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Abstract. The volatility is a dispersion technique widely used in statistics and economics. This paper 
presents a new way to calculate volatility by using different extensions of the ordered weighted aver-
age (OWA) operator. This approach is called the induced heavy ordered weighted moving average 
(IHOWMA) volatility. The main advantage of this operator is that the classical volatility formula 
only takes into account the standard deviation and the average, while with this formulation it is pos-
sible to aggregate information according to the decision maker knowledge, expectations and attitude 
about the future. Some particular cases are also presented when the aggregation information process 
is applied only on the standard deviation or on the average. An example in three different exchange 
rates for 2016 are presented, these are for: USD/MXN, EUR/MXN and EUR/USD.
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Introduction 

Volatility is a basic concept in economics for measuring the variance of some variables like 
exchange rate, stock prices and some other (Garman & Klass, 1980; Rabbani, Grable, Heo, 
Nobre, & Kuzniak, 2017). To calculate the volatility, the coefficient of variation is used in his-
torical data (Minton & Schrand, 1999), but some researchers have identified other variables 
that can make the results vary from forecast results, for example: a) in stock markets, Officer 
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(1973) indicates that volatility is related to macroeconomic variables, b) in electoral voting, 
van Biezen, Mair, and Poguntke (2012) and Hooghe and Kern (2015) found that volatility is 
related to a decline in party memberships and c) in exchange rate, Aristotelous (2011) says 
that volatility in exchange rate can be related to exchange-rate regimes.

It is important to note, that volatility is not only influenced by the historical data, but can 
also be influenced by some macroeconomics variables like GDP, interest rate, foreign reserves 
and others Grossmann, Love, and Orlov (2014), but also there are some other information 
that can be added to the results, such as, knowledge of the decision maker about the future 
scenarios that it is important to add when there is important uncertainty in the problem 
(Yager, 1996, 2006).

In the context of planning of regional development, Kacprzyk and Straszak (1984) intro-
duced a concept of stability of a regional development strategy to express a natural human 
bias, both of the regional authorities and inhabitants, that the variability of crucial develop-
ment indicators (e.g. values of life quality indicators) should be limited, to yield some feeling 
of “stability”. The changes of values of these indicators at consecutive planning stages are 
then subjected to an objective (against targets set by the authorities) and objective (against 
expectations of inhabitants) limitations, and then their degrees of satisfaction are aggregated, 
using both simple tools like the t/s-norms or some averages or more sophisticated ones like 
the various ordered weighted average (OWA) operators (Yager, 1988; Yager, Kacprzyk, & 
Beliakov, 2011). The approach was then extended by Kacprzyk (2015) and Kacprzyk, Romero, 
and Gomide (1999), and used for the modeling of regional development planning in many 
regions around the world. The OWA operators proposed in this paper can yield a new quality 
in a human consistent aggregation of such an assessment of stability which is clearly opposite 
to the volatility, and their application to the planning of regional development will be shown 
in next papers. 

One way to add information to the volatility formula, is changing the usual average by 
adding weights and other tools. In this sense, we can use the ordered weighted average 
(OWA) operator, developed by Yager (1988) to generate new scenarios between the mini-
mum and the maximum operator. Also, more complex operators using the OWA as a base 
have been studied by many authors (Yager et al., 2011; Emrouznejad & Marra, 2014; Blanco-
Mesa, Merigó, & Gil-Lafuente, 2017). For example, the heavy OWA (HOWA) operator (Yager, 
2002), where the weights are not bounded to the sum equal to 1, and the induced OWA 
(IOWA) operator (Yager & Filev, 1999), where the weights are induced according to the 
characteristics of the decision makers. 

The aim of this paper is to analyze the use of the OWA operator and some of its extensions 
in the volatility formula. The main advantage of doing this is that it is possible to generate 
new scenarios identifying different elements that the traditional formula can’t include, such 
as an optimistic and pessimistic results. In this sense, we introduce new concepts of volatility 
like the OWMA-volatility, IOWMA-volatility, HOWMA-volatility and IHOWMA-volatility.

