation opening small  
  –

3 1989/10/1 – – – – –

4 1997 LUBODU2# – –  
  –

5 1999/6/12 HAIYANGDAO – Electrical short circuit  
of vehicles

 
  –

6 1999/10/1 DAHUA – Leave a fire in automobile cab  
  –

7 1999/10/17 SHENGLU 8
Overload; 
Strapping unstable; 
Improper operation

 
  2/160

8 1999/11/24 DASHUN 10
Adverse sea conditions; 
Captain mistakes, 
Overload etc.

 
  282/304

9 2000/6/4 QILU – Short circuit of the junction  
box in boiler

 
  –

10 2001/7/3 HAIQIAO – Travellers self-immolation  
  –

11 2001/10/28 TONGHUI 8
Leakage of liquefied petroleum 
gas; 
Adverse sea conditions

 
  27/32

12 2003/2/22 LIAODU 8
Adverse sea conditions; 
Machinery damage; 
Out of power

 
  4/81

13 2003/7/18 CHANGXINGDAO – short circuit of control box  
in engine room

 
  –

14 2004/5/14 YINGHUA – Fire of dangerous goods  
in vehicles

 
  –

15 2004/1/16 LIAOHAI 8 Not exclude the possibility  
of dangerous goods

 
  0/340

16 2005/5/2 BAOHUA 6 Special circumstances cause  
a fire

 
  0/745

Notes: 1 – part of the collected data is included in the Table; 2 – incomplete statistical data.
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4.2. Expert Judgement
For data which is not available, a Delphi session is or-
ganized to modify the initial model. Firstly, on-the-spot 
investigation is implemented to get information of the 
RoPax sailing circumstances in Bohai gulf. A total of 10 
RoPax shipping companies are in the investigation list, 
such as Shandong Bohai Ferry Co., Ltd.; Dalian Port 
group and Dalian Shipping Group Co., Ltd. and China 
shipping liner Company Limited etc. Secondly, special-
ized staffs such as captains and mates are surveyed by 
interview and questionnaire. A few possible conditional 
probability of every node is given to be discussed. The 
reasonability of CPT is judged as well. If the experts do 
not think the probability is reasonable, then we will get 
a new one by discussing. Subsequently, the possible con-
sequence of every incident is obtained.

4.3. Model Calculation
The software package of Genie 2.0 (Decision Systems 
Laboratory 2006) is used to construct the network and 
update belief. Based on expert suggestions and node in-
formation, the qualitative model for BN of RoPax sailing 
risk in Bohai gulf is developed (Fig. 3). Then the sam-
ple data getting from the accident database and expert 
questionnaires are input into Genie  2.0. The values in 
CPT are set manually, which is the quantitative model 
of BN. Considering the complexity of the CPT, detailed 
description is not possible within the scope of this pa-
per, thus only part of the CPT is presented (Table 2). All 
random variables are discretized to be used in parameter 
learning procedure. The EM and EPIS algorithm in Ge-
nie 2.0 are applied for network updating. All these work 
is done to lay foundation for further sensitivity analysis.

4.4. Result Analysis
In order to evaluate the sailing risk level of RoPax trans-
port in Bohai gulf, appropriate risk acceptance criteria 
should be established prior to any actual risk analysis. 
According to MSC 72/16 (IMO 2000) and SAFEDOR-
D-4.5.2-2005-10-21-DNV (Skjong et  al. 2005; SAFE-
DOR 2005), the risk acceptance criteria for RoPax ships 
can be divided into three categories (Fig. 5): Negligible, 
ALARP (As Low As Reasonably Practicable), Intolera-
ble. The negligible risk can be broadly acceptable, while 
the intolerable risk must be reduced irrespectively of 
cost. In addition, the ALARP (As Low As Reasonably 
Practicable) risk should be reduced as long as the risk 
reduction is not disproportionate to the cost. In gen-

eral, the ALARP principle is found to be in reasonable 
agreement. 

