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Abstract. This paper introduces the induced ordered weighted logarithmic averaging IOWLAD 
and multiregion induced ordered weighted logarithmic averaging MR-IOWLAD operators. The 
distinctive characteristic of these operators lies in the notion of distance measures combined with 
the complex reordering mechanism of inducing variables and the properties of the logarithmic aver-
aging operators. The main advantage of MR-IOWLAD operators is their design, which is specifically 
thought to aid in decision-making when a set of diverse regions with different properties must be 
considered. Moreover, the induced weighting vector and the distance measure mechanisms of the 
operator allow for the wider modeling of problems, including heterogeneous information and the 
complex attitudinal character of experts, when aiming for an ideal scenario. Along with analyzing 
the main properties of the IOWLAD operators, their families and specific cases, we also introduce 
some extensions, such as the induced generalized ordered weighted averaging IGOWLAD opera-
tor and Choquet integrals. We present the induced Choquet logarithmic distance averaging ICLD 
operator and the generalized induced Choquet logarithmic distance averaging IGCLD operator. 
Finally, an illustrative example is proposed, including real-world information retrieved from the 
United Nations World Statistics for global regions. 
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Introduction

A region is conventionally defined as a part or portion of a whole space, which is character-
ized by having no fixed boundaries. Currently, the effects of global economic trade and its 
implications are widely observable (Grossman & Helpman, 2015). These effects eliminate 
the imaginary borders that limit countries in generating and distributing value and affect 
the ways that innovation, growth and economic development are generated (Acemoglu, 
2009; Florida, Gulden, & Mellander, 2008; Grossman & Helpman, 1993). These issues have 
attracted considerable attention to regions. Currently, more researchers are focusing their 
efforts on studying the economic, political and social influences that regions exert over ter-
ritories from different but convergent perspectives, e.g., the regional effects that the twin no-
tions of creative class and creative capital have over territories (Florida, 2002, 2005; Florida, 
Mellander, & Stolarick, 2008), the economic implications of innovation and the Schumpe-
terian regional view (Batabyal & Yoo, 2018), the regional influence that regions exert over 
companies (Sucháček, Seďa, Friedrich, & Koutský, 2017), and the social factors involving 
educational and regional growth (Lv, Yu, Gong, Wu, & Xu, 2017).

The continuously increasing number of elements to be modeled when assessing regions 
requires the design of new tools that aid decision-makers to achieve feasible solutions when 
a wide set of alternatives, heterogeneous information, and human attitudinal information 
need to be assessed. One of the most well-known information fusion techniques designed 
for decision-making is the ordered weighted average (OWA) operator (Yager, 1988). This 
operator and the parameterized families proposed have been widely studied and applied in 
a plethora of academic fields see e.g. (Beliakov, Bustince, & Calvo, 2016; Beliakov, Pradera, & 
Calvo, 2007; He, Wu, Yu, & Merigó, 2017). Some of the main advantages of the OWA opera-
tor is the useful representation of the attitudinal character of the decision-maker in decision 
making problems (Zeng, Su, & Zhang, 2016). The OWA operator was used as a motivation to 
build a more complex operator denominated the induced ordered weighted average (IOWA) 
operator (Yager & Filev, 1999). The benefits of this last operator rely in the addition of an 
induced vector that affects the ordering mechanism of the arguments assessed (Yager, 2003). 
Such reordering allows the modelling of the problem to be inclusive also for the complex 
attitude of the decision makers (Chiclana, Herrera-Viedma, Herrera, & Alonso, 2007), there-
fore being able to deal with even more complex problems which gives a closer resemblance of 
real-world situations. The extensions of the induced OWA have also included developments 
on fuzzy numbers (S. J. Chen & S. M. Chen, 2003), intuitionistic fuzzy group decision mak-
ing approaches designed to treat uncertain and vague information (Wei & Zhao, 2012; Zeng, 
Llopis-Albert, & Zhang, 2018), and linguistic information (Xian, Sun, Xu, & Gao, 2016). 

The conception of an ideal set of arguments to be reached compared to a set of options is 
a long and well-studied issue in decision making science. Here the notion of distance plays a 
decisive role. Some commonly utilized distance measures are e.g. the Minkowski, the Ham-
ming, the Euclidean distances and the Hausdorff metric (Zwick, Carlstein, & Budescu, 1987). 
In this work we utilize the Hamming distance (Hamming, 1950). It is of no surprise that this 
metric has gained popularity among scientists. The idea of considering the importance of 
each deviation value and including it as part of the information fusion techniques has led to 
the appearance of noted operators such as the ordered weighted distance (OWD) operators 
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(Xu & Chen, 2008) and the ordered weighted averaging distance (OWAD) operators (Merigó 
& Gil-Lafuente, 2010). From these classic operators several extensions have been developed, 
such as the consideration of intuitionistic fuzzy information IFOWD operator (Zeng & Su, 
2011), moving averages (León-Castro, Avilés-Ochoa, Merigó, & Gil-Lafuente, 2018; Merigó 
& Yager, 2013), Bonferroni means (Blanco-Mesa, León-Castro, & Merigó, 2018), among oth-
ers. More recently, the application of the induced vector has been applied to the concept 
of distance in the decision-making science (see e.g. Li, Sun, & Zeng, 2018). The result of 
these combinations are the induced OWA operators with distances e.g. the induced ordered 
weighted averaging distance (IOWAD) operators introduced by (Merigó & Casanovas, 2011), 
the induced aggregation operators developed by (Su, Zeng, & Ye, 2013), the linguistic induced 
aggregation distance operators by (Zeng & Weihua, 2012), and the fuzzy linguistic induced 
ordered weighted averaging Minkowski distance (FLIOWAMD) operator (Xian et al., 2016). 

Motivated by the complex ordering mechanism of the induced OWA operators, the ideal 
set of arguments compared to individual options in the form of distances, the logarithmic 
aggregation operators presented firstly by (Zhou & Chen, 2010), and the challenges presented 
in decision making processes while dealing with regions, this paper introduces a family 
of operators named multi region induced generalized ordered weighted averaging distance 
(MR-IOWLAD) operators. Since the appearance of the generalized ordered weighted loga-
rithmic average operator, several extensions have appeared in the field of decision making 
such as the generalized logarithmic proportional averaging operators (Zhou, Chen, & Liu, 
2012), the generalized ordered weighted logarithmic harmonic averaging operators (Zhou, 
Tao, Chen, & Liu, 2014), the induced generalized ordered weighted logarithmic averaging 
operator (Alfaro-García, Gil-Lafuente, & Merigó, 2016) and the generalized ordered weighted 
logarithmic averaging distance (Alfaro-García, Merigó, Gil-Lafuente, & Kacprzyk, 2018). The 
MR-IOWLAD operators developed in this work are designed to aid decision-making when 
a series of information linked to regions needs to be considered. Please observe that, when 
combined with multicriteria decision-making, the MR-IOWLAD utilizes its designed reor-
dering mechanisms to find the most suitable candidate from a series of feasible alternatives 
(Zeng & Xiao, 2018); these characteristic features allow for a practical assessment of widely 
complex and real-world oriented problems.

This study presents an in-depth exploration of the Hamming distance included in the 
MR-IOWLAD operator and its parameterized families, including the maximum and the 
minimum, in three different variants. The characterization of its weighting vector W also 
considers the olympic MR-IOWLAD, the centered IOWLAD and the maximum entropy 
OWA. Another series of families is also explored by shifting the V weighting vector; this 
mechanism allows for more complex formulations of the operator, such as the MROWA-
IOWLAD operator. Moreover, when designing operators for complex decision-making ap-
proaches, the MR-IOWLAD operator is combined with the mean average, the mean average 
distance, the weighted average, the OWA distance operator, the induced OWA operator, 
the induced OWA distance operator, the induced generalized OWA operator, and the in-
duced generalized OWA distance operator to model wider problems when assessing regional 
problems. Furthermore, this paper introduces the IOWLAD and the generalized ordered 
weighted logarithmic averaging distance (IGOWLAD) operators, as well as their specific 



Technological and Economic Development of Economy, 2019, 25(4): 664–692 667

properties and families, including the parameterized cases when the lambda value changes. 
Finally, we show how the IGOWLAD operators relate to discrete Choquet integrals and the 
conditions for this combination.