An application of these new formulas in foreign exchange market is also developed. We 
use exchange rate USD/MXN, EUR/MXN and EUR/USD information from 2015−2016 to 
forecast the volatility for all the months for the year 2016. The information provided by the 
different formulations is presented in tables and graphs for the analysis.
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The idea of these new operators and its application is in order to see that in economic 
markets that uncertainty is a common things and specifically in FOREX market that many 
of the signals that the market give to the investors and decision makers can be interpreted 
in many ways, the use of a formulation that will help them in order to include they expec-
tations, knowledge and aptitude toward the market and obtain a result that include that 
characteristics give them a new approach and will help them to generate new strategies in 
order to minimize the risk or have a new vision where the market will led and make deci-
sions based on that and not only in the traditional techniques that are usually based only in 
historical data and leave aside the qualitative information that we can have at the time when 
the decision is made. 

The remainder of the paper is organized as follows. In Section 1, we review the volatility 
and some aggregation operators. Section 2 introduced different approaches of volatility using 
OWA operator as a base. Section 3 explains the steps for using the new volatility formulas, 
and Section 4 presents an application in USD/MXN exchange rate forecast. Last Section 
summarizes the main conclusions of the paper.

1. Preliminaries

In this section some basic concepts and definitions, such as volatility, aggregation operators, 
moving average operators and heavy moving average operators are presented.

1.1. Volatility

Since the collapse of the Bretton Woods agreement, exchange rate has presented an increas-
ing volatility growing the risk that the companies have (Ethier, 1973; Héricourt & Poncet, 
2015). One way to calculate volatility is based on the coefficient of variation, this can be 
defined as follows.

Definition 1. Volatility formula is:
  ,v s

=
m  

(1)

where v is volatility, s is standard deviation and m is the average.
As it can be seen, the volatility formula integrates an average, in this sense we can intro-

duce a more complex way of analysis by adding weights and other aggregation operators to 
the classical formulation.

1.2. Aggregation operators

The weighted average is one of the most common aggregation operators. The formulation 
is similar to the normal average but also includes a weight that multiplies each of the argu-
ments. The definition is as follows (Merigó, Guillén, & Sarabia, 2015).

Definition 2. A WA operator of dimension n is a mapping WA : nR R→  that has an as-

sociated weighting vector V, with 0,1iv ∈    and 
1

1
n

i
i

v
=

=∑ , such that



Technological and Economic Development of Economy, 2019, 25(4): 576–599 579

 ( )1
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a a v a
=

… =∑
 

(2)

where aj represent the arguments and vj is the weight related to that argument.
The OWA operator, is an extension of the WA operator, in the way that the weights can 

be rearranged according to different criteria, such as minimum, maximum, Laplace and 
Hurwicz. The definition is as follows (Yager, 1988).

Definition 3. An OWA operator of dimension n is a mapping OWA : nR R→  with an as-

sociated weight vector W of dimension n such that 
1

1
n

j
j

w
=

=∑  and 0,1jw ∈   , according to 
the following formula:

 ( )1 2
1

OWA , , , ,
n

n j j
j

a a a w b
=

… =∑
 

(3)

where bj is the jth largest element of the collection ai.
The heavy OWA (HOWA) operator (Yager, 2002) is an extension of the traditional OWA, 

where the main characteristic of this new operator is in the weight vector, which is not 
bounded by the sum of 1. This operator can be defined as follows.

Definition 4. A HOWA operator is a mapping HOWA : nR R→  associated to a weighting 

vector W where 0,1jw ∈    and 
1

1
n

j
j

w n
=

≤ ≤∑ , such that

 ( )1 2
1

HOWA , , , ,
n

n j j
j

a a a w b
=

… =∑
 

(4)

where bj is the jth largest element of the collection ai.
The characteristics of the HOWA operator are that it is monotonic and commutative, 

but it is not bounded by the minimum and the maximum operator. With the possibility to 
expand the weighting vector from –∞ to ∞, we can drastically under- or overestimate the 
results of the HOWA operator, considering new scenarios according to information of the 
decision maker and some expectations of the future of the case in study.

The induced OWA (IOWA) operator was introduced by Yager and Filev (1999) and the 
main difference is that the reordering step is developed with order inducing variables accord-
ing to the information, knowledge and preference of the decision maker. The IOWA operator 
can be defined as follows.