The Bohai RoPax historical sailing risk is illustrated 
in the F–N curve in Fig.  5. F–N curve is a graph that 
plots the number of fatalities, N, towards the probability 
of accidents with N or more fatalities. Fig. 5. shows the 
F–N data of Bohai RoPax sailing risk during 1989–2010. 
Apparently, the FN curve is in the high ALARP and In-
tolerable risk region. Some preventative or risk control 
measures should be taken to reduce the potential risk.

Generally, a preliminary survey into the cause of 
accident is more important than taking exclusively risk 
control measures. Thus, a further sensitivity analysis 
is carried out for hazards identification. In this paper, 
grounding, fire/explosion, collision and capsizing are 
set as observation nodes respectively. Change their 
prior probability from 0 to 1 uniformly and update the 
posterior probability of RoPax sailing risk node. Then 
the overall risk level can be estimated with its posterior 
probability multiplied by consequences. The risk level is 
expressed by the potential loss of lives. Results are given 
in Fig. 6.

Results indicate that fire and explosion is the most 
sensitive risk factor to RoPax sailing risk, compared to 
grounding, collision and capsizing. That is, it is most 
likely to result in high RoPax sailing risk when exposed 
to high fire and explosion risk. The result is consistent 
with the fact that fire accident of Bohai RoPax trans-
port happened more frequently and severely in the last 
two decades. Due to RoPax’s dual characteristics of pas-
senger and cargo carrier, RoPax has specific fire risks 
compared to other ship types. With a large number of 
passengers on board, there is little activity space in cargo 

Table 2. Sample of the CPTs in the BN model 

Accident Hazards Conditional probability

– Heavy traffic Yes No
– Adverse sea condition Yes No Yes No
– Narrow channel Yes No Yes No Yes No Yes No

Grounding
Yes 0.3 0.1 0.09 0.03 0.15 0.05 0.04 0.0001
No 0.7 0.9 0.91 0.97 0.85 0.95 0.96 0.9999

Fig. 5. 1989–2010 RoPax F–N curve of Bohai gulf
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and accommodation compartment. In case of fire or ex-
plosion, passengers can easily get panic. Subsequently, 
the evacuation cannot be preceded successfully. 

To effectively reduce the fire and explosion risk, a 
further sensitivity analysis is conducted to identify the 
major hazards or failures (Fig. 7). Similarly, the poten-
tial loss of lives can be calculated. It can be seen that 
potential loss of lives fluctuates remarkably when the 
probability of leakage of dangerous goods changes uni-
formly. Thus, leakage of dangerous goods is the major 
sensitive hazard to the fire or explosion accident. There-
fore, strengthening safety management, especially the 
management of dangerous goods on RoPax, is the main 
guidance for RoPax sailing risk mitigation.

The valuable output of this paper is the most sensi-
tive hazards contribute to the total risk level rather than 
the value of exact risk level. Thus, the model proposed 
in this paper enables a better understanding of the fail-
ure mechanism of RoPax transportation system. It can 
guide the decision-makers to take relevant risk control 
measures for safety management.

Finally, in addition to the sailing process, the roll 
on and roll off process of RoPax transport also have po-
tential risks, but is out the scope of this study. Hence, a 
further study of dynamic BN applied to the whole pro-
cess of RoPax shipping should be considered.

Acknowledgements

This work is supported by the National Natural Science 
Foundation of China (Grant No 71001012), the Program 
for New Century Excellent Talents in the University of 
China (Grant No NCET-11-0859), and the Program for 
Excellent Talents in the University of Liaoning (Grant 
No LJQ2013057).

