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Abstract. In selecting the best mixed integer linear programming (MILP) formulation the impor-
tant issue is to figure out how to evaluate the performance of each candidate formulation in terms 
of selected criteria. The main objective of this study is to propose a systematic approach to guide the 
selection of the best MILP formulation among the alternatives according to the needs of the decision 
maker. For this reason we consider the problem of “selecting the most appropriate MILP formula-
tion for a certain type of decision maker” as a multi-criteria decision making problem and present 
an integrated AHP-TOPSIS decision making methodology to select the most appropriate formula-
tion. As an example the proposed decision making methodology is implemented on the selection of 
the MILP formulations of the Capacitated Vehicle Routing Problem (CVRP). A numerical example 
is provided for illustrative purposes. As a result, the proposed decision model can be a tool for the 
decision makers (here they are the scientists, engineers and practitioners) who intend to choose the 
appropriate mathematical model(s) among the alternatives according to their needs on their studies. 
The integrated AHP-TOPSIS approach can simply be incorporated into a computer-based decision 
support system since it has simplicity in both computation and application.

Keywords: capacitated vehicle routing problem, AHP, TOPSIS, multi-criteria analysis, optimiza-
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Introduction

The modeling and optimization concepts are important for scientists, engineers and indus-
trial practitioners. As computers are getting cheaper and more powerful and they are used 
more widespread, mathematical models play an increasingly important role in engineering 
optimization and it has become an increasingly cost-effective alternative to the experimen-
tation. Besides, from an industrial point of view, the ability to understand and predict the 
real-world systems via mathematical modeling provides a distinct competitive advantage 
(Dobson 2003).
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In most studies in the area of operations research (Luss, Rosenwein 1997; Pannirselvam 
et al. 1999), the combinatorial optimization problems (COPs) are formulated as a mixed 
integer linear programming (MILP) formulation and then they are solved by using either 
exact or meta-heuristic solution approaches. Also the solution of a COP can be obtained by 
solving the MILP formulation directly using an integer linear programming solver, as well.

Since everyone has a different knowledge-base and a unique way of looking at prob-
lems, people may come up with different mathematical formulations for the same COP. 
In addition, different solution approaches for a problem may require the use of different 
formulations. Therefore, in the cases where there is more than one formulation (one can 
develop his/her own formulations in addition to already existing ones from the literature); 
we will try to answer the question of “which is the most appropriate formulation?” among 
the proposed candidates. It is important that selecting the best efficient formulation for a 
particular application depends on the needs of the solution approach and the nature of the 
problem to be optimized (Backlund et al. 2012).

In selecting the best MILP formulation, the important issue is to figure out how to 
evaluate the performance of each candidate formulation in terms of selected criteria. In 
most studies (see e.g, Gouveia, VoB 1995; Stadtler 1996; Sarin et al. 2005; Ordóñez et al. 
2008; Öncan et al. 2009; Özgüven et al. 2010; Bektas et al. 2011; Ebadi, Moslehi 2012; Bek-
tas 2012; Wu, Shi 2011; Wu et al. 2011, 2012) evaluation is based on some basic indicators, 
i.e. linear programming relaxation value (LPR), solution time, GAP value (this is defined as 
(U − L)/L, where U is the value of either the best or the optimal solution obtained within 
the time limit, and L is the value of the best lower bound after branching), and the number 
of optimally solved problems in a set of experiments. When dealing with small scale prob-
lems which the optimal solution can be found in a reasonable time, the comparison of the 
mathematical formulations can be made easily by these basic indicators. However, when 
the problem size expands the optimal solution of the problem cannot be found in a reason-
able time and it is difficult to find even a feasible solution. That’s why; the comparison of 
the formulations would not be so easy according to few basic indicators. Moreover taking 
into account just one or two criteria would lead to decide less efficient formulation. For 
example, when two different MILP formulations are compared within a given time, if we 
take into account only the value of the GAP value, the formulation which has the smaller 
GAP is chosen. However, the formulation which we choose with the smaller GAP may 
have a larger best integer objective value (upper bound) or may have a smaller best bound 
(lower bound). As well as in problems with minimizing objective function, the formulation 
with the largest LPR value is considered to be better. However when enough time is given, 
the formulation which has the worse LPR value may find the optimal solution in a shorter 
time. As Stadtler’s (1996) results also shows that “good bounds provided by an LPR do not 
guarantee that feasible solutions are found quickly”.

As mentioned above different approaches may require the use of different mathematical 
formulations. In the area of operations research (OR), a COP can be solved using either 
exact or meta-heuristic solution approaches. We refer these approaches as algorithms based 
on mathematical formulations. Those approaches use the proposed MILP formulation di-
rectly or indirectly in some part of the algorithm (Ball 2011). In this context assume that 
two different researcher types are defined; one tries to develop a heuristic or meta-heuristic 
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algorithm (an improvement type algorithm which starts from an initial feasible solution 
found by MILP formulation and tries to improve the solution quality) based on a MILP 
formulation and the other one tries to solve the COP by solving the MILP formulation di-
rectly with solver software. According to this, on one side, the researcher who is interested 
in solving pure mathematical formulations, would prefer the formulation “which gives 
the optimal solution in shortest time”; on the other side, a researcher who is interested in 
model-based meta-heuristics would prefer the formulation “which gives the best quality 
feasible solution (that will be used as a starting feasible solution as good as possible in a 
fixed short time interval) in a shortest time”. For the reasons we try to explain above, se-
lecting the most appropriate formulation for a particular use should be evaluated by taking 
into account other indicators as well.

The main objective of this study is to propose a systematic approach to guide the selec-
tion of the best MILP formulation among the set of alternatives according to the needs of 
the decision maker. The proposed systematic approach is not intended to be used in the 
comparison of alternative solution approaches (like heuristics or meta-heuristics), instead 
it is developed to be used in the comparison of alternative mathematical formulations 
those are desired to be used directly or indirectly in a specific solution approach. Thus, we 
consider the problem of “selecting the most appropriate MILP formulation for a certain 
type of decision maker” as a Multi-Criteria Decision Making (MCDM) problem and pres-
ent an integrated Analytic Hierarchy Process, Technique for Order Preference by Similar-
ity to Ideal Solution (AHP-TOPSIS) decision making model to select most appropriate 
formulation. The proposed decision model is implemented on the selection of the MILP 
formulations of the Capacitated Vehicle Routing Problem (CVRP). A numerical example 
is also provided for illustrative purposes. In the example, 7 different formulations which 
have been proposed within the CVRP literature were chosen and 8 criteria are determined. 
The AHP was used to prioritize the selected criteria. Each of the 27 test instances from the 
CVRP standard benchmark library were solved by each formulation and the performance 
values for each criterion were obtained. The criteria weights and the performance values 
of the mathematical formulations were combined by using the TOPSIS.