The main advantage of this approach, including the induced vector and the Hamming 
distance, is that it provides a more general framework that contains the previous approaches 
as particular cases. Therefore, it presents a wider perspective that can be adapted to many 
different scenarios considering diverse information, and it can be reduced to some specific 
classical cases if the problem requires. The induced vector has been proven to be useful 
when assessing highly complex problems with the heterogeneous attitudinal character of the 
decision-makers. Additionally, the included distance measure mechanism aims to provide a 
useful tool when the problem is associated with the comparison of diverse alternatives and 
an ideal scenario.

The remainder of the paper is as follows. Section 1 presents the foundations of this study. 
Section 2 introduces the IOWLAD and MR-IOWLAD operators and their properties, fami-
lies and characteristic weighting vectors. Section 3 presents the IGOWLAD operator and 
the measures used to characterize its W weighting vector and its families depending on the 
lambda value. Section 4 briefly introduces the concept of IGOWLAD operators and Choquet 
integrals. Section 5 studies the general approach to solving decision-making problems with 
MR-IOWLAD, and a series of complex aggregation procedures are denominated multiregion 
logarithmic AGOP. Section 6 presents a numerical example of the application of the MR-
IOWLAD, and finally, this study presents its concluding comments. 

1. Preliminaries

1.1. The OWA operator

The first aggregation operator to appear in the literature was the ordered weighted average 
OWA operator. When first introduced, the OWA was shown to be an advanced operator 
that included a series of specific families depending on the criteria, e.g., the minimum, the 
maximum and the average.

Definition 1. It is, in fact, a mapping : nOWA R R→ , of n dimensions that includes in its 

design a w vector that must satisfy 0,1jw ∈   , and 
1

1
n

j
j

w
=

=∑ . The OWA operator follows 
the formula:

 ( )1 2
1

, , , ,
n

n j j
j

OWA a a a w b
=

… =∑
 

(1)

where bj corresponds to the jth largest element of ai.
Since its introduction, the OWA has been widely adopted in several fields of knowledge. 

This has mainly occurred because of the inherent properties of the operator, i.e., bounded-
ness, monotonicity, commutativity and idempotency. These properties, aligned to the non-
linearity given by the reordering of the arguments, have made this operator very popular 
among the scientific community. Please note that the OWA operator can be distinguished 
as ascending or descending depending on the reordering process that the operator follows. 
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1.2. The IOWA operator

After the appearance of the OWA operator, many other extensions were also introduced. One 
of the foremost extensions that introduced the capacity of including complexity in the reor-
dering mechanism of the operator was the induced ordered weighted average IOWA operator 
(see Zeng et al., 2018). This operator works on induced order variables that directly affect the 
ordering mechanism of a traditional OWA operator and is defined as follows:

Definition 2. The IOWA operator of dimension n, as the former operator, is the result of a 
map : nIOWA R R→ , with a W weighting vector such that the total sum yields 1 and must 
also be between 0 and 1. This operator has a set of order-induced variables ui, such that:

 
( )1 1

1

, , , , ,
n

n n j j
j

IOWA u a u a w b
=

… =∑
 

(2)

where ( )1, , nb b…  is ( )1 2, , na a a…  but reordered in a decreasing order following ui.

1.3. Hamming distance

When assessing distance measures, one can find diverse tools in the literature (Li et al., 2018), 
e.g., the Euclidean distance, the Levenshtein distance, the Lee distance, and the Damerau–
Levenshtein distance. In the present paper, we use the Hamming distance; the main charac-
teristic of this well-known similarity measure is its ability to measure the difference between 
two strings, elements or sets. To define this measure, assume two sets, e.g., ( )1 2, , , nA a a a= …  
and ( )1 2, , , nB b b b= … ; in this case, the weighted Hamming distance is:

Definition 3. A normalized Hamming distance of n dimensions fits a mapping 
: 0,1 0,1 0,1n nWHD × →            that includes an associated weighting vector W of n dimen-

sions; this vector must satisfy 0,1jw ∈  , and the sum of the weights must equal 1, follow-
ing:

 ( )
1

, ,
n

i i i
i

WHD A B w a b
=

 
 = −
 
 
∑

 

(3)

where ai and bi are the ith elements of the sets described in A and B, respectively.

1.4. GOWLAD operator

Zhou and Chen (2010) introduced the generalized ordered weighted logarithmic averaging 
(GOWLA) operator. Motivated by that operator, Alfaro et al. (2018) introduced the general-
ized ordered weighted logarithmic averaging distance (GOWLAD) operator. GOWLAD is 
an extension of GOWLA proposed in 2010 and models the idea of comparing an ordered 
logarithmic set of elements to an ideal. The GOWLAD operator can be defined as:

Definition 4. A GOWLAD operator with n dimensions is part of a mapping GOWLAD:
  n nΩ ×Ω →Ω including a weighting vector W of the same dimension n with the constraint 
of having the sum of the weights equal 1, and the total of wj must be between 0 and 1, 
satisfying:
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 ( ) ( )

1

1 1 2 2
1

, , , , , , exp ln .
n

n n j j
j

GOWLAD x y x y x y w b
ll

=

 
    … =       

∑
 

(4)

In this case, bj is the result of i ix y−  values of the GOWLAD ,i ix y , in decreasing 
order, following i ix y− . Please note that i ix y−  are all the variables but represented as 
individual distances. Additionally, here, l must satisfy ( ) { }, 0l∈ −∞ ∞ − .

2. Multiregion aggregation operators with the IOWLAD

The multiregion-induced ordered weighted logarithmic averaging distance (MR-IOWLAD) 
operator is an extension of the IOWLAD operator. The IOWLAD operator is introduced in 
this section. The MR-IOWLAD operator is designed to aid in decision-making processes 
when two or more regions, influenced by the characteristic distinctions of the countries in 
which they reside, need to be included in a specific problem. In this section, we will study 
the main characteristics, definitions, properties and families of the MR-IOWLAD operator 
using the characteristic weighting W vector and the weighting V vector.

2.1. IOWLAD operator

Definition 5. An induced OWLAD operator of n dimension is a mapping IOWLAD:
   n nΩ ×Ω →Ω , which serves as an averaging operator with a characteristic weighting vector 
W, with the total sum of the weights equal to 1 and each 0,1jw ∈   , following:

   
 ( ) ( )1 1 1 2 2 2

1

, , , , , , , , , exp ln ,
n

n n n j j
j

IOWLAD u x y u x y u x y w h
=

  … =  
  
∑

 

(5)

where hj represents the j th largest variable of the i ix y−  reordered in decreasing order 
following the effect of the induced variables.

Example 1. Assume the following collection of arguments: ( )25, 51, 48, 61X = , ( )43,1 0, 37, 32Y =
( )43,1 0, 37, 32Y = , an induced weighting vector ( )33,1 9, 52, 21  U = and ( )0.2, 0.1, 0.4, 0.3W =  . The result 

is as follows:

 
( )
( ) ( ) ( ) ( ){ }

33,25,43 , 19,51,10 , 52,48,37 , 21,61,32
exp 0.2 ln 48 37 0.1 ln 25 43 0.4 ln 61 32 0.3 ln 51 10 25.27.
IOWLAD 〈 〉 〈 〉 〈 〉 〈 〉 =

× − + × − + × − + × − =

Please note that in this example, the arguments i ix y−  are ordered following the de-
creasing effect of the induced variables ui.