Definition 5. An IOWA operator of dimension n is an application IOWA : n nR R R× →  
that has a weighting vector associated, W of dimension n where the sum of the weights is 
1 and 0,1jw ∈   , where an induced set of ordering variables are included (ui) such that 
the formula is
 ( )1 1 2 2

1

IOWA , , , , , , ,
n

n n j j
j

u a u a u a w b
=

… =∑  (5)

where bj is the ai value of the OWA pair ,i iu a  having the jth largest ui. ui is the order 
inducing variable and ai is the argument variable.
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1.3. Moving average operators

A moving average is an averaging technique that has been used in economics and statistics. 
This technique is an average that moves toward some part of the sample. The moving average, 
according to Kenney and Keeping (1962) can be defined as follows.

Definition 6. A moving average is defined as a sequence given { } 1
N

i ia
=

, where a moving 
average n is a new sequence { } 1

1
N n

i is − +
=

 defined from ai taking the arithmetic mean of the 
sequence of n terms, such that
 

11 ,
i n

i j
j i

s a
n

+ −

=

= ∑
 

(6)

The usual moving average can be extended by using weighted averages, obtaining the 
weighted moving average (WMA). Merigó and Yager (2013) defined it as follows.

Definition 7. A weighted moving average (WMA) of dimension m is a mapping 
WMA : mR R→  that has an associated weighting vector W of dimension m with 

1

1
m t

i
i t

W w
+

= +

= =∑  and 0,1iw ∈  , such that

 ( )1 2
1

WMA , , , ,
m t

t t m t i i
i t

a a a w a
+

+ + +
= +

… = ∑
 

(7)

where ai is the ith argument, m is the total number of arguments considered from the whole 
sample and t indicates the movement performed in the average from the initial analysis. Note 
that if 1/iw m=  for all i, the WMA becomes the MA aggregation. 

If weights are added to the WMA we obtained the ordered weighted moving average 
(OWMA). Merigó and Yager (2013) defined it as follows.

Definition 8. An ordered weighted moving average (OWMA) of dimension m is a map-
ping OWMA : mR R→  that has an associated weighting vector W of dimension m with 

1

1
m t

j
j t

W w
+

= +

= =∑  and 0,1jw ∈  , such that

 ( )1 2
1
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j t
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+

+ + +
= +

… = ∑
 

(8)

where bj is the jth largest argument of the ai, m is the total number of arguments considered 
from the whole sample and t indicates the movement in the average from the initial analysis.

Also, note it is possible to add an induced reordering step the induced weighted vector 
resulting in the IOWMA operator is generated. Merigó and Yager (2013) defined it as follows.

Definition 9. An IOWMA of dimension m is a mapping IOWMA :  M MR R R× →  that has 

an associated weighting vector W of dimension m with 
1

1
m t

j
j t

W w
+

= +

= =∑  and 0,1jw ∈   
, 

such that

 ( )1 1 2 2
1

IOWMA , , , , , , ,
m t

t t t t m t m t j j
j t

u a u a u a w b
+

+ + + + + +
= +

… = ∑
 

(9)

where bj is the ai value of the IOWMA pair ui, ai having the jth largest ui, ui is the order 
inducing variable, ai is the argument variable, m is the total number of arguments considered 
from the whole sample and t indicates movement in the average from the initial analysis.
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If heavy weights are considered in the OWMA operator, the heavy ordered weighted 
moving average (HOWMA) operator is obtained. The definition is as follows (León-Castro, 
Avilés-Ochoa, & Gil-Lafuente, 2016).

Definition 10. A HOWMA is defined as a sequence given { } 1
N

i ia
=

, where you get a new 
sequence { } 1

1
N n

i is − +
=

 which is multiplied by the heavy weight vector, so that

 ( )
1

HOWMA  ,
n

i j j
j

s w b
=

=∑  (10)

where bj is the jth largest element of the collection 1 2 , , na a a… , and W is an associated 

weighting vector of dimension m that satisfies 
1

1
m t

j
i t

w n
+

= +

≤ ≤∑  and 0,1jw ∈   . Observe that 

here we can also expand the weighting vector to the range –∞ to ∞. Thus, the weighting vec-

tor w becomes unbounded: 
1

n

j
j

w
=

−∞ ≤ ≤ ∞∑ .

Considering the HOWMA operator and adding an induced reordering step, the induced 
heavy ordered weighted moving average (IHOWMA) operator is generated. León-Castro, 
Avilés‐Ochoa, and Merigó (2018) defined it as follows.