The remainder of this study is organized as follows: in Section 1, preliminary definitions 
on the MCDM methods are briefly given with their related literature. In Section 2, steps of 
the proposed model are shown. In Section 3, a numeric application for the proposed model 
is explained. Finally in the last section, conclusions and future research are discussed.

1. Definitions and preliminaries: MCDM 

The selection of the most appropriate formulation can be regarded as an MCDM method 
where many criteria should be considered in the decision-making. There have been several 
MCDM methods developed in the literature (Vincke 1992; Zeleny 1982). Each method 
has its own characteristics and there are no better or worse techniques. However, some 
techniques better suit to particular decision problems than others do (Mergias et al. 2007; 
Dagdeviren et al. 2009). The most popular methods are scoring models (Nelson 1986), 
AHP (Ecer 2014; Ivlev et al. 2014; Myronidis et al. 2016; Singh, Nachtnebel 2016), Analytic 
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Network Process (ANP), Axiomatic Design (AD) (Khandekar et al. 2015), Utility Models 
(Munoz, Sheng 1995), TOPSIS (Liu 2009; Antuchevičiene et al. 2010; Maimoun et al. 2016), 
Elimination and Choice Translating Reality (ELECTRE) (Wang, Triantaphyllou 2008) and 
Preference Ranking Organization Method for Enrichment Evaluation (PROMETHEE) (Ka-
bak, Dağdeviren 2014). These MCDM methods can be classified in many ways. One way is 
to classify them according to the type of data they use and another way is to classify them 
according to the number of decision makers involved in the decision process. According to 
the classification of Belton and Stewart (2002) there are value measurement models such as 
Multi-Attribute Utility Theory (MAUT) and AHP; goal aspiration and reference level mod-
els such as TOPSIS; and at last outranking models such as ELECTRE and PROMETHEE.

It can be stated based on the authors’ literature survey that MCDM is the most com-
mon approach applied for ranking alternatives. Among the MCDM approaches, the most 
used one is AHP because of its advantages over others (Wang, Chang 2007; Opasanon, 
Lertsanti 2013). As Saaty (1980) indicates, the most noted advantages of the AHP approach 
are; its ability to handle the inconsistencies in managerial judgments (perceptions); and its 
user friendly nature where users may directly input judgment data without any previous 
mathematical calculations. It can also be combined with other MCDM approaches and 
operations research models to allow users to structure complex problems in the form of a 
hierarchy or a set of integrated levels. The main objective and our motivation are to propose 
a systematic evaluation model to guide the selection of an effective formulation among a 
set of available alternatives by using the MCDM. Therefore, this study presents an MCDM 
model for the researchers which uses AHP to determine the importance weights of evalu-
ation criteria, and TOPSIS to obtain the performance ratings of the feasible alternatives 
(Yurdakul, İç 2005; Dagdeviren et al. 2009; Tsai, Chang 2013; Kou et al. 2014; Hacioglu, 
Dincer 2015; Mandic et al. 2014; Prakash, Barua 2015). Although AHP and TOPSIS meth-
ods are explained in the following sections, the readers are referred to Saaty (1980), Sen 
and Yang (1998), Yurdakul and İç (2005), Dagdeviren et al. (2009) for detailed explanations 
and application steps of AHP and TOPSIS methods. These approaches are implemented 
for three reasons: (a) it is easy and rational to apply; (b) the resulting table obtained from 
the solution of the formulations is directly used as the decision matrix of the TOPSIS; and 
(c) the importance weights obtained by AHP are included in the comparison procedures 
(Wang, Chang 2007). 

2. The proposed model

The proposed MCDM model for the evaluation of the mathematical formulations consists 
of the AHP and TOPSIS methods. This approach has four basic stages: (1) identifying 
the criteria to be used in the decision model and constructing the decision hierarchy, (2) 
calculating the weights of the criteria using the AHP computations, (3) solving each of the 
benchmark instances with each of the MILP formulations proposed for the understudy 
COP, (4) ranking the preference order of the alternative formulations with the TOPSIS. The 
flow diagram of the proposed decision model for the evaluation of the MILP formulations 
is provided in Figure 1.
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Prior to the stages of the proposed decision model, a decision making team is created 
which consists of 15 researchers with OR background. According to Chang et al. (2008), 
expert opinions should be on a range from 10 to 30 and according to Robbins (1994) the 
decision making group probably should not be too large, i.e. a minimum of five to a maxi-
mum of about 50. Therefore, for each type of decision maker, a decision team that consists 
of 15 researchers in the area of operations research is formed.

Possible criteria to be considered in the selection of the MILP formulations are deter-
mined by the decision team with the use of the output that the CPLEX solver engine can 
give. The criteria and their definitions and abbreviations are given in Table 1. The defini-
tions of the criteria are given in the following:

Linear Programming Relaxation (LPR): It is the optimal objective function value of the 
MILP formulation when the integrality restrictions of the variables are omitted. It gives the 
lower bound (for minimizing problem) and the bigger the LPR, the better the formulation 
is. Thus, it shows how tight (good) is the formulation.

Fig. 1. The flow diagram of the proposed decision model
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Table 1. Criteria obtained from the CPLEX output and definitions

Criterion Abbreviation Definitions
Linear Programming 
Relaxation

LPR Optimal objective function value of linear programming 
relaxation of formulation.

First Integer Objective 
Value

FIOV The objective function value of the first integer solution 
found.

Time to First Integer 
Solution

TFIS Time passed (iteration done) till the first integer solution 
found.

Best Integer Objective 
Value

BIOV The best objective function value found with a certain 
amount of time. This might be also the optimal integer 
objective function value.