It can be observed that this aggregation process is defined by the descending effect that 
the induced variables have on the result, which can also be differentiated as the descending 
induced ordered weighted logarithmic averaging distance DIOWLAD operator. As a counter-
part, we can also differentiate the ascending induced ordered weighted logarithmic averaging 
distance AIOWLAD operator, where the effect of the induced variables is ordered from the 
smallest value to the greatest.
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2.2. Multiregion IOWLAD operator

Definition 6. A multiregion IOWLAD operator is a characteristic aggregation operator in-

cluding a weighting vector V of p dimensions that must satisfy 
1

1
p

k
k

v
=

=∑  and 0,1kv ∈    and 

a weighting vector W of n dimensions such that 
1

1
n

j
j

w
=

=∑ , and 0,1jw ∈   , according to:

   
 ( ) ( )( ) ( )1 1

1 1 1
1 1

, , , , , ,  exp ln ,
p n

p p
n n n k j j

k j

MR IOWLAD u x y u x y v w b
= =

  − … =  
  
∑∑

 

(6)

where bj is the i ix y−  value of the MR-IOWLAD ( ),i ix y , reordered by the influence of 
the induced variables un. The arguments k k

i ix y−  are variables given by the information of 
each region in the form of individual distances.

Observe that here, the multiregion aggregation vk uses a weighted average to set the pon-
deration of the regions assessed; however, it is also possible to consider an OWA aggregation 
in the vk weighting vector. Furthermore, we can also use other OWA-related extensions, such 
as induced and heavy aggregation operators, to model other complex problems.

Please observe the behavior of the MR-IOWLAD operator in Figure 1. The graph il-
lustrates 3 different states of the operator; first (blue) when p = 1, n = 1; second (red) in the 
case of p = 2, n = 3; and finally (green) under the circumstance of p = 10, n = 10. Note that 
for all cases, vk = 1/k and wj = 1/j.

Example 2. Assuming the next set of arguments: ( )1 18,  3,  28X = , ( )1 21,1 8,  6Y = , ( )2 30,  22,  5X =
( )2 30,  22,  5X = , ( )2 27,1 9,  30Y = , ( ) ( ) 5,1 0,  6 ,  0.3,  0.1,  0.6U W= = , ( ) 0.7.03V = . The result of the ag-

gregation is as follows:

 
( )

( ) ( ) ( ){
( ) ( ) ( ) }

5,1 8, 21 , 10, 3,1 8 , 6, 28, 6 , 5, 30, 27 , 10, 22,1 9 , 6, 5, 30

exp 0.7 0.3 ln 3 18 0.1 ln 28 6 0.6 ln 18 21

0.3 0.3 ln 22 19 0.1 ln 5 30 0.6 ln 30 27 5.15.

MR IOWLAD− 〈 〉 〈 〉 〈 〉 〈 〉 〈 〉 〈 〉 =
 − + − + − + 

 − + − + − = 

Figure 1. MR-IOWLAD operator behavior
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The MR-IOWLAD operator allows a complex aggregation designed to merge the opinions 
of the decision-makers in the form of induced variables ui and a characteristic weighting 
vector W along with the representation of the importance vector V that diverse regions and 
countries might have in a specific problem.

The MR-IOWLAD operator shares several properties of the OWLAD operator; however, 
the induced variable ui must be considered when describing its properties. In general, this 
operator is commutative, idempotent, bounded, monotonic, nonnegative and reflexive. The 
properties mentioned above can be proven by solving the following theorems:

Theorem 1. Commutative. By the distance measure, the f function is the MR-IOWLAD 
operator; then, we have:

 ( ) ( )1 1 1 1 1 1, , , , , , , , , , , , .n n n n n nf u x y u x y f u x y u x y… = …
 

(7)

Theorem 2. Monotonic, as the function preserves or reverses the given order. Let f be the 
characteristic function of an MR-IOWLAD operator; then, if i i i ix y c d− ≥ −  for all i, 

 ( ) ( )1 1 1 1 1 1, , , , , , , , , , , , .n n n n n nf u x y u x y f u c d u c d… ≥ …
 

(8)

Theorem 3. Bounded between the maximum and minimum values of the elements to be ag-
gregated. If we assume the function f represents the MR-IOWLAD operator, then

 { } ( ) { }1 1 1min , , , , , , max .i i n n n i ix y f u x y u x y x y− ≤ … ≤ −
 

(9)

Theorem 4. Idempotent, as the operator can be applied several times without changing the 
result outside the original application. When the function f is the MR-IOWLAD operator 
and if i i ix y a− = , for all i, then

 ( )1 1 1, , , , , , .n n nf u x y u x y a… =
 

(10)

Theorem 5. Nonnegative, as the operator has positive values as the result. Let f be the MR-
IOWLAD operator; then, in this case,

 ( )1 1 1, , , , , , 0.n n nf u x y u x y… ≥
 

(11)

Theorem 6. Reflexivity, as every element is related to itself. Let f be the MR-IOWLAD opera-
tor; then,
 ( )1 1 1, , , , , , 0.n n nf u x y u x y… =

 
(12)

Please observe that the MR-IOWLAD operator does not accomplish commutativity by 
the OWA operator because of the weighted average (WA) step that takes place in the aggrega-
tion. Additionally, note that the MR-IOWLAD operator does not always accomplish triangu-
lar inequality; in some specific cases, the operator behaves as described in the next formula,

 ( ) ( ) ( ) , , , .MR IOWLAD a b MR IOWLAD b c MR IOWLAD a c− + − ≤ −  (13)

In the next example, we present a case in which the MR-IOWLAD operator does not 
display triangular inequality.

Example 3. Let ( )10,1 0,1 01,1 ,1 a = , ( )5,  5,  51,1 ,1 b = , c ( )2,  2,  21,1 ,1 =  assuming a weighting 
vector ( )0,  0,1 w = , a vector ( )0.5,  0.5v =  and an induced vector ( )5,  3,1 u = . Then, the aggrega-
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tion for ( ) , 6MR IOWLAD a b− = , ( ) ,  2MR IOWLAD b c− =  and ( ) , 9MR IOWLAD a c− =  , 
thus showing that 6 + 2 < 9, proving the MR-IOWLA operator does not satisfy the trian-
gular inequality. 

2.3. Families of the MR-IOWLAD operators

This section focuses on describing some of the operators that form the MR-IOWLAD fami-
lies. In general terms and because of the characteristic design of the operator, we can study 
these families from two main standpoints. First, in this study, we analyze the weighting vec-
tor W, which includes the maximum, the minimum, the step, the olympic and the maximal 
entropy OWA (MEOWA) method. Second, we study the weighted V vector, which includes 
the arithmetic case, and we propose some weighted vectors based on economic indicators. 
Finally, we offer some OWA extensions to characterize the vector. 

2.3.1. The weighting vector V in the MR-IOWLAD operator 

The design of the MR-IOWLAD operator includes a V weighting vector that assists in the 
modeling of complex scenarios. In our case, this vector works as a differentiator of the heavi-
ness in which some specific zones that share common elements, i.e., regions, exert over the 
phenomena that are being analyzed. Next, we propose some characterization of the V weight-
ing vector.

Remark 1. An arithmetic MR-IOWLAD is obtained when vk  = 1/p for all k satisfying 

1

1
p

k
k

v
=

=∑  and 0,1kv ∈  .

Remark 2. Some MR-IOWLAD operators based on economic indicators include the GDP 
(gross domestic product) MR-IOWLAD, see, e.g., (Merigó, Peris-Ortíz, Navarro-García, 
& Rueda-Armengot, 2016). This operator is obtained when v1 is the kth largest GDP of 
the regions analyzed, following the rest in decreasing order; please note that 0,1kv ∈    
and the sum of all vk equals 1. In the same order of ideas, the GDP-GR (GDP growth 
rate) MR-IOWLAD that follows v1 is the kth largest GDP growth rate over a fixed period, 
usually under constant prices based on a given year and the same restrictions as the GDP 
MR-IOWLAD. An example of a social indicator is the LT (literacy rate) MR-IOWLAD. In 
this case, we give the largest ponderation to the least illiterate region. In this case, the vk is 
the kth region with the lowest illiteracy rate. Following the increasing order, the weighting 

vector needs to follow 
1

1
p

k
k

v
=

=∑  and 0,1kv ∈   .