References

Antão,  P.; Guedes Soares, C. 2006. Fault-tree models of ac-
cident scenarios of RoPax vessels, International Journal of 
Automation and Computing 3(2): 107–116. 
http://dx.doi.org/10.1007/s11633-006-0107-8 

Decision Systems Laboratory. 2006. Genie 2.0. Pittsburgh, PA, 
US. Available from Internet: http://genie.sis.pitt.edu 

Eleye-Datubo, A. G.; Wall, A.; Saajedi, A.; Wang, J. 2006. En-
abling a powerful marine and offshore decision-support so-
lution through Bayesian network technique, Risk Analysis 
26(3): 695–721. 
http://dx.doi.org/10.1111/j.1539-6924.2006.00775.x 

Guarin, L.; Konovessis, D.; Vassalos, D. 2009. Safety level of 
damaged RoPax ships: risk modelling and cost-effective-
ness analysis, Ocean Engineering 36(12–13): 941–951. 
http://dx.doi.org/10.1016/j.oceaneng.2009.06.005 

Hänninen, M.; Kujala, P. 2012. Influences of variables on ship 
collision probability in a Bayesian belief network model, 
Reliability Engineering & System Safety 102: 27–40. 
http://dx.doi.org/10.1016/j.ress.2012.02.008 

IMO. 2008. Formal Safety Assessment. FSA – RoPax Ships. Sub-
mitted by Denmark. MSC 85/17/2. International Maritime 
Organization (IMO). 22 p. Available from Internet: http://
www.martrans.org:8093/documents/2011/fsa/MSC_85-17-
2.pdf 

IMO. 2000. Formal Safety Assessment. Decision Parameters 
Including Risk Acceptance Criteria. Submitted by Norway. 
MSC72/16. International Maritime Organization (IMO). 
28 p. Available from Internet: http://research.dnv.com/skj/
FsaLsaBc/MSC72-16.pdf 

Kjærulff, U. B.; Madsen, A. L. 2012. Bayesian Networks and 
Influence Diagrams: A Guide to Construction and Analysis. 
2nd edition. Springer. 382 p.

Konovessis, D.; Vassalos, D. 2008. Risk evaluation for RoPax 
vessels, Proceedings of the Institution of Mechanical Engi-
neers, Part M: Journal of Engineering for the Maritime En-
vironment 222(1): 13–26. 
http://dx.doi.org/10.1243/14750902JEME90 

Konovessis, D.; Vassalos, D. 2007. Risk-based design for dam-
age survivability of passenger Ro-Ro vessels, International 
Shipbuilding Progress 54(2–3):129–144. 

Fig. 6. Sensitivity analysis of four risk factors over  
the probability of RoPax risk

Fig. 7. Sensitivity analysis of hazards over the probability  
of fire/explosion risk

0.00E+00

1.00E 02–

2.00E 02–

3.00E 02–

4.00E-02

5.00E 02–

6.00E 02–

7.00E 02–

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Po
te

nt
ia

l l
os

so
f l

iv
es

pe
r s

hi
p

ye
ar

[
]

Probability of accident scenarios

fire/explosion grounding
collision capsizing

0.00E+00

1.00E 03–

2.00E 03–

3.00E 03–

4.00E 03–

5.00E 03–

6.00E 03–

7.00E 03–

8.00E 03–

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Po
te

nt
ia

l l
os

so
f l

iv
es

pe
r s

hi
p

ye
ar

[
]

Probability of parent nodes of fire/explosion

dangerous goods leakage shipborne vehicles caused

human Caused equipment failure

Conclusions

In this paper, a BN-based methodology for RoPax sail-
ing risk analysis is developed. Numerical experiments 
on Bohai gulf RoPax transport illustrate the efficiency of 
the proposed BN-based methodology. By systematically 
describing the relationship between random variables, 
BN can make the utmost of the insufficient historical 
data for risk calculation. It is a supportive tool in deci-
sion making.



Transport, 2017, 32(4): 340–347 347

Konovessis, D.; Vassalos, D.; Mermiris, G. 2008. Risk analysis 
for RoPax vessels, WMU Journal of Maritime Affairs 7(1): 
109–131. http://dx.doi.org/10.1007/BF03195127 

Martins, M. R.; Maturana, M. C. 2013. Application of Bayesian 
belief networks to the human reliability analysis of an oil 
tanker operation focusing on collision accidents, Reliability 
Engineering & System Safety 110: 89–109. 
http://dx.doi.org/10.1016/j.ress.2012.09.008 

Montewka, J. 2012. Risk modelling and management in large-
scale, distributed transportation systems, Journal of Polish 
Safety and Reliability Association 3(1): 113–121. 