Best Bound BB The best lower bound value found with a certain amount 
of time.

First GAP Ratio FGAP The relative difference between the first integer objective 
value and the best bound found till the first feasible 
integer solution found.

Last GAP Ratio LGAP The relative difference between the best integer objective 
value and the best bound found till the best integer 
objective value found.

Number of Total 
Iterations

TI The total number of iterations done by the CPLEX solver 
engine until the end of branch-and-bound algorithm.

Number of Nodes 
Searched

NS The total number of nodes searched by the CPLEX solver 
engine until the end of branch-and-bound algorithm.

Number of Constraints NC The number of constraints that a mathematical 
formulation has.

Num. of Bin. Decision 
Variables

BDV The number of binary decision variables that a 
mathematical formulation has.

First Integer Objective Value (FIOV): It is the objective function value of the first feasible 
solution found for the MILP formulation in the branch-and-bound tree. It gives the upper 
bound (for minimizing problem) and the lower the FIOV, the quicker the branch-and-
bound may converge to the optimal solution.

Time to First Integer Solution (TFIS): It is an indicator of the time passed in seconds 
until the first integer feasible solution is found during the CPLEX run. It shows how fast 
a starting feasible integer solution (an upper bound for a minimizing problem) can be 
obtained. Especially for the researchers who use the MILP formulations for the model-
based heuristics or the one who use the formulations for the exact solution algorithms, it 
may be beneficial to use the fastest formulation in terms of reaching first feasible integer 
solution, namely obtaining a starting feasible solution. So, the shorter the TFIS, the better 
the formulation is.

Best Integer Objective Value (BIOV): It is the objective function value of the best feasible 
integer solution found within a given time limit. Other words it is the best upper bound 
(for minimizing problem) obtained. This value may be the optimal solution of the problem. 
Assume that there are two different formulations to be compared. When the optimal solu-
tion is found by both formulations within a given time limit for a specific test problem, 
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then this indicator does not make sense; since the BIOV of both formulations   are the same. 
In this case, of course the solution time of the formulations is more decisive. However, 
when the size of a problem increases, then solving the problem optimally (or even to find 
a feasible integer solution) becomes more difficult. In such cases, the BIOV, if exists, may 
lead to decide which formulation is better. The lower the BIOV (for minimizing problem), 
the better the formulation is. In case the optimality is neglected (especially in practical 
applications where quicker decisions must be given in a limited time) the BIOV in a given 
time limit becomes more important than the optimal solution for both researchers and 
decision makers.

Best Bound (BB): It is the best lower bound (for minimizing problem) obtained in a 
given time limit. Namely, it is the best objective function value of among the linearly re-
laxed problems (nodes) solved in the branch-and-bound tree in a given time limit. Together 
with the upper bound value, the best bound shows how small the gap is. Withal, the larger 
“best bound” may lead the branch-and-bound algorithm converges to the optimal solution 
more quickly. So it can be said the bigger the BB, the better the formulation is.

First GAP Ratio (FGAP): It is the relative difference between the first integer objective 
value and the best lower bound obtained till the first feasible integer solution found. It 
shows how small the starting feasible solution is relative to the current lower bound. So, it 
can be said the smaller the FGAP, the better the formulation is. However, this indicator may 
reveal another aspect of the formulations, different from the FIOV and BB since it gives 
a relative value. For example, when two different formulations are compared and if only 
the value of FGAP is considered, then the formulation with the smaller FGAP is chosen. 
However, the formulation which we choose with the smaller FGAP may have the bigger 
FIOV value or may have the smaller BB.

Last GAP Ratio (LGAP): It is the relative difference between the best integer objective 
value and the best lower bound obtained till a given time limit is reached. Actually this 
value is calculated by using the BB and the BIOV. It shows how small the last (best) feasible 
solution (found so far) is relative to the BB. So it can be said smaller the LGAP, the better 
the formulation is. 

Number of Total Iterations (TI): It is the total number of iterations done by the CPLEX 
solver engine till the end of the branch-and-bound algorithm. This indicator shows how 
fast the solver engine can solve a given MILP formulation in a predefined time limit. Thus 
it can be said, the bigger the TI, the better the formulation is. Instead of this value the ratio 
TI/Time may be considered as well.

Number of Nodes Searched (NS): It is the total number of nodes searched by the CPLEX 

solver engine till the end of the branch-and-bound algorithm. Like the TI, this indicator 
also shows how fast the solver engine can solve a given MILP formulation in a predefined 
time limit in terms of the nodes searched in the branch-and-bound tree. Thus it can be 
said, the bigger the NS, the better the formulation is. Instead of this value the ratio NS/
Time may be considered as well. There is a relation between the values TI and NS. That is, 
while solving a given MILP formulation, if the solver engine does more iteration per unit 
time, then it will search fewer nodes in the branch-and-bound tree or vice versa.
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Number of Constraints (NC): It is the number of constraints that a MILP formulation 
has. It shows how big the formulation is and it also effects directly the solution time of 
the relaxed formulations in each node in the branch-and-bound tree. Because when the 
number of constraints increases, the constant matrix (A) of the linear model increases and 
so to solve the simplex tableaus becomes harder. Hence it can be said the smaller the NC, 
the better the formulation is.

Number of Binary Decision Variables (BDV): It is the number of binary decision vari-
ables that a MILP formulation has. It shows how big the formulation is and also how big 
the branch-and-bound search tree is. When the number of binary variables increases, the 
number of nodes that must be searched in the branch-and-bound tree will increase expo-
nentially. So it can be said the less the BDV, the better the MILP formulation is.

In the literature of the MCDM, Chen and Hwang (1992) advise a decision maker to gen-
erate 7±2 criteria based on the Miller’s theory (Miller 1965). Also Saaty (1980) states that 
the criteria used for the application of AHP in a decision problem must be independent 
of each other (i.e. any criterion must not affect the others) and the number of the criteria 
should be around seven. This requirement is explained based on the fact that if the number 
of the criteria increases, the influence of each individual criterion decreases and this causes 
a decrease in sensitivity of the AHP. For this reason in this study, 8 of the 11 criteria are 
selected. FGAP and LGAP, are not considered since they are calculated by using FIOV, 
BIOV and BB (i.e. FGAP = FIOV/current best bound, LGAP = BIOV/BB). Also the criteria 
BDV is eliminated in advance since it does not mean anything because of the reason that 
the number of binary decision variables in the MILP formulations is same except the one 
presented in the Baldacci et al. (2004). One can choose a different set of criteria different 
from ours. For example the BDV criterion can be selected in the case where there is alterna-
tive MILP formulations having different number of binary decision variables.