Remark 3. An interesting concept is choosing an OWA operator and all its parameterized 
families to characterize the vk weighting vector. An example of an operator in this complex 
scenario is the OWA MR-IOWLAD operator.

 ( ) ( )( )
1 1

, , , exp ln ,
n d

OWA n n n n j s s j
j s

MR IOWLAD a u x y x w D
= =

  − =  
  
∑∑

 

(14)

where ( )( )lns s j
w D  corresponds to the jth largest element of the ( )lns sw D  and Ds is the 
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i ix y−  value of the MR-IOWLAD ( ),i ix y , reordered by the influence of the induced vari-
ables un. The arguments d d

i ix y−  are variables given by the information of each region in the 
form of individual distances. The elements ( )lns sw D  have an associated weighting vector 
ws of d dimensions such that the sum of the weights equals 1 and 0,1sw ∈  . Additionally, 
every argument ( )( )lns s j

w D  includes an associated weighting vector xj that must satisfy 

1

1
n

i
j

x
=

=∑  and 0,1ix ∈   , which is the largest weight xi ordered according to the jth largest 

value of the ( )( )lns s j
w D .

Please note that in the case of nonnormalization in the vk weighting vector, which is char-

acterized by 
1

1
n

k
j

V v
=

= ≠∑  of its elements, then the MR-IOWLAD operator and its families 

can be normalized by applying:

 ( ) ( )1 1 1
1 1

1, , , , , , exp ln ,
p n

n n n k j j
k j

MR IOWLAD u x y u x y v w b
V

= =

  − … =  
  
∑∑

 

(15)

where 
1

p

k
k

V v
=

=∑ , thus achieving the normalization of the weighting vector. 

2.3.2. MR-IOWLAD families by the weighting vector W 

The characteristic weighting vector W plays a key role in the aggregation process of the MR-
IOWLAD operators. Some operators that can be formulated by shifting the characteristics 
of the W weighting vector are described in the next remarks.

Remark 4. The maximum distance can be obtained in any of the next three scenarios:
 – The maximum distance for the W weighting vector: wq = 1, wj = 0 for all j ≠ q and 

maxq n nu x y= − .
 – The maximum distance for the weighting vector V, i.e., ( )maxq kv v= .
 – If both vectors match on the maximum, then the maximum distance is wq = 1, wj = 
0 for all j q≠ , max  for all 1a a

q i iu x y i= − ≠ , vq = 1, for max k k
q n nv x y= − , and vk = 

0, for all the others; here k k
n nx y−  represents the maximum value of the variables in 

the shape of the individual distances for every region.

Remark 5. In complement, the minimum distance can also be differentiated in these three 
settings:

 – The maximum distance considering only the W weighting vector: wq = 1, wj = 0 for 
all j ≠ q and minq n nu x y= − .

 – The maximum considering the V weighting vector: ( )minq kv v= .
 – When both vectors coincide on the min, then: wq  = 1, wj  = 0 for all j q≠ , 

min  for all 1a a
q i iu x y i= − ≠ , and the minimum value of all the regions assessed 

i.e., vq = 1, for min k k
q n nv x y= − , vk = 0, for all the others; here, k k

n nx y−  represents 
the maximum value of the variables in the shape of individual distances for every 
region.
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Remark 6. Other interesting families are achieved when:
 – Let wq = 1 and wj = 0 for all j ≠ q, and we only consider the W weighting vector. The 
result is the MR-IOWLAD step. If we consider only the V vector, then the MR-IO-
WLAD step is achieved when vq = 1, and vk = 0 for all k ≠ q. If both coincide, then 
the step MR-IOWLAD is found when wq = 1, and wj = 0 for all j ≠ q and vq = 1, and 
vk = 0 for all k ≠ q.

 – The normalized logarithmic Hamming distance (NLHD) when only one region is 

in play appears when 
1

jw
n

= , for all q. The NLHD when several regions are in play 

shows when: 
1

jw
n

= , for all q and 
1

pv
k

= , for all m.

 – The weighted logarithmic Hamming distance (WLHD) in a one-region problem is 
generated when the ordered position of ui is the same as the ordered position of 

n nx y− . When several regions are modeled, then the WLHD is obtained when the 
ordered position of ui is the same as the ordered position of n nx y− , and 

1
pv

k
=

 
, 

for all m.
 – The OWLAD operator is reduced when va = 1, vk = 0 for all k ≠ a and the ordered 
position of ui is the same as the ordered position of the values n nx y− , for all i, and 
there is only one region.

Remark 7. An olympic MR-IOWLAD is achieved under the following conditions:
 – When we only consider the W weighting vector region, then 1 0nw w= =  and 

( )
1

2jw
n

=
−

, for all { }1,j n− . If we only consider the V weighting vector, then v1 = 

0 and vk = 0, and 
( )

1
2qv

k
=

−
, for all { }1,k k− . When both weighting vectors are in 

play, the olympic MR-IOWLAD is achieved by 1 0nw w= = , and 
( )

1
2jw

n
=

−
, for all 

{ }1,j n− , 1 0v =  and vk = 0, and 
( )

1
2qv

k
=

−
, for all { }1,k k− .

 – Please observe that in the case of one region all the next apply: when n = 3 or n = 
4, the olympic IOWLAD is the median IOWLAD. In general terms, an olympic 
IOWLAD is described when wj  = 0 for 1, 2, , , , 1, , 1j k n n n k= … − … − + , and for the 
others 

( )
1
2jw

n k
=

−
, where 

2
nk < . When this occurs, if k = 1, it is the usual olym-

pic IOWLAD, whereas if 
( )1

2
n

k
−

= , we obtain the median IOWLAD. Also note 

that the opposite case of an olympic IOWLAD operator occurs when 
1

2jw
k

=  for 
1, 2, , , , 1, , 1j k n n n k= … − … − + , and wj = 0, for all others, where 

2
nk < .

Remark 8. Some other families are the centered MR-IOWLAD operators. It can be said 
that an aggregation is centered if it follows the conditions of symmetry, strong decay and 
inclusiveness. Following the two scenarios:

 – When the operator includes only one region, then symmetry is obtained when 
1j n jw w + −= . Strong decay is represented when j jw w< . Finally, inclusiveness is 

characterized by 0jw > .
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 – When the operator includes more than one region, then symmetry is obtained when 

1j n jw w + −=  and 1k k jv v + −= . Strong decay is represented when 
( )1

2
n

i j
+

< ≤ , then 

i jw w< , and i jv v< . Finally, the inclusiveness is obtained when 0jw >  and 0jv > .

Remark 9. Other interesting methods for the characterization of the weighting vector W 
can be represented when studying the maximal entropy. Please note that the maximal 
entropy OWA (MEOWA) can be obtained when b = 1 in the next optimization problem:

 ( ) ( ) ( ) ( )
1 1

maximize  ln 1 ln ,ˆ
n n

j j i i
J J

H V w w v v
= =

 
 = − b + −b
 
 
∑ ∑

 

(16)

s.t.

 ( ) ( ) ( )
1 1

1 ,0 1,
1

ˆ
1

ˆ
n n

j j
J j

n j n jw v V V
n n

= =

− −   
b + −b = a ≤ a ≤   − −   ∑ ∑

                  
1

1, 0 1, 1, 2, , .ˆ ˆ
n

J

v v j n
=

= ≤ ≤ = …∑
Please note that many other families can be built depending on the weighting vector W. 

For other interesting operators that can be obtained following the methodology presented 
here, see, e.g., (Beliakov et al., 2007; Merigó & Casanovas, 2011; Yager, 1993, 2003).