Definition 11. A IHOWMA operator is defined as a given sequence { } 1
N

i ia
=

, where a new 
sequence { } 1

1
N m

i is − +
=

 is multiplied by a heavy weighting vector, such that

 ( )1 1 2 2
1

IHOWMA , , , , , , ,
m t

t t t t n t m t j j
j t

u a u a u a w b
+

+ + + + + +
= +

… = ∑
 

(11)

where bj is jth element that has the largest value of ui, ui is the order inducing variable, and W 

is an associated weighting vector of dimension m with 
1

:1
m t

j
i t

W w n
+

= +

≤ ≤∑  and 0,1jw ∈  . Ob-

serve that we can also expand the weighting vector like in the case of the HOWMA operator.

2. Heavy moving average operators in the volatility

In order to include knowledge and experience of the decision maker in the traditional volatil-
ity formula, we consider different aggregation operators that will change the part of the usual 
average of the formula. First, we consider the OWMA operator with volatility, the definition 
is as follows.

Definition 12. An OWMA – Volatility operator of dimension m is a mapping 
OWMA Volatility : mR R− →  that has an associated weighting vector W of dimension m 

with 
1

1
m t

j
j t

W w
+

= +

= =∑  and 0,1jw ∈   , such that

 ( )1 2
OWMAOWMA Volatility , , , ,
OWMAt t m ta a a+ + +

s −
− … =

m −  
(12)

where OWMAs−  is the OWMA standard deviation, OWMAm −  is the OWMA average.
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Considering an induced reordering step in the OWMA – Volatility, the IOWMA – Volatil-
ity is proposed. The definition is.

Definition 13. An IOWMA – Volatility of dimension m is a mapping IOWMA – Vola-
tility: IOWMA Volatility :  M MR R R− × →  that has an associated weighting vector W of dimension m with 

1

1
m t

j
j t

W w
+

= +

= =∑  and 0,1jw ∈   , such that

 ( )1 1
IOWMAIOWMA Volatility , , , , ,
IOWMAt t m t m tu a u a+ + + +

s −
− … =

m −  
(13)

where IOWAs−  is IOWMA standard deviation and IOWMAm −  is IOWMA average.
Also, if the weights are not bounded by 1, the HOWMA-Volatility is generated and the 

definition is.

Definition 14. A HOWMA – Volatility is defined as a sequence given { } 1
N

i ia
=

, where you get 
a new sequence { } 1

1
N n

i is − +
=

 which is associated with a weight vector w with 0,1jw ∈    and 

1

1
n

j
j

w n
=

≤ ≤∑ , so that
 ( ) HOWMAHOWMA Volatility  ,

HOWMAis
s−

− =
m −  

(14)

where HOWMAs−  is HOWMA standard deviation and HOWMAm −  is HOWMA aver-
age.

Finally, if a reordering step in the weights is used, the IHOWMA-Volatility is presented. 
The definition is as follows.

Definition 15. A IHOWMA – Volatility operator is defined as a given sequence { } 1
N

i ia
=  

, 

where a new sequence { } 1
1

N m
i is − +

=
 which is associated with a weight vector w with 0,1jw ∈   

and 
1

1
n

j
j

w n
=

≤ ≤∑ , so that

 ( )1 1
IHOWMAIHOWMA Volatility , , , , ,
IHOWMAt t n t m tu a u a+ + + +

s −
− … =

m −  
(15)

where IHOWMAs−  is IHOWMA standard deviation and IHOWMAm −  is IHOWMA 
average.

The properties for the OWMA – Volatility and IOWMA – Volatility are the followings (The 
proofs are trivial and thus omitted): a) Commutative: Assume f is the OWMA – Volatility or 
IOWMA – Volatility operator, the ( ) ( ), , ,  , , , ,  ,i i n n i i n nf u a u a f u b u b… = … . Monotonicity: 
Assume f is the OWMA – Volatility or IOWMA-Volatility operator; if , ,i i i iu a u b≥  for all 
ii, then ( ) ( ), , ,  , , , ,  ,i i n n i i n nf u a u a f u b u b… ≥ … . Bounded: Assume f is the OWMA – Volatil-
ity or IOWMA – Volatility operator, then { } ( ) { }min , , ,  , maxi i i n n ia f u a u a a≤ … ≤ . Idempo-
tency: Assume f is the OWMA – Volatility or IOWMA – Volatility operator; if ,i iu a a=  for 
all i, then ( ), , ,  ,i i n nf u a u a a… = . Also, note that HOWMA – Volatility and IHOWMA – Vol-
atility operators have as properties commutative, monotonicity and idempotency, they are 

not bounded because the weighting vector can range 
1

1
n

j
j

w n
=

≤ ≤∑ .