After the identification of criteria those are considered in the decision making problem, 
the decision hierarchy for the evaluation of MILP formulations is established. There are 
three levels in the decision hierarchy which are presented in Figure 2. The overall goal of 
the decision process determined as “the selection of the appropriate MILP formulation for a 
certain type of decision maker” is in the first level of the hierarchy. The criteria are on the 
second level and the alternative MILP formulations (abbreviations are given in Section 3) 
are on the third level of the hierarchy.

In the second stage, after the construction of the AHP hierarchy, the pair-wise compari-
son matrices of the selected criteria are formed to determine the criteria weights. Each of 
the 15 researchers in the decision-making team makes their individual evaluations using 
the 1–9 scale proposed by Saaty (1980), to determine the values of the elements of pair-
wise comparison matrices.

One of the important issues on the pair-wise comparison matrices is the consistency. 
Because in making pair-wise comparisons, errors arising out of inconsistency in judgments 
affect the final answer. The consistency of a decision matrix can simply be explained as 
follows: If a decision maker has judgments that ith criterion is αij times important then 
jth criterion, and jth criterion is βjk times important then kth criterion; then the decision 
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maker must judge the ith criterion is ∆ik = αijβjk times important then the kth criterion.  
Namely there must be transitivity on the judgments. Consistency Ratio (CR) is used to 
measure the inconsistency in the decision matrix. That’s why the CR value of each indi-
vidual pair-wise comparison matrix is checked and in case of the inconsistency, the related 
matrix is revised by the same team participant until it will be consistent (Saaty 1980). On 
a scale from zero to one, the overall inconsistency should be below 10%.

Then all of the 15 pair-wise comparison matrices are reduced to one combined matrix 
whose elements are computed by calculating the geometric average of corresponding ele-
ments in each of the matrices. This final matrix shows the joint point of view of the decision 
team on the importance of the criteria. Later on the weights of the criteria are calculated 
based on this combined comparison matrix.

In the third stage, the benchmark instances of the understudy COP are solved using the 
alternative MILP formulations. The decision matrix of the TOPSIS is formed by using this 
numerical values gathered within those solutions. In the fourth stage, the ranks of the MILP 
formulations are determined by using TOPSIS method. The formulation having the biggest 
Ci

* value (see Sen, Yang 1998; Yurdakul, İç 2005) is determined as the most appropriate 
formulation according to the calculations by TOPSIS. Ranking of the other formulations 
is determined according to the Ci

* values in descending order. 

3. The numerical application of the proposed model

In this section, as an application field, we choose the CVRP as the COP and the proposed 
decision model is implemented on the selection of the MILP formulations of the CVRP 
which have been presented in the literature.

The Vehicle Routing Problem (VRP) is one of the most studied combinatorial optimi-
zation problem and is concerned with the optimal design of routes to be used by a fleet 
of vehicles to serve a set of customers. Since it was first proposed by Dantzig and Ramser 
(1959), for over 40 years the problem has been analyzed and tried to be solved using both 
exact optimization methods and heuristic algorithms (Baldacci et al. 2010).

The CVRP is the key operational problem that must be solved in the daily operation 
of physical distribution and logistics. Therefore the CVRP has been described as the most 

Fig. 2. The decision hierarchy of the selection of the formulations
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common management problem in the food, fuel and the retail goods distribution. The 
CVRP applications has been studied by many researchers in the literature (Vaidyanathan 
et al. 1999; Tan et al. 2001; Bell, McMullen 2004; Bektas 2006; Faulin, Juan 2008; Ji, Chen 
2007; Eksioglu et al. 2009; Ali et al. 2009; Moghadam et al. 2010; Ezzatneshan 2010; Youse-
fikhoshbakht, Sedighpour 2011; Soysal et al. 2015; Dominguez et al. 2016).

The CVRP can be defined as a problem of finding the m optimal routes from one cen-
tral depot to a number of customers, in such a way that, each route starts and ends at the 
depot, each customer belongs to exactly one route, the load of a vehicle on each route does 
not exceed the capacity Q of the m identical vehicles, all customer demands are met by 
one vehicle and the sum of the total distance of all m routes is minimized. It is well known 
that the CVRP is an NP-hard (in the strong sense) problem (Haimovich et al. 1988; Ji, 
Chen 2007; Ali et al. 2009; Expósito-Izquierdo et al. 2016) and generalizes the well-known 
Traveling Salesman Problem (TSP).

A survey covering early exact methods for the CVRP is given by Laporte and Nobert 
(1987). The book edited by Toth and Vigo (2002) provides a comprehensive overview of 
CVRP and other variants proposed up to the end of the twentieth century (Baldacci et al. 
2010). The most recent survey about the CVRP and exact solution algorithms is given by 
Cordeau et al. (2007) and Baldacci et al. (2010). The surveys of Laporte and Semet (2002) 
and of Gendreau et al. (2002) in the book edited by Toth and Vigo (2002) can be read for 
the researchers who are interested in the heuristic algorithms. 

In this study, four different CVRP and three different Distance Constrained Capacitated 
Vehicle Routing Problem (DCVRP) formulations are considered. CVRP formulations are 
the formulation of Kara and Bektas (2005), two formulations of Baldacci et al. (2004) (one 
is multi-commodity flow formulation and the other is two-commodity flow formulation), 
and the formulation of Waters (1988). DCVRP formulations are the two formulations of 
Kara and Derya (2011) (one is node-based and the other is arc-based formulation), and 
the formulation of Kulkarni and Bhave (1985). Since we are interested in the formulations 
of the CVRP, we ignored the distance constraints and used only the capacity constraints 
in the DCVRP formulations. In this study, considered formulations are given with their 
abbreviations in the following: The Formulation of Kulkarni and Bhave (1985): KB; The 
Formulation of Baldacci, Hadjiconstantinou and Mingozzi (2004): BHM1; The Formulation 
of Baldacci, Hadjiconstantinou and Mingozzi (2004): BHM2; The Formulation of Waters 
(1988): WAT; The Formulation of Kara and Derya (2011) (Node Based Formulation): KD1; 
The Formulation of Kara and Derya (2011) (Arc Based Formulation); KD2; The Formula-
tion of Kara and Bektaş (2005): KABE. 