3. IGOWLAD operator

Definition 7. An IGOWLAD operator of dimension n is a mapping IGOWLAD:   n nΩ ×Ω →Ω  
defined by an associated weighted vector W of dimension n such that the sum of the weights 
is equal to 1 and 0,1jw ∈   , according to the formula:

 ( ) ( )
1

1 1 1 2 2 2
1

, , , , , , , , , exp ln ,
n

n n n j j
j

IGOWLAD u x y u x y u x y w b
ll

=

 
    … =       

∑
 

(17)

where bj is the i ix y−  value of the IGOWLAD , ,i i iu x y , reordered according to the induced 
variables ui. The argument i ix y−  are variables represented in the form of individual dis-
tances, and l is a parameter satisfying ( ) { }, 0l∈ −∞ ∞ − .

Example 4. Assume the collection of arguments presented for Example 1 and a l = 2. Then,

( )33,25,43 , 19,51,10 , 52,48,37 , 21,61,32IOWLAD 〈 〉 〈 〉 〈 〉 〈 〉 =

( ) ( ) ( ) ( ) ( ){ }exp 0.2 ln 48 37 ^2 0.1 ln 25 43 ^2 0.4 ln 61 32 ^2 0.3 ln 51 10 ^2 ^ 1 2  26.17. × − + × − + × − + × − ⁄ = 

( ) ( ) ( ) ( ) ( ){ }exp 0.2 ln 48 37 ^2 0.1 ln 25 43 ^2 0.4 ln 61 32 ^2 0.3 ln 51 10 ^2 ^ 1 2  26.17. × − + × − + × − + × − ⁄ = 
The IGOWLAD operator can also consider regions and the weights they might have for 

a complex decision-making process. In this case, the formulation of the MR-IGOWLAD can 
be described as follows:
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Definition 8. An MR-IGOWLAD operator of n dimension gives a mapping IGOWLAD:
  n nΩ ×Ω →Ω with two weighting vectors; the first is a weighted vector W of n dimensions. 
This vector must satisfy that the sum of the weights is equal to 1 and all its elements are 

in the range 0 and 1. Second, a V weighting vector of p dimension must satisfy 
1

1
p

k
k

v
=

=∑  
and 0,1kv ∈  , following:

 ( ) ( )
1

1 1

, , exp ln ,
p n

n n n k j j
k j

MR IGOWLAD u x y v w b
ll

= =

 
    − =       

∑∑
 

(18)

where bj is the i ix y−  value of the MR-IOWLAD ( ),i ix y , reordered by the influence of the 
induced variables un. The arguments k k

i ix y−  are variables given by the information of each 
region in the form of individual distances.

Example 5. Assume the collection of arguments presented, for example, 2 and l = 3. Then,

( )5,1 8, 21 , 10, 3,1 8 , 6, 28, 6 , 5, 30, 27 , 10, 22,1 9 , 6, 5, 30MR IOWLAD− 〈 〉 〈 〉 〈 〉 〈 〉 〈 〉 〈 〉 =

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }exp 0.7 0.3 ln 3 18 ^3 0.1 ln 28 6 ^3 0.6 ln 18 21 ^3 0.3 0.3 ln 22 19 ^3 0.1 ln 5 30 ^3 0.6 ln 30 27 ^3 ]]^ 1 3  7.48   − + − + − + − + − + − ⁄ =   

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }exp 0.7 0.3 ln 3 18 ^3 0.1 ln 28 6 ^3 0.6 ln 18 21 ^3 0.3 0.3 ln 22 19 ^3 0.1 ln 5 30 ^3 0.6 ln 30 27 ^3 ]]^ 1 3  7.48   − + − + − + − + − + − ⁄ =    .

3.1. Characterization of the W weighting vector 

An interesting topic to cover when presenting aggregation operators is the characterization 
of the weighting vector and the measures available for that purpose. Some classic measures 
include the balance, the degree of orness, the divergence, and the entropy of dispersion. 
Please see Table 1 for detailed information.

Table 1. Characterization of the W IGOWLAD weighting vector

Name Acronym Formula Description of the result

Balance   
Bal(W) ( )

1

1 2
1

n

j
j

n jBal W w
n=

+ − 
=  − 
∑

           

(19) Bal(W) = –1: minimum balance 
Bal(W) = –1: maximum balance

Degree  
of orness a(W) ( )

1

1 1

n

j
j

n jW w
n

l l

=

 −  a =   −  
∑

            

(20)

a(W) = 1: optimistic criteria 
a(W) = 0: pessimistic criterion 
a(W) = 0.5: the averaging criteria  
is achieved

Diver-
gence Div(W) ( ) ( )

2

1 1

n

j
j

n jDiv W w W
n=

− 
= −a + − 
∑

 

(21)
This measure can be used as a com-
plement to the attitudinal character 
and the entropy to correctly charac-
terize the weighting vector

Entropy 
of dis-
persion

H(W) ( ) ( )
1

ln
n

j j
j

H W w w
=

= −∑
                   

(22)

If wj = 1, for any j, then: H(W) = 0: 
minimum information being used 

If 1
jw

n
 

=  
 

 for all j, then the 

maximum information is being 
used
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Example 6. Table 2. Includes the results of the diverse measures for the case of the  
IGOWLAD and the weighting vector ( )0.2, 0.1, 0.4, 0.3W =  presented in Example 1.

Table 2. Results for Example 6

Measure B(W) a(W) Div(W) H(W)
Result −0.2 0.4 0.13 1.28

Please note that the measures presented here do not cover all the characteristics that loga-
rithmic functions exhibit. Please see the general characterizations and the transformations to 
the R-scale presented in Alfaro et al. (2018).

3.2. Analysis of the  vector 

The l vector, in the specific case of the IGOWLAD operator, generates a series of families 
that range from the logarithmic geometric averaging operator to the maximum and the 
minimum. Table 3 presents a summary of some interesting particular cases when varying 
the l vector.

Table 3. IGOWLAD operator families by the l vector. Note that for all the cases, bj is the i ix y−  value 
of the GOWLAD ,i ix y , reordered by the induced effect of the variable ui 

l Families Acronym Formula

l → 0

Induced ordered 
weighted logarithmic 
geometric averaging 
distance operator

IOWLGAD ( ) ( )( )
1

, exp ln .
j

n w
n n j

j

IGOWLAD x y b
=

  =  
  
∏

          

(23)

l = –1

Induced ordered 
weighted logarithmic 
harmonic averaging 
distance operator

IOWLHAD ( )
1

1

, exp .
ln

n jn n
j j

wIGOWLAD x y
b=

 
  =     

  
∑

          

(24)

l = 1

Induced ordered 
weighted logarithmic 
aggregation distance 
operator

IOWLAD ( ) ( )
1

, exp ln .
n

n n j j
j

IGOWLAD x y w b
=

= ∑
                   

(25)

l = 2

Induced ordered 
weighted logarithmic 
quadratic aggregation 
distance operator

IOWLQAD ( ) ( )2
1

, exp ln .
n

n n j j
j

IGOWLAD x y w b
=

    =      
∑

     

(26)

l = 3
Induced ordered 
weighted logarithmic 
cubic aggregation 
distance operator

IOWLCAD ( ) ( )
1
33

1

, exp ln .
n

n n j j
j

IGOWLAD x y w b
=

 
    =       

∑
      

(27)

l → ∞ Largest of the i ix y− Max ( ) { }, max .n n jIGOWLAD x y b=
                           

(28)

l → –∞ Lowest of the i ix y− Min ( ) { }, min .n n jIGOWLAD x y b=
                           

(29)
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Example 7. Following the arguments described in Example 1, we present results for all the 
IGOWLAD operators displayed in Table 4:

Table 4. Families of the IGOWLA operator

l → 0 −1 1 2 3 ∞ –∞
Result 24.31 23.31 25.27 26.17 27.01 → 41 → 11

4. IGOWLAD operators with Choquet integrals

When assessing distance measures and induced aggregation operators, it is interesting to 
explore the work of (Bolton, Gader, & Wilson, 2008; Choquet, 1954; Mesiar, Kolesárová, 
Bustince, Dimuro, & Bedregal, 2016; Mesiar, 1995; Tan & Chen, 2010). Based on these stud-
ies, it is possible to create a new operator using discrete Choquet integrals, specifically the 
induced Choquet logarithmic distance aggregation (ICLD) operator and the induced gener-
alized Choquet logarithmic distance aggregation (IGCLD) operator. To introduce these new 
operators, let us first define the concept of the fuzzy distance measure.