Also note that all formulas have 2 particular cases. One considering an attitude in the 
standard deviation and not in the average and another one considering an attitude in the 
average and not in the standard deviation. These cases are presented in Table 1.
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Table 1. Volatility operators and their particular cases

Operator General Case 1 Case 2

OWMA – Volatility
OWMA
OWMA

s−
m− OWMA

s
m−

OWMAs−
m

IOWMA – Volatility
IOWMA
IOWMA

s−
m− IOWMA

s
m−

IOWMAs−
m

HOWMA – Volatility
 HOWMA

HOWMA
s−
m−

 
HOWMA
s

m−  
HOWMAs−
m

IHOWMA – Volatility
 IHOWMA

IHOWMA
s−
m−

 
IHOWMA

s
m−  

IHOWMAs−
m

To understand better each of the cases that are explained in Table 1, the new formulations 
of standard deviation are defined.

Definition 16. The OWMAs−  is defined as follows:

 ( ) 2
1 2

1

 OWMA , , , , ,  ,
m t

t t i t m t j j
j t

a a a a w D
+

+ + + +
= +

 s − … … =  ∑
 

(16)

where Dj is the jth largest argument of the ( )i ta x+ − , x  is the median (or average) of the 
sample, m is the total number of arguments considered from the whole sample and t indicates 
the movement in the average from the initial analysis.

Definition 17. The IOWMAs−  formulation is:

 ( ) 2
1 1

1

IOWMA , , , ,  ,
m t

t t m t m t j j
j t

u a u a w D
+

+ + + +
= +

 s − … =  ∑
 

(17)

where Dj is the ( )i ta x+ −  value of the IOWMA pair ui, ai having the jth largest ui, ui is the 
order inducing variable, ai is the argument variable,  x  is the median of the sample, m is the 
total number of arguments considered from the whole sample and t indicates movement in 
the average from the initial analysis. 

Definition 18. The HOWMAs−  is defined as:

 ( ) 2
1 2

1

 HOWMA , , ,  ,
m t

t t m t j j
j t

a a a w D
+

+ + +
= +

 s − … =  ∑
 

(18)

where Dj is the jth largest argument of the ( )i ta x+ − , x  is the median of the sample, m is 
the total number of arguments considered from the whole sample, t indicates the movement 
in the average from the initial analysis, w is an associated weighting vector of dimension 

m that satisfies 
1

1
m t

j
i t

w n
+

= +

≤ ≤∑  and 0,1jw ∈  . Observe that here we can also expand the 

weighting vector to the range –∞ to ∞. Thus, the weighting vector w becomes unbounded: 

1

n

j
j

w
=

−∞ ≤ ≤ ∞∑ .
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Definition 19. The IHOWMAs−  is formulated as:

 ( ) 2
1 1

1

 , , , ,  
m t

t t m t m t j j
j t

IHOWMA u a u a w D
+

+ + + +
= +

 s − … =  ∑
 

(19)

where Dj is the ( )i ta x+ −  value of the IHOWMA pair ui, ai having the jth largest ui, ui is 
the order inducing variable, ai is the argument variable, x  is the median of the sample, m is 
the total number of arguments considered from the whole sample, t indicates the movement 
in the average from the initial analysis, w is an associated weighting vector of dimension 

m that satisfies 
1

1
m t

j
i t

w n
+

= +

≤ ≤∑  and 0,1jw ∈   . Observe that here we can also expand the 

weighting vector to the range –∞ to ∞. Thus, the weighting vector w becomes unbounded: 

1

n

j
j

w
=

−∞ ≤ ≤ ∞∑ .

In order to explain these new approaches better, we present a simple numerical example.

Example 1. The exchange rate USD/MXN for 2015 and 2016 is as follow (see Table 2).