In the literature there are various mathematical formulations for the CVRP other than 
the ones considered above. Some of the formulations (see Toth, Vigo 2002: 12, 15, 21) even 
cannot be directly used to solve by a generic solver like CPLEX. The aim in this study is 
not to compare all of the formulations in the CVRP literature, but to propose an MCDM 
method to select the appropriate formulation among the alternatives which can be solved 
directly by CPLEX. Hence, as a numerical application the most popular CVRP formula-
tions in the literature are chosen.
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Suppose that there are three different types of researchers who are trying to solve the 
CVRP with different approaches using one of the proposed MILP formulations. So, those 
researchers will be the decision makers who intend to choose the appropriate mathemati-
cal model(s) among the alternative candidates according to their needs on their ongoing 
studies. Assume that there is a decision maker who wants to find the optimal solution of 
the CVRP by just solving a MILP formulation (he/she would select) directly using a solver 
software. And we call this decision maker as “Decision Maker Type-1”. This type of decision 
makers would prefer the MILP formulation which finds the optimal solution in the shortest 
time. Also we define another decision maker who studies on an exact solution algorithm 
(i.e. a branch-and-cut or a branch-and-price algorithm which uses the MILP formulation 
he/she would select inside the algorithm) and wants to find the optimal solution of the 
CVRP by using the exact solution algorithm. We call this decision maker as “Decision 
Maker Type-2”. This type of decision makers would prefer the MILP formulation which 
gives the better lower and upper bounds. 

Finally we assume a decision maker who studies on a heuristic or meta-heuristic algo-
rithm (i.e. optimization based algorithm which directly or indirectly uses the MILP for-
mulation he/she would select inside the algorithm) and wants to find the optimal or near 
optimal solution of the CVRP by using the heuristic algorithm. We call this decision maker 
as “Decision Maker Type-3”. This type of decision makers would prefer the MILP formula-
tion which gives the best starting feasible solution in a shortest time. Each type of decision 
maker has its own preferences to choose the most appropriate MILP formulation.

The criteria to be used in the decision model are determined by the decision team with 
the use of the output that the CPLEX solver engine can give. Each member of decision 
making teams makes individual judgments about the criteria to determine the values of 
the elements of pair-wise comparison matrices according to the preferences of the decision 
making team that reflects the type of decision maker. The numerical example is performed 
as it is provided on the steps in the Section 3 and the step by step explanations together 
with the results are given in the following sections. 

3.1. Calculation of the weights of the criteria

In the second stage of the proposed decision model, the weights of the selected criteria 
are calculated by using AHP method. In this stage, each member in each decision team 
makes individual judgments about the criteria by using the Saaty’s 1–9 scale (Saaty 1980) 
to determine the values of the elements of pair-wise comparison matrices according to the 
preferences of decision team that represents the corresponding Type of Decision Maker. 
Geometric averages of these values are found to obtain the combined pair-wise comparison 
matrix for each type of decision maker (Tables 2–4).

The weights of criteria obtained from the combined pair-wise matrices are given in 
Table 5 for each type of decision maker. CR value of the combined pair-wise comparison 
matrix is calculated for each type of decision maker and it is observed that they are all 
consistent since CR ≤ 0.1.
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Table 2. The combined pair-wise comparison matrix for criteria according to decision maker Type-1

  LPR FIOV TFIS BIOV BB TI NS NC

LPR 1.00 6.45 6.49 0.28 0.26 5.75 3.94 3.77
FIOV 0.15 1.00 1.27 0.17 0.14 1.75 1.60 0.47
TFIS 0.15 0.79 1.00 0.15 0.14 1.63 1.18 0.38
BIOV 3.62 6.05 6.85 1.00 1.04 6.17 4.77 4.75

BB 3.78 7.08 7.30 0.96 1.00 6.84 4.81 4.39
TI 0.17 0.57 0.61 0.16 0.15 1.00 0.79 0.38
NS 0.25 0.63 0.84 0.21 0.21 1.26 1.00 0.50
NC 0.27 2.13 2.64 0.21 0.23 2.63 1.99 1.00

Table 3. The combined pair-wise comparison matrix for criteria according to decision maker Type-2

  LPR FIOV TFIS BIOV BB TI NS NC
LPR 1.00 0.37 0.79 0.15 0.15 0.30 0.16 0.28

FIOV 2.71 1.00 1.98 0.31 0.34 0.51 0.32 0.64
TFIS 1.27 0.51 1.00 0.18 0.17 0.43 0.17 0.44
BIOV 6.46 3.28 5.43 1.00 0.86 3.40 0.99 3.10

BB 6.62 2.94 6.03 1.16 1.00 3.51 1.29 3.40
TI 3.36 1.95 2.31 0.29 0.29 1.00 0.29 1.11
NS 6.34 3.17 6.01 1.01 0.78 3.49 1.00 3.07
NC 3.61 1.57 2.27 0.32 0.29 0.90 0.33 1.00

Table 4. The combined pair-wise comparison matrix for criteria according to decision maker Type-3

  LPR FIOV TFIS BIOV BB TI NS NC
LPR 1.00 0.24 0.28 2.72 2.48 0.58 0.75 2.55

FIOV 4.18 1.00 0.84 6.15 5.49 5.50 4.09 6.52
TFIS 3.59 1.19 1.00 5.71 5.76 6.64 5.41 6.46
BIOV 0.37 0.16 0.18 1.00 1.37 0.65 0.79 1.56

BB 0.40 0.18 0.17 0.73 1.00 0.59 0.77 1.79
TI 1.72 0.18 0.15 1.53 1.69 1.00 2.27 3.01
NS 1.33 0.24 0.18 1.27 1.30 0.44 1.00 2.10
NC 0.39 0.15 0.15 0.64 0.56 0.33 0.48 1.00