Definition 9. Assume X to be a universal set of arguments { }1 2, , , nX x x x= …  and P to be 
the power set of X, i.e., the combination of all the elements. Then, a fuzzy measure on X is 
a set function m: ( )  0,1P X →   , satisfying:

( ) ( )0, 1m m X∅ = =  (boundary conditions) and,
If ( ),  A B P X∈  and A B⊆  then ( ) ( )m A m B≤  (monotonicity).

As shown in (Choquet, 1954), the Choquet integral can be defined as:
Definition 10. Let f be a positive real-value function f: X→R+ and m be a fuzzy measure 

on X. The (discrete) Choquet integral of f with respect to m is:

 ( ) ( ) ( )( ) ( )1 1 ), , ( ,
n

m n i i i
i l

C f f f m A m A −
=

 … = −  ∑
 

(30)

here, (⋅) represents a permutation on X in the way that ( ) ( ) ( )1 2 nf f f≥ ≥…≥ ; thus, ( )if  is 
the ith largest value in the set { }1 2, , , nf f f… . Hence, ( ) { }1 2, , , niA x x x= …  when i l≥  and 

( )0A =∅.
Based on the definitions established above, we introduce the ICLD and the IGCLD op-

erators. Please note that both utilize distance measures; hence, they compare two sets of the 
defined variables. Additionally, the characteristic-induced property allows us to perform a 
complex decision-making process. First, the ICLD operator can be defined as:

Definition 11. Assume m to be a fuzzy measure on the finite space X. The induced 
Choquet logarithmic distance averaging operator of n dimensions is a function ICLD: 

n n nR R R R× × →× , such that:

 ( ) ( ) ( ) ( )1
1

, , exp ln ,
n

n n n i i j
j

ICLD u x y m A m A D−
=

 = − ∑
 

(31)

where Dj is the i ix y−  value of the ICLD ( ), ,i i iu x y , ordered by the influence of the un order-
inducing variables. The arguments i ix y−  are variables gathering information about each 
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region to be addressed in the form of individual distances, satisfying ( ) { }1 2, , , 1;niA x x x= … ≥  
and ( )0A =∅ .

Following, we introduce a more general perspective of the operator. The IGCLD operator, 
which introduces a more complex view of the aggregation, can be defined as:

Definition 12. Let m be a fuzzy measure on X. An induced generalized Choquet log-
arithmic distance averaging operator of dimension n is a characteristic function IGCLD: 

n n nR R R R× × → , satisfying:

 ( ) ( ) ( ) ( )
1/

1
1

, exp ln ,
n

n n i i j
j

IGCLD x y m A m A D−
=

     = −      

∑
 

(32)

where Dj is the i ix y−  value of the ICLD ( ), ,i i iu x y , in decreasing order, following the 
largest ui; ui are the order-inducing variables that affect the behavior of the aggregation. The 
elements i ix y−  are variables with information for each region to be aggregated as indi-
vidual distances, such that ( ) { }1 2, , , 1;niA x x x= … ≥  and ( )0A =∅.

Please note that this approach yields a whole new series of operators, e.g., the induced 
quasi-arithmetic Choquet logarithmic distance operators, the induced moving averages Cho-
quet logarithmic distance operators, and numerous sets of families that can be generated 
following the previous methods explained in the former sections.

5. Theoretical approach

The MR-IOWLAD and the families presented in this study have a wide range of applications 
in several fields of knowledge, e.g., engineering, artificial intelligence, business economics and 
statistics (León-Castro, Avilés-Ochoa, & Gil-Lafuente, 2016; Maldonado, Merigó, & Miranda, 
2018). One of the main fields of application is in decision-making (Blanco-Mesa, Merigó, & 
Gil-Lafuente, 2017). The MR-IOWLAD is designed to aid in complex decision-making pro-
cesses, mainly in situations where regions or countries must be evaluated. This is due to the 
inherent characteristics that make a region more attractive in terms of a desired goal; to see 
an example of financial decision making in diverse market regions, please see (Zeng, 2017).

In this section, we present the main approach used to assess a problem with MR-IOW-
LAD. We also include several other tools that can be helpful for decision making, including 
not only the weighted average as the main driver for region categorization but also some 
OWA operators to extend the complexity in the problems to be assessed.

5.1. Multicriteria multiregion logarithmic AGOP

When modeling decision-making problems with the MR-IOWLAD operator, a useful insight 
is to add other operators to the aggregation process. This option allows us to include multi-
criteria arguments to assess a wider range of situations. Table 5 presents a combination of 
the MR-IOWLAD operator with a series of other operators, including the mean average, the 
mean average distance, the weighted average, the OWA operator, the OWA distance operator, 
the induced OWA operator, the induced OWA distance operator, the induced generalized 
OWA operator, and the induced generalized OWA distance operator.
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The results of the combinations are the multi-criteria multi-region IOWLAD operators. 
These sets of complex aggregation operators allow the complex ordering of the arguments to 
be aggregated. This option generates a wider understanding of the elements that surround 
the decision-making process. Please observe that these set of operators can be expanded to 
make other combinations following the methodology presented in this paper.

5.2. Decision-making with multicriteria MR-IOWLAD 

There are several methods to target decision-making problems utilizing averaging opera-
tors, see, e.g., (Avilés-Ochoa, León-Castro, Perez-Arellano, & Merigó, 2018). In the present 
study, we propose a stepwise process to assess a decision-making problem using the MCMR-
IOWLAD operator, which can be summarized as follows:

Step 1. Set a limited group of elements { }1 2, , , nA A A A= …  as countries to represent a 
region, and another group of { }1 2, , , nC C C C= …  to be set as characteristics. Both sets of 
elements create the matrix ( )hi m nx

×
. Assume that { }1 2, , , nR R R R= …  is a finite set of re-

gions to be addressed. There must be a payoff matrix ( )k
hi

m n
x

×

  
 

 for each region; this payoff 

matrix can be obtained by experts or secondary sources of information.

Step 2. Set a level of the characteristics that an ideal region must reach. In this paper, we 
propose I as the ideal value that each characteristic represented in the subset Ci must sat-
isfy; please observe that the characteristics must be evaluated as 1,iy ∈ ∞   ; 1,2, ,i n= … , is 
a number between 1 and infinity for the ith characteristic.

Step 3. Set the order induced variables ( )hi m nu
×

 to be used when describing each alterna-
tive h and each characteristic i. Also establish both a weighting { }2, , , nW w w w= …  vector 
and a { }1 2, , , nV v v v= …  weighting vector; for each case, the vectors must satisfy that the 
sum of the weights is equal to 1 and 0,1jw ∈   , and 0,1kv ∈   .

Step 4. Apply a simple average or any of the proposed multicriteria multiregion IOWLAD 
operators to aggregate the retrieved information about the countries. The result is a col-
lective payoff matrix of regions R. Note that more complex aggregations can be obtained 
if we select a different method to aggregate the information in this matrix, e.g., the WA 
or the OWA operator. Please observe that a normalization of the data is required if the 
characteristics are of a diverse nature.

Step 5. Using the collective results matrix and the ideal region vector, compare both to ob-
tain the individual distances; the aim is to present a numeric set that represents the existing 
distance between the ideal region and the different options available.

Step 6. Solve for the multicriteria MR-IOWLAD operator as described in Table 5; please 
note that in this proposal, each region is preferred following the V weighting vector, which 
is a weighted average on each R. Observe that any of the families described in the former 
sections can be applied depending on the problem to be assessed.