Table 2. Exchange rate USD/MXN for 2015−2016

Month 2015 2016

January 14.6808 18.0255

February 14.9231 18.4777

March 15.2136 17.6923

April 15.2208 17.4905

May 15.2475 18.0980

June 15.4692 18.6506

July 15.9225 18.5862

August 16.5032 18.4715

September 16.8519 19.1955

October 16.5813 18.9157

November 16.6325 20.0371

December 16.9437 20.5156

With this information, we calculate volatility for 2016 using the following information: 
1. A weighted vector ( )0.05, 0.05, 0.05, 0.07, 0.07, 0.07, 0.10, 0.10, 0.10, 0.10, 0.12, 0.12W = ;
2. An induced vector ( )12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1U = ;
3. A heavy weighted vector ( )0.05, 0.05, 0.05, 0.07, 0.07, 0.10, 0.10, 0.10, 0.10, 0.15, 0.15W = .

The results are as follows (see Tables 3−5).
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Table 3. Volatility for USD/MXN 2016 using the general formulation

Month Volatility OWMA –
Volatility

IOWMA – 
Volatility

HOWMA – 
Volatility

IHOWMA – 
Volatility

January 0.0514 0.0502 0.0486 0.0500 0.0477

February 0.0584 0.0552 0.0568 0.0545 0.0572

March 0.0656 0.0612 0.0645 0.0604 0.0656

April 0.0638 0.0609 0.0607 0.0610 0.0606

May 0.0587 0.0577 0.0536 0.0584 0.0516

June 0.0536 0.0539 0.0493 0.0545 0.0477

July 0.0504 0.0494 0.0479 0.0492 0.0473

August 0.0468 0.0453 0.0444 0.0444 0.0440

September 0.0447 0.0445 0.0403 0.0442 0.0394

October 0.0473 0.0476 0.0429 0.0482 0.0423

November 0.0432 0.0442 0.0392 0.0452 0.0389

December 0.0445 0.0423 0.0433 0.0422 0.0435

Table 4. Volatility for USD/MXN 2016 using the case 1 formulation

Month Volatility OWMA –
Volatility

IOWMA – 
Volatility

HOWMA – 
Volatility

IHOWMA – 
Volatility

January 0.0514 0.0495 0.0492 0.0521 0.0514

February 0.0584 0.0544 0.0578 0.0567 0.0619

March 0.0656 0.0601 0.0657 0.0628 0.0712

April 0.0638 0.0599 0.0617 0.0633 0.0655

May 0.0587 0.0569 0.0544 0.0607 0.0556

June 0.0536 0.0532 0.0500 0.0568 0.0513

July 0.0504 0.0487 0.0486 0.0513 0.0509

August 0.0468 0.0447 0.0449 0.0464 0.0474

September 0.0447 0.0441 0.0407 0.0462 0.0422

October 0.0473 0.0471 0.0434 0.0503 0.0455

November 0.0432 0.0437 0.0396 0.0472 0.0417

December 0.0445 0.0419 0.0437 0.0441 0.0467
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Table 5. Volatility for USD/MXN 2016 using the case 2 formulation

Month Volatility OWMA –
Volatility

IOWMA – 
Volatility

HOWMA – 
Volatility

IHOWMA – 
Volatility

January 0.0514 0.0522 0.0507 0.0494 0.0477 

February 0.0584 0.0593 0.0575 0.0561 0.0540 

March 0.0656 0.0667 0.0644 0.0632 0.0605 

April 0.0638 0.0649 0.0628 0.0615 0.0590 

May 0.0587 0.0596 0.0579 0.0565 0.0545 

June 0.0536 0.0544 0.0529 0.0515 0.0499 

July 0.0504 0.0511 0.0497 0.0483 0.0468 

August 0.0468 0.0474 0.0463 0.0448 0.0435 

September 0.0447 0.0451 0.0442 0.0427 0.0416 

October 0.0473 0.0479 0.0468 0.0453 0.0441 

November 0.0432 0.0437 0.0427 0.0413 0.0402 

December 0.0445 0.0450 0.0441 0.0426 0.0415 

3. Generalizations of the IHOWMA – Volatility

In this section, the use of quasi-arithmetic is used in order to generalize the formulation and 
present some interesting particular cases (Yager, 2004; Merigó & Gil-Lafuente, 2009; Zhou 
& Chen, 2011). To understand better these new formulations the whole formula will be ex-
plained (instead of using IHOWMAs−  and IHOWMAm −  as simplification for example). 
The Quasi-IHOWMA-Volatility formulation is as follows. 