Table 5. The weights of the criteria according to the decision maker Profile

Weights

Criteria Decision Maker 
Type-1

Decision Maker 
Type-2

Decision Maker 
Type-3

LPR 0.175 0.030 0.083
FIOV 0.043 0.067 0.300
TFIS 0.037 0.037 0.328
BIOV 0.297 0.225 0.050

BB 0.304 0.247 0.048
TI 0.031 0.086 0.090
NS 0.041 0.225 0.066
NC 0.072 0.083 0.034
CR 0.04 0.01 0.03
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3.2. Establishing the decision matrix of the TOPSIS

After the weights of criteria are obtained for each type of the decision maker; at this stage 
before forming the decision matrix of TOPSIS method, the standard benchmark instances 
for the CVRP are solved by each of the seven MILP formulations. In these experimenta-
tions twenty seven CVRP instances of Augerat et al. (1998) (Problem Set: A) which are 
available at http://www.branchandcut.org/ are used. The size of the test instances varies 
between 32 and 80 customers. The MILP formulations are coded in Optimization Program-
ming Language (OPL) and solved using “CPLEX Optimization Studio Academic Research 
Edition 12.2.0.2” on a PC with “Pentium Core 2 Quad 2.66 GHz processor and 2 GB of 
RAM” and running under “Ubuntu Server 10.10”. CPLEX parameters are set as follows; 
node selection strategy: best-bound-search, search method: traditional branch-and-cut 
search, algorithm to solve sub-problems: primal simplex, variable selection strategy: strong 
branching, behavior when tree memory limit is reached: node file on disc and compressed, 
all other CPLEX parameters are left on default values. The time limit for the computation 
time on CPLEX is set to 7200 seconds.

The average value of each criterion is obtained from the experimentations and given in 
Table 6. These values are used to construct the decision matrix of the TOPSIS method. In 
the application of the TOPSIS method, in the process of obtaining the ideal solutions, it is 
necessary to determine whether the criterion is in the cost or benefit class. This information 
is given in Table 6, as well. After obtaining the decision matrix, the normalized decision 
matrix is calculated and given in Table 7.

Table 6. Decision matrix obtained from CPLEX solution

Model MAX MIN MIN MIN MAX MAX MAX MIN
LPR FIOV TFIS BIOV BB TI NS NC

KB 633.74 1,603 5,641,574 840 740.85 79,272,135 2,558,008 2,667
BHM1 990.75 10,000* 30,000,000* 10,000* 733.02 1,467,998 142 142,132
BHM2 891.20 1,162 13,312,865 993 896.5 100,286,273 1,551,415 8,090
KABE 684.26 1,468 175,575 1,064 749.52 151,622,760 5,809,364 2,714
KD1 684.27 1,350 372,391 1,065 747.33 141,040,010 5,597,242 2,714
KD2 920.31 2,475 59,834 1,119 988.04 44,844,581 517,738 5,281
WAT 868.58 2,473 32,729 982 980.61 47,260,800 474,948 5,232

Note: This value is chosen intentionally as very big (in the opposite direction of the benefit-cost in-
formation of the criterion) since the formulation couldn’t give any value for none of the 27 instances 
during the given time limit.

Table 7. Normalized decision matrix 

Model MAX MIN MIN MIN MAX MAX MAX MIN
LPR FIOV TFIS BIOV BB TI NS NC

KB 0.29 0.15 0.17 0.08 0.33 0.31 0.30 0.02
BHM1 0.46 0.91 0.90 0.97 0.32 0.01 0.00 1.00
BHM2 0.41 0.11 0.40 0.09 0.44 0.40 0.18 0.06
KABE 0.32 0.13 0.01 0.10 0.33 0.60 0.67 0.02
KD1 0.32 0.12 0.01 0.10 0.33 0.56 0.65 0.02
KD2 0.42 0.23 0.00 0.11 0.44 0.18 0.06 0.04
WAT 0.40 0.23 0.00 0.10 0.43 0.19 0.06 0.04
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3.3. Evaluation of the alternative formulations

After the solution of test instances are obtained and the decision matrix of the TOPSIS 
method is established; according to the three decision maker type the weighted normalized 
decision matrix is calculated by multiplying the normalized decision matrix by weights 
which are given in Table 5. Three weighted normalized decision matrices are obtained and 
the calculations are performed according to these matrices. After these calculations the 
positive ideal solution A* and negative ideal solution A– are determined and these results 
are presented in Tables 8–10. 

The distance of all alternatives to the positive ideal solution Dj
* and the negative ideal 

solution Dj
– results are determined for all formulations and with these solutions the rela-

tive closeness of each alternative to the ideal solution is obtained for each type of decision 
maker. According to these results, ranking of the alternatives are presented in Tables 11–13.

Table 8. The weighted normalized decision matrix and the ideal solution values obtained by the deci-
sion maker Type-1

Model MAX MIN MIN MIN MAX MAX MAX MIN

LPR FIOV TFIS BIOV BB TI NS NC
KB 0.051073 0.006289 0.006267 0.024230 0.099437 0.009754 0.012149 0.001346

BHM1 0.079845 0.039231 0.033328 0.288481 0.098387 0.000181 0.000001 0.071747
BHM2 0.071823 0.004560 0.014790 0.025862 0.133251 0.012340 0.007368 0.004084
KABE 0.055145 0.005758 0.000195 0.030697 0.100601 0.018657 0.027591 0.001370
KD1 0.055146 0.005295 0.000414 0.030728 0.100307 0.017355 0.026584 0.001370
KD2 0.074168 0.009708 0.000066 0.032293 0.132616 0.005518 0.002459 0.002666
WAT 0.069999 0.009703 0.000036 0.028326 0.131618 0.005815 0.002256 0.002641

A* 0.079845 0.004560 0.000036 0.024230 0.133251 0.018657 0.027591 0.001346
A– 0.051073 0.039231 0.033328 0.288481 0.098387 0.000181 0.000001 0.071747

Table 9. The weighted normalized decision matrix and the ideal solution values obtained by the deci-
sion maker Type-2