Step 7. Finally, rank all the evaluated options and compare the obtained information. Here, 
it is suggested to create a compiled table to aid in visualization for fast decision-making.
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Please note that the logarithmic nature of the operator requires the arguments given for 
the aggregation to be in the 1,iy ∈ ∞   range. If there is a need to evaluate elements within the 
range 0,1iy ∈  , please see Alfaro et al. (2018), where the reader can find a series of methods 
explaining how to assess such a problem; specifically, see the transformation to the R-scale.

6. Numerical example

To exemplify the advances of the use of an MCMR-IOWLAD operator, this section proposes 
an illustrative example considering information retrieved from the United Nations (UN) 
World Statistics (United Nations, 2017). In this example, we aim to locate the region that 
better adjusts to a set of ideal arguments given by the decision makers of a media entertain-
ment company that is willing to expand their operations to a new region.

Step 1. For exemplifying purposes, we will follow the established UN geographic re-
gions, which comprise a set of 54 { }1 2, , , nA A A A= …  countries in 18 different regions 

{ }1 2, , ,  nR R R R= …  of the continents: Africa, Americas, Asia, Europe and Oceania (OCN). 
Please see Table 6 for the detailed set of countries selected per region. Please observe that 
the company is willing to take information of 3 countries as representative of a whole re-
gion. Please note that the regions can include as many countries as needed. The objective 
of the company is to analyze the selected regions under a set of ideal arguments following 
the next { }1 2, , , nC C C C= …  group of characteristic economic and social indicators: Total 
population (millions of inhabitants), (TP); Gross domestic product (million current US$), 
(GDP); Mobile-cellular subscriptions (per 100 inhabitants), (MCS), Individuals using the 
Internet (per 100 inhabitants), (IUI); GDP growth rate (annual %, const. 2005 prices), 
(GDPG); Population growth rate (average annual %), (PGR). The information retrieved for 
each region and social and economic indicators can be found in Table 6.

Step 2. The media producing company is searching for a region that fits into the gen-
eral strategy of the firm that includes a fair penetration of mobile communications and a 
well-established Internet infrastructure. Additionally, the company seeks a region with a 
high economic growth rate and a significantly growing population. For that purpose, the 
decision-makers are asked to establish an ideal set of arguments yi, in this case: MCS = 68, 
IUI = 86, GDPG = 58, PGR = 56.

Step 3. Due to specific requirements and the attitudinal character of the executives, it is 
necessary to prioritize the economic growth variable, then the penetration of mobile tele-
communications; then, it is necessary to consider the population growth and finally the 
Internet infrastructure. To assess such requirements, an induced vector ui is set to follow 
MCS = 8, IUI = 4, GDPG = 10, PGR = 6, and a W weighting vector (0.5, 0.25, 0.15, 0.10). 
All of this information needs to be aggregated following the preferences of the decision-
makers towards the selected regions. In this case, the directive requires the weight of the 
regions to follow the GDP per capita. To accomplish this requisite, a vk vector is introduced 
based on the following order: Africa: NA = 0.20, EA = 0.10, MA = 0.10, SA = 0.50, WA = 
0.10; Americas: NAM = 0.50, CAM = 0.20, SAM = 0.30; Asia: CAS = 0.10, EAS = 0.20, 
SAS = 0.10, SEAS = 0.10, WAS = 0.50; Europe: EEUR = 0.10, NEUR = 0.50, SEUR = 0.10, 
WEUR = 0.30; Oceania: OCN = 1.00.
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Step 4. With all the information retrieved, we decide to perform an MCMRMA-IOWLAD 
operator. In this case, we first need to aggregate the information presented in Table 6 into 
a collective results matrix using a simple mean average. Table 7 gathers the collective re-
sults. As the characteristics are diverse in nature, we perform the normalization of the data. 
Table 8 collects the results for the normalized data.

Following steps 5 and 6, we perform the MCMRMA-IOWLAD operator. Please observe that 
in this case, we gather the collective data as a simple mean average, but we can use any of 
the multiregion logarithmic aggregation operators presented in section 5.1 for decision-
making. Table 8 presents the results of the aggregation operator gathering all the require-
ments mentioned before for every region in each continent assessed.

Please note that the reordering process of the induced variables affects the result of the aggre-
gation. When the MCMRMA-IOWLAD operator is considered, it can be observed (Step 7) that 
the preferred region for the media company is Oceania Asia Africa Americas Europe     . 

Table 7. Collective results

C R TP GDP GDP/TP MCS IUI GDPG PGR

Africa

NA 173,826 495,822 2.9 102.8 39.9 4.5 2.0
EA 211,967 168,944 0.8 66.5 20.9 7.4 2.8
MA 120,294 75,994 0.6 55.0 9.1 6.5 3.1
SA 61,242 330,970 5.4 99.5 20.5 1.3 1.5
WA 72,322 80,297 1.1 109.9 18.6 5.8 2.6

Americas
NAM 490,247 20,730,180 42.3 94.9 73.5 2.0 1.0
CAM 18,270 125,455 6.9 140.1 43.8 4.4 1.5
SAM 271,614 2,645,730 9.7 133.3 64.3 0.3 0.9

Asia

CAS 59,036 258,611 4.4 119.7 44.9 4.1 1.8
EAS 1,587,983 16,919,406 10.7 112.2 77.8 3.6 0.3
SAS 1,449,648 2,535,460 1.7 89.7 29.2 3.6 1.2
SEAS 179,665 980,351 5.5 130.0 54.0 3.6 1.2
WAS 20,361 834,350 41.0 158.2 87.7 3.3 3.4

Europe

EEUR 192,779 1,988,238 10.3 146.0 74.2 1.6 0.1
NEUR 81,398 3,740,275 46.0 123.3 93.1 2.6 0.9
SEUR 116,044 3,213,657 27.7 123.2 71.0 1.8 -0.2
WEUR 164,130 6,532,864 39.8 114.3 88.5 1.7 0.3

Oceania OCN 37,408 1,425,591 38.1 100.4 60.2 4.0 1.6

Note: C: Continent; R: Region; TP: Total population; GDP: Gross domestic product; MCS: GDP/TP: 
Gross domestic product per capita; Mobile-cellular subscriptions (per 100 inhabitants); IUI: Individuals 
using the Internet (per 100 inhabitants); GDPG: GDP growth rate (annual %, const. 2005 prices); PGR: 
Population growth rate (average annual %); NA: Northern Africa; EA: Eastern Africa; MA: Middle 
Africa; SA: Southern Africa; WA: Western Africa; NAM: Northern America; CAM: Central America; 
SAM: South America; CAS: Central Asia; EAS: Eastern Asia; SAS: Southern Asia; SEAS: Southeastern 
Asia; WAS: Western Asia; EEUR: Eastern Europe; NEUR: Northern Europe; SEUR: Southern Europe; 
WEUR: Western Europe; OCN: Oceania.
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Additionally, it can be observed that in this case, the preferred option is the one with the 
minimum result, i.e., the minimum distance between the ideal set or ideal arguments of the 
decision-makers and the data retrieved from the statistical sources analyzed. By using this 
method, we can achieve high complexity in the modeling of the problem, specifically the 
complexity of the differences in regions, as well as the preferences of the directive towards the 
strategy to follow and, most importantly, an ideal set of arguments that work as an objective 
for the whole model. 

Tables 9 and 10 present the comparative results between the MRMA-IOWLAD opera-
tor and other distance operators, including the normalized Hamming distance (NHD), the 
weighted Hamming distance (WHD), the ordered weighted average distance (OWAD) and 
the induced ordered weighted average distance (IOWAD). The results conclude in a clear 
selection of Oceania and Asia as the preferred markets; only the OWAD presents a different 
market (Americas) as the second option, and the rest of the selected markets vary. Math-
ematically, the IOWAD and the MRMA-IOWLAD are the most similar operators; however, 
there is a clear distinction between the last 3 options, i.e., Europe, the Americas and Africa. 