Definition 20. A Quasi – IHOWMA – Volatility operator is defined as a given sequence 
{ } 1

N
i ia

=
, where a new sequence { } 1

1
N m
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=
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(20)

where bj is the ai+t and Dj is the ( )i ta x+ −  value of the IHOWMA pair ui+t, ai+t having the 
jth largest ui, ui is the order inducing variable, ai is the argument variable, x  is the median 
of the sample, m is the total number of arguments considered from the whole sample, t 
indicates the movement in the average from the initial analysis, g and h are strictly continu-
ous monotone functions, w is an associated weighting vector of dimension m that satisfies 
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1
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≤ ≤∑  and 0,1jw ∈  . Observe that here we can also expand the weighting vector 

to the range –∞ to ∞. Thus, the weighting vector w becomes unbounded: 
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j
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w
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−∞ ≤ ≤ ∞∑ .

Also, is possible to generalize the OWMA-volatility, IOWMA-volatility and HOWMA-
volatility operators by using quasi-arithmetic means. These formulations are as follows.

Definition 21. A Quasi-HOWMA-Volatility operator is defined as a given sequence { } 1
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where bj is the jth largest argument of the ai+t and Dj is the jth largest argument of the 
( )i ta x+ − , x  is the median of the sample, m is the total number of arguments considered 
from the whole sample, t indicates the movement in the average from the initial analysis, 
g and h are strictly continuous monotone functions, w is an associated weighting vector of 

dimension m that satisfies 
1

1
m t

j
i t

w n
+

= +

≤ ≤∑  and 0,1jw ∈  . Observe that here we can also 

expand the weighting vector to the range –∞ to ∞. Thus, the weighting vector w becomes 

unbounded: 
1

n

j
j

w
=

−∞ ≤ ≤ ∞∑ .

Definition 22. A Quasi-IOWMA-Volatility operator is defined as a given sequence { } 1
N
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where bj is the ai+t and Dj is the ( )i ta x+ −  value of the IOWMA pair ui, ai having the jth 
largest ui, ui is the order inducing variable, ai is the argument variable, x  is the median of 
the sample, m is the total number of arguments considered from the whole sample, t indicates 
the movement in the average from the initial analysis and g and h are strictly continuous 
monotone functions.

Definition 23. A Quasi-OWMA-Volatility operator is defined as a given sequence { } 1
N

i ia
=

, 
where a new sequence { } 1
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=

 which is associated with a weight vector w with 0,1jw ∈   
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1

1
n

j
j

w n
=

≤ ≤∑ , so that
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(23)

where bj is the jth largest argument of the ai+t and Dj is the jth largest argument of the 
( )i ta x+ − , x  is the median of the sample, m is the total number of arguments considered 
from the whole sample, t indicates the movement in the average from the initial analysis and 
g and h are strictly continuous monotone functions.

In Table 6, there are present some of the main particular cases of the Quasi – IHOWMA –  
volatility.

Table 6. Families of generalized IHOWMA volatility

Particular case Quasi – IHOWMA – volatility

1 , for all  ip i
n

= Quasi-arithmetic induced ordered weighted moving 
average volatility (Quasi – HOWMA – volatility)

1 , for all  iw i
n

= Quasi-arithmetic induced heavy moving average volatility 
(Quasi – IHMA – volatility)

( ) ( ), h D D g b bλ λ= = Generalized IHOWMA – volatility

( ) ( ), h D D g b b= = IHOWMA – volatility

( ) ( )2 2, h D D g b b= = Induced heavy ordered weighted quadratic moving  
average volatility (IHOWQMA – volatility)

( ) ( ), , for  0h D D g b bλ λ→ → λ→ Induced heavy ordered weighted geometric moving  
average volatility (IHOWGMA – volatility)

( ) ( )1 1, h D D g b b− −= = Induced heavy ordered weighted harmonic moving  
average volatility (IHOWHMA – volatility)

( ) ( )3 3, h D D g b b= = Induced heavy ordered weighted cubic moving  
average volatility (IHOWCMA – volatility)