Model MAX MIN MIN MIN MAX MAX MAX MIN
LPR FIOV TFIS BIOV BB TI NS NC

KB 0.008755 0.009800 0.006267 0.018356 0.080793 0.027060 0.066672 0.001552
BHM1 0.013688 0.061127 0.033328 0.218546 0.079939 0.000501 0.000004 0.082709
BHM2 0.012312 0.007105 0.014790 0.019593 0.108267 0.034234 0.040436 0.004708
KABE 0.009453 0.008972 0.000195 0.023255 0.081738 0.051758 0.151415 0.001580
KD1 0.009454 0.008250 0.000414 0.023278 0.081499 0.048146 0.145886 0.001580
KD2 0.012715 0.015127 0.000066 0.024464 0.107751 0.015308 0.013494 0.003073
WAT 0.012000 0.015118 0.000036 0.021459 0.106940 0.016133 0.012379 0.003045
A* 0.013688 0.007105 0.000036 0.018356 0.108267 0.051758 0.151415 0.001552
A– 0.008755 0.061127 0.033328 0.218546 0.079939 0.000501 0.000004 0.082709
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Table 10. The weighted normalized decision matrix and the ideal solution values obtained by the deci-
sion maker Type-3

Model
MAX MIN MIN MIN MAX MAX MAX MIN
LPR FIOV TFIS BIOV BB TI NS NC

KB 0.024223 0.043879 0.055560 0.004079 0.015701 0.028319 0.019557 0.000636
BHM1 0.037869 0.273704 0.295450 0.048566 0.015535 0.000524 0.000001 0.033881
BHM2 0.034064 0.031815 0.131109 0.004354 0.021040 0.035826 0.011861 0.001928
KABE 0.026154 0.040174 0.001729 0.005168 0.015884 0.054166 0.044415 0.000647
KD1 0.026155 0.036939 0.003667 0.005173 0.015838 0.050385 0.042793 0.000647
KD2 0.035177 0.067733 0.000589 0.005436 0.020939 0.016020 0.003958 0.001259
WAT 0.033200 0.067692 0.000322 0.004769 0.020782 0.016883 0.003631 0.001247

A* 0.037869 0.031815 0.000322 0.004079 0.021040 0.054166 0.044415 0.000636
A¯ 0.024223 0.273704 0.295450 0.048566 0.015535 0.000524 0.000001 0.033881

Table 11. The ranking of formulations according to the decision maker Type-1

Model Dj
* Dj

¯ Ci
* Normalized Ci

* Ranking
KB 0.048278 0.277205 0.851674 0.15803 6

BHM1 0.281804 0.028772 0.09264 0.01719 7
BHM2 0.027222 0.277382 0.910631 0.16897 1
KABE 0.041466 0.273401 0.868307 0.16111 4
KD1 0.041725 0.273216 0.867514 0.16097 5
KD2 0.030498 0.272254 0.899264 0.16686 3
WAT 0.030843 0.275565 0.89934 0.16687 2

Table 12. The ranking of formulations according to the decision maker Type-2

Model Dj
* Dj

¯ Ci
* Normalized Ci

* Ranking
KB 0.092826 0.234904 0.716761 0.16180 3

BHM1 0.277569 0.004932 0.017459 0.00394 7
BHM2 0.113378 0.229165 0.669011 0.15102 4
KABE 0.027371 0.272204 0.908633 0.20511 1
KD1 0.02835 0.268599 0.904529 0.20418 2
KD2 0.143024 0.220051 0.606075 0.13681 6
WAT 0.143808 0.222603 0.607522 0.13714 5

Table 13. The ranking of formulations according to the decision maker Type-3

Model Dj
* Dj

¯ Ci
* Normalized Ci

* Ranking
KB 0.068538 0.338535 0.831633 0.16084 5

BHM1 0.391887 0.013646 0.03365 0.00651 7
BHM2 0.136079 0.300013 0.687958 0.13305 6
KABE 0.01539 0.385552 0.961616 0.18598 2
KD1 0.014827 0.385361 0.962949 0.18624 1
KD2 0.066268 0.364275 0.846082 0.16364 4
WAT 0.066054 0.364573 0.846609 0.16374 3



576 B. Kececi et al. A comparative study of the capability of alternative mixed integer programming ...

3.4. The results of the numerical application

According to the results of AHP method in Table 5, the important criteria to compare the 
alternative formulations for the “Decision Maker Type-1” are BB, BIOV and LPR. Also 
the three most important criteria for the “Decision Maker Type-2” and “Decision Maker 
Type-3” are BB, BIOV, NS and TFIS, FIOV, TI, respectively.

Assume that the “Decision Maker Type-1” tried to decide according to only one cri-
terion. In Table 5, the most important three criteria for the decision maker are BB, BIOV 
and LPR. The formulation of BHM1 would be chosen according to the LPR since it gives 
the best average value in Table 8 and the formulation of KB would be chosen according to 
the BIOV since it gives the best average value in Table 8. Thus, the decision maker might 
not decide which formulation is chosen. According to the results given in Table 11, the 
proposed approach gives the formulation of BHM2 in the first rank. In the case of handling 
crucial combination of criteria together according to the “Decision Maker Type-1”, the 
formulation of BHM2 will be selected by the proposed method.

The most important three criteria for the “Decision Maker Type-2” are the BIOV, BB 
and NS. If the decision maker considered only the BIOV (BB) then the formulation of KB 
(BHM2) would be chosen since it gives the best average value. Similarly the most impor-
tant three criteria for the “Decision Maker Type-3” are the FIOV, TFIS and TI; and if the 
decision maker considered only the FIOV (TFIS) then the formulation of BHM2 (WAT) 
would be chosen since it gives the best average value. It would be pretty much confusing to 
decide which MILP formulation is the most appropriate one according to just one criterion. 
But with the application of decision model (by considering all predetermined criteria and 
their weights), however it can be seen that the formulation of KABE and KD1 have the 
first priority for the “Decision Maker Type-2” and “Decision Maker Type-3”, respectively.