Table 8. Normalized collective results

C R MCS IUI GDPG PGR V MCMRMA-IOWLAD

Africa

NA 64.99 42.81 60.81 57.84 0.20 

15.47
EA 42.02 22.41 100.00 82.35 0.10 
MA 34.77 9.74 87.39 91.18 0.10 
SA 62.89 22.01 17.12 44.12 0.50 
WA 69.46 20.01 78.83 77.45 0.10 

Americas
NAM 60.02 78.92 27.03 30.39 0.50 

16.43CAM 88.60 47.03 59.01 45.10 0.20 
SAM 84.30 69.01 4.05 27.45 0.30

Asia

CAS 75.68 48.21 54.95 52.94 0.10 

13.00
EAS 70.96 83.57 48.20 7.84 0.20 
SAS 56.69 31.39 48.20 35.29 0.10 

SEAS 82.19 58.02 48.20 36.27 0.10 
WAS 100.00 94.13 44.59 100.00 0.50 

Europe

EEUR 92.29 79.71 21.17 1.96 0.10 

19.92
NEUR 77.93 100.00 35.59 25.49 0.50 
SEUR 77.89 76.20 24.77 −6.86 0.10 

WEUR 72.24 94.99 22.52 8.82 0.30 
Oceania OCN 63.48 64.67 54.50 47.06 1 5.14

Note: C: Continent; R: Region; MCS: Mobile-cellular subscriptions (per 100 inhabitants); IUI: Individ-
uals using the Internet (per 100 inhabitants); GDPG: GDP growth rate (annual %, const. 2005 prices); 
PGR: Population growth rate (average annual %); V: V weighting vector depending on the GDP/TP; 
NA: Northern Africa; EA: Eastern Africa; MA: Middle Africa; SA: Southern Africa; WA: Western 
Africa; NAM: Northern America; CAM: Central America; SAM: South America; CAS: Central Asia; 
EAS: Eastern Asia; SAS: Southern Asia; SEAS: Southeastern Asia; WAS: Western Asia; EEUR: Eastern 
Europe; NEUR: Northern Europe; SEUR: Southern Europe; WEUR: Western Europe; OCN: Oceania.
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This effect is produced because of the construction of the operators and the logarithmic 
properties of the MRMA-IOWLAD operator. The mathematical construction of the MRMA-
IOWLAD operator includes both the V and the W weighting vectors and only the second 
IOWAD operator, and the logarithmic properties of the MRMA-IOWLAD operator generate 
a sufficient effect to change the order of the selected markets. It is observable in this case that 
both the variance and the standard deviation of the MRMA-IOWLAD operator are lower than 
the results of the other operators. 

Conclusions

This paper presents the IOWLAD and MR-IOWLAD operators, as well as their families, 
properties, and relevant particular cases. The MR-IOWLAD operator has its foundations in 
the generalized ordered weighted averaging logarithmic averaging operators, the distance 
OWA operators and the induced OWA operators. The main motivation for the MR-IOWLAD 
operator relies on the increasing influence that regions exert on the economic, social and 
political environment of the world and the exponentially cumulative sets of elements that 
require modeling to properly assess these highly changing problems. The advantages of this 
hybrid operator specifically intended for multiregion problems rely on its flexible design, 
which allows the fusion of different weighted elements under diverse criteria and an ideal 
set of arguments. When put into practice, the MR-IOWLAD treats multiregion aggregation 
problems considering the attitudinal character of the decision-makers. Moreover, the MR-
IOWLAD operator can weight regions according to the specific conditions of the problem, 
heterogeneous information and diverse data sources. Furthermore, the notion of distance in 
the form of the Hamming metric allows the operator to compare the alternatives given to a 
set of optimal elements. This feature allows the decision-maker to introduce a complex con-

Table 9. Comparative table

NHD WHD OWAD IOWAD MRMA-IOWLAD

Africa 28.82 25.31 41.38 25.73 15.47
Americas 21.21 22.49 28.66 24.36 16.43
Asia 20.85 19.67 29.73 17.50 13.01
Europe 22.73 23.49 30.52 24.14 19.92
Oceania 9.57 7.50 13.93 6.35 5.14

Table 10. Comparative aggregated results 

NHD  Oceania Asia  Americas  Europa  Africa   

WHD  Oceania Asia  Americas  Europe Africa   

OWAD  Oceania Americas Asia Europe Africa   

IOWAD  Oceania Asia Europe Americas Africa   

MRMA-IOWLAD  Oceania Asia Africa Americas Europe   
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struction of the model and has been proven useful in diverse applications, such as selecting 
an ideal portfolio of financial products and human resource selection procedures. Because of 
its design, the MR-IOWLAD operator provides a general framework that includes previous 
approaches as particular cases, which offers a wider perspective that can be adopted to several 
scenarios and at the same time can be reduced to some specific classic cases when required 
by the particularities of the problem.

This paper analyses the main properties of the MR-IOWLAD operators. It has been 
proven to be commutative (by the distance measure), idempotent, bounded, monotonic, 
nonnegative and reflexive. Please note that the operator does not accomplish commutativity 
by the OWA operator. In this study, we also present diverse families of the MR-IOWLAD 
operator in two ways. The first is the characterization of the W weighting vector, including 
the minimum, the maximum, the olympic and the centered MR-IOWLAD. Second, from the 
perspective of the V weighting vector, the arithmetic MR-IOWLAD along with some basic 
economic indicator operators and the MROWA-IOWLAD operators are described.

Furthermore, this paper introduces some generalizations and extensions of the IOW-
LAD operators. The induced generalized ordered weighted averaging distance (IGOWLAD) 
operator is described and further characterized by its weighting vector, resulting in balance, 
degree of orness, divergence and entropy of dispersion. Moreover, we present some interest-
ing families depending on the associated l vector, including operators such as IOWLGAD, 
IOWLHAD, IOWLAD, IOWLQAD, IOWLCAD, the maximum and the minimum. An in-
teresting extension also presented in this paper is the inclusion of Choquet integrals in the 
configuration of the IGOWLAD; here, the induced Choquet logarithmic distance averaging 
operator and the generalized induced Choquet logarithmic distance averaging operator are 
described.

When combined with multicriteria decision making, the MR-IOWLAD utilizes its de-
signed mechanisms to select the best candidate from a feasible pool of alternatives. This ap-
proach leads to the composition of several new multicriteria multiregion IOWLAD operators 
oriented to a diverse set of practical applications, including problems where a single alterna-
tive requires preference according to the heterogeneous attitudinal character of diverse deci-
sion-makers, regional information and ideal scenarios. For these kinds of applications, this 
paper presents a theoretical approach to multicriteria decision making with MR-IOWLAD 
operators, including the mean average, the mean average distance, the weighted average, the 
OWA operator, the OWA distance, the induced OWA, the induced generalized OWA and the 
induced generalized OWA distance, to characterize the arguments to be assessed in the ag-
gregation process. These complex formulations aid decision-makers in exploring new forms 
of information inclusion and modeling complex situations with attitudinal orientations.

Finally, this paper presents an illustrative example to demonstrate the capabilities of MR-
IOWLAD. The example takes information from the UN World Database for regions around 
the globe, and through a series of requirements, the model includes information from di-
verse regions to select the best alternative from an ideal set or arguments. The results of the 
MRMA-IOWLAD operator are compared with those of other well-known operators, such 
as the normalized Hamming distance (NHD), the weighted Hamming distance (WHD), 
the ordered weighted average distance (OWAD) and the induced ordered weighted average 



Technological and Economic Development of Economy, 2019, 25(4): 664–692 689

distance (IOWAD). In general, all the operators agree on the first 2 selections; however, the 
mathematical construction of the MRMA-IOWLAD operator and its logarithmic properties 
show a clear difference with the last 3 selections, and in a general comparison, considering 
that the data and the information introduced to the model, the variance and standard devia-
tion of the results are lower than those of the rest of the operators.

Future research is needed to include some other interesting options to categorize the 
regions in the aggregation process and to deepen the study on the logarithmic properties 
of the operator and the inclusion of complex tools designed to assess further data, such as 
uncertain and linguistic information.
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