Montewka,  J.; Goerlandt,  F.; Ehlers,  S.; Kujala,  P.; Erceg,  S.; 
Polic, D.; Klanac, A.; Hinz, T.; Tabri, K. 2011. A model for 
consequence evaluation of ship-ship collision based on 
Bayesian belief network, in E. Rizzuto, C. Guedes Soares 
(Eds.). Sustainable Maritime Transportation and Exploita-
tion of Sea Resources, 721–728. 
http://dx.doi.org/10.1201/b11810-109 

Norrington, L.; Quigley, J.; Russell, A.; Van der Meer, R. 2008. 
Modelling the reliability of search and rescue operations 
with Bayesian belief networks, Reliability Engineering & 
System Safety 93(7): 940–949. 
http://dx.doi.org/10.1016/j.ress.2007.03.006 

Otto, S., Pedersen, P. T.; Samuelides,  M.; Sames, P. C. 2002. 
Elements of risk analysis for collision and grounding of a 
RoRo passenger ferry, Marine Structures 15(45): 461–474. 
http://dx.doi.org/10.1016/S0951-8339(02)00014-X 

SAFEDOR. 2005. Design, Operation and Regulation for Safety. 
Integrated Project under the 6th framework programme of 
the European Commission (IP 516278).

Santos, T. A.; Soares, C. G. 2002. Probabilistic survivability as-
sessment of damaged passenger Ro-Ro ships using Monte-
Carlo simulation, International Shipbuilding Progress 49(4): 
275–300. 

Skjong, R.; Vanem, E.; Endresen, Ø. 2005. Risk Evaluation Cri-
teria. SAFEDOR-D-4.5.2-2005-10-21-DNV. 112 p. 

Spanos, D. A.; Papanikolaou, A. D. 2012. On the time depen-
dence of survivability of RoPax ships, Journal of Marine 
Science and Technology 17(1): 40–46. 
http://dx.doi.org/10.1007/s00773-011-0143-0 

Trucco, P.; Cagno, E.; Ruggeri, F.; Grande, O. 2008. A Bayesian 
Belief Network modelling of organisational factors in risk 
analysis: a case study in maritime transportation, Reliability 
Engineering & System Safety 93(6): 845–856. 
http://dx.doi.org/10.1016/j.ress.2007.03.035 

Vanem, E.; Puisa, R.; Skjong, R. 2009. Standardized risk mod-
els for formal safety assessment of maritime transporta-
tion, in Proceedings of the ASME 2009 28th International 
Conference on Ocean, Offshore and Arctic Engineering,  
31 May–5 June 2009, Honolulu, Hawaii, US, 51–61. 
http://dx.doi.org/10.1115/OMAE2009-79062 

Vanem, E.; Skjong, R. 2004. Collision and grounding of pas-
senger ships – risk assessment and emergency evacuations, 
in Proceedings of the 3rd International Conference on Colli-
sion and Grounding of Ships, ICCGS 2004, 25–27 October 
2004, Izu, Japan.

Weber, P.; Medina-Oliva, G.; Simon, C.; Iung, B. 2012. Over-
view on Bayesian networks applications for dependability, 
risk analysis and maintenance areas, Engineering Applica-
tions of Artificial Intelligence 25(4): 671–682. 
http://dx.doi.org/10.1016/j.engappai.2010.06.002 

Yuan, C.; Druzdzel, M. J. 2003. An importance sampling algo-
rithm based on evidence pre-propagation, in Proceedings 
of the Nineteenth Conference on Uncertainty in Artificial 
Intelligence (2003), 7–10 August 2003, Acapulco, Mexico, 
624–631.

Zhao, L.; Wang, X.; Qian, Y. 2012. Analysis of factors that in-
fluence hazardous material transportation accidents based 
on Bayesian networks: a case study in China, Safety Science 
50(4): 1049–1055. 
http://dx.doi.org/10.1016/j.ssci.2011.12.003