3.5. Sensitivity analysis

To analyze and explore the response of AHP-TOPSIS decision model to the change in pri-
orities of criteria, sensitivity analysis could be helpful. Sensitivity analysis is needed because 
for instance, sometimes the decision makers’ judgments may change if they have more 
information on the problem. According to the current judgments of the “Decision Maker 
Type-1”, the priority of “BHM2” is better than the other formulations. Also the “KABE” and 
“KD1” have the first priority according to the current judgments of the “Decision Maker 
Type-2” and “Type-3”, respectively. Hence, it is of importance to further analyze how the 
priority of formulations will change if the weights of criteria change. The changes in weights 
of chosen criteria are performed by Expert Choice 11 software. Expert Choice is a software 
package of the AHP. Decision makers can graphically change the weights of the criteria. In 
our decision model since the AHP is only used to calculate the weights of the criteria, the 
latter calculations of the sensitivity analysis are performed in Microsoft Excel to observe 
the changes of the ranking of different alternatives (here MILP formulations) systematically.

Eight scenarios are designed to do the sensitivity analysis of the decision problem. In 
each scenario only one of the criteria (LPR, FIOV, TFIS, BIOV, BB, TI, NS and NC) is 
increased by 25% from its current level. Figures 3–5 display how the (ranking of) alterna-
tives perform with respect to the designed scenarios for each type of the decision maker.
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Fig. 3. The result of designed scenarios for the decision maker Type-1

Fig. 4. The result of designed scenarios for the decision maker Type-2

Fig. 5. The result of designed scenarios for the decision maker Type-3
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According to the judgments of “Decision Maker Type-1” (Fig. 3): In Scenario 5, in-
creasing the weight of criterion BB by 25% decreases the ranking of formulation BHM2 
from 1 to 4 (the global weight decreases from 0.16897 to 0.15961); besides the ranking 
of formulation KABE increases from 4 to 1 (the global weight increases from 0.16111 to 
0.16595). In Scenario 5 it can be seen that the ranking of formulations affected substan-
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tially by the change of the weight of BB. In Scenarios 2 and 3, it is also observed that the 
25% increase in the weight of criteria FIOV and TFIS, respectively, change the ranking of 
formulations WAT and KD2. Figure 3 (scenario 5) indicates that increasing the weight of 
BB by 25% for the “Decision Maker Type-1”, will lead to the global weight of BHM2, WAT 
and KD2 showing a downward tendency and oppositely KABE, KD1 and KB showing an 
upward tendency. Figure 3 (scenarios 2 and 3) indicate that increasing the weight of FIOV 
and TFIS, respectively, by 25%, will lead to the global weight of KD2 showing an upward 
tendency and oppositely WAT showing a downward tendency.

According to the judgments of  “Decision Maker Type-2” (Fig. 4): In Scenario 7, in-
creasing the weight of criterion NS by 25% decreases the ranking of formulation KABE 
from 1 to 2 (the global weight decreases from 0.20511 to 0.19215); besides the ranking 
of formulation KD1 increases from 2 to 1 (the global weight increases from 0.20418 to 
0.20672). There is not any change in the ranking of the formulations respect to the designed 
scenarios. Figure 4 (scenario 7) indicates that increasing the weight of NS by 25% for the 
“Decision Maker Type-2”, will lead to the global weight of KD1 showing an upward ten-
dency and oppositely KABE showing a downward tendency.

According to the judgments of “Decision Maker Type-3” (Fig. 5): In Scenario 3, increas-
ing the weight of criterion TFIS by 25% decreases the ranking of formulation KD1 from 1 
to 2 (the global weight decreases from 0.18624 to 0.18261); besides the ranking of formu-
lation KABE increases from 2 to 1 (the global weight increases from 0.18598 to 0.18723). 
In Scenario 2, it is also observed that the 25% increase in the weight of criterion FIOV, 
changes the ranking of formulations KB, WAT and KD2. Figure 5 (scenario 2) indicates 
that increasing the weight of FIOV by 25% for the “Decision Maker Type-3”, will lead to the 
global weight of KB showing an upward tendency and oppositely WAT and KD2 showing 
a downward tendency. Figure 5 (scenario 3) indicates that increasing the weight of TFIS by 
25%, will lead to the global weight of KABE showing an upward tendency and oppositely 
KD1 showing a downward tendency. 

The above situation demonstrates the conclusion of the sensitivity analysis. In general, 
KB has positive performance to increase in weights of BB and FIOV. BHM2 has negative 
performance to increase in weight of BB. KABE has positive performance to increase in 
weights of BB and TFIS, and has negative performance to increase in weight of NS. KD1 
has positive performance to increase in weights of BB and NS, and has negative perfor-
mance to increase in weight of TFIS. KD2 has negative performance to increase in weight 
of BB, and has positive performance to increase in weight of TFIS. WAT has negative per-
formance to increase in weights of BB, FIOV and TFIS.

Conclusions and future researches

This study provides a systematic approach integrated with the AHP-TOPSIS methods to 
guide the selection of the most appropriate MILP formulation among the set of alternatives 
according to the needs of the decision maker. The proposed decision model is implemented 
on the selection of the MILP formulations of the CVRP in the literature. A numerical 
example is also provided for illustrative purposes. The usage of this model is especially 
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recommended when the MILP formulation is intended to be used in a solution approach 
of solving NP-hard COPs, since different approaches may require different requirements.

In the future studies, other COPs may be considered as a specific application field. The 
addition of other decision-maker type scenarios and the relationships among them can be 
added to the model for a more complete representation of the formulation’s performance, 
as well. In addition of this study, any other set of criteria may be used in the selection of 
MILP formulations. Also the dependencies between the criteria might be considered as 
a future research and the Analytic Network Process (ANP) can be used to determine the 
most appropriate formulations for the researchers in their own area of interest. 

On the other hand future studies could extend the insights of this study in several 
options. For example, it would be interesting to develop a set of high-dimensional real 
case engineering optimization problems for comparing alternative MILP formulations. In 
this work, mathematical formulations are used, mainly because the number of dimen-
sions could be scaled independently of the major features of the problem. However, real 
engineering optimization problems are likely to provide physical insights into the relative 
strengths and weaknesses of the methods that could prove useful to the practitioners.

The proposed decision model can be a tool for the decision makers (here they are the 
scientists, engineers and practitioners) who intend to choose the appropriate mathematical 
model(s) among the alternative candidates according to their needs on their ongoing stud-
ies. The developed decision model is also easy to use, expandable, adaptable and modifi-
able to different decision situations. The integrated AHP-TOPSIS approach can simply be 
incorporated into a computer-based decision support system since it has simplicity in both 
computation and application.
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