( ) ( ), , for h D D g b bλ λ→ → λ→∞ Maximum operator

( ) ( ), , for h D D g b bλ λ→ → λ→−∞ Minimum operator

4. IHOWMA-Volatility with EUR/MXN and EUR/USD exchange rate

4.1. Theoretical approach 

The study of the volatility has been applied in different assets clases such as foreign exchange 
markets, equity, bond and many more (Carr & Wu, 2008; Mueller, Vedolin, & Yen, 2012; 
Della Corte, Ramadorai, & Sarno, 2016). Among the largest and important financial market 
in the world is the foreign exchange market, that is why forecasting volatility is relevant to 
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organizations, financial institutions and traders wanting to do risk management strategies 
(Pilbeam & Langeland, 2015). 

Different techniques have been used in order to forecast volatility, in this paper we pres-
ent a new approach using as base the classical formulation of volatility (standard deviation 
and average) and different OWA operator extensions, specifically the IHOWMA operator 
and some of its particular cases such as the HOWMA, IOWMA and OWMA operators. 
Also, three different volatility formulations have been presented adding the information in 
the standard deviation (case 1) or in the average (case 2). The steps to use these new OWA 
volatility operators in foreign exchange rate are as follow.
Step 1. It is necessary to identified the large of the moving average that will be used to 
forecast volatility, it can be twelve months (1 year), six months (Half year) or three months 
(A quarter).
Step 2. The information of the exchange rate currencies that want to be evaluated.
Step 3. The weighting vector that will be applied to the arguments based in the importance 
of the information and the decision maker knowledge. It is important to note, for the 
Heavy weights it can range from −∞ to ∞, this is done when the decision maker wants to 
underestimate or overestimate the results.
Step 4. The induced vector that will be used to order the weights according to the expecta-
tions of the decision maker has to be identified.
Step 5. With the information provided by Step 1 to 5, now it is important to define which 
of the different OWA-volatility formulations will be made (General, case 1 or case 2).
Step 6. An analysis has to be done about the information obtained by the different opera-
tors and volatility formulations.

4.2. Numerical example

Step 1. The large of the moving average will be twelve months
Step 2. The exchange rate that will be analyzed will be EUR/MXN and EUR/USD for 2016 
(see Tables 7−8).
Step 3. A weighted vector

( )0.05, 0.05, 0.05, 0.07, 0.07, 0.07, 0.10, 0.10, 0.10, 0.10, 0.12, 0.12W = .
And a heavy weighted vector

( )0.05, 0.05, 0.05, 0.07, 0.07, 0.10, 0.10, 0.10, 0.10, 0.15, 0.15W = .
Step 4. An induced vector ( )12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1U = .
Step 5. For both cases (EUR/MXN and EUR/USD) the three OWA-Volatility formulation 
(General, case 1 and case 2) and the OWMA, IOWMA, HOWMA and IHOWMA opera-
tors will be applied (see Tables 9−14).
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Table 7. Exchange rate EUR/MXN for 2015−2016

Month 2015 2016

January 16.8343 20.4321
February 16.8269 20.0299
March 16.3233 19.7873
April 16.6941 19.8733
May 17.0320 20.6288
June 17.4147 20.9361
July 17.5338 20.5435
August 18.3213 20.7234
September 18.9434 21.2936
October 18.8437 21.3345
November 18.1610 21.0676
December 18.0803 21.7698

Table 8. Exchange rate EUR/USD for 2015−2016

Month 2015 2016

January 1.1387 1.1026
February 1.1138 1.1041
March 1.0781 1.1274
April 1.0900 1.1355
May 1.1150 1.1270
June 1.1241 1.1240
July 1.1006 1.1063
August 1.1110 1.1200
September 1.1254 1.1201
October 1.1277 1.1110
November 1.0925 1.0895
December 1.0767 1.0599

Table 9. Volatility for EUR/MXN 2016 using the general formulation

Month Volatility OWMA –
Volatility

IOWMA – 
Volatility

HOWMA – 
Volatility

IHOWMA – 
Volatility

January 0.0497 0.0476 0.0464 0.0461 0.0443

February 0.0650 0.0612 0.0636 0.0605 0.0641

March 0.0695 0.0661 0.0676 0.0662 0.0685

April 0.0651 0.0619 0.0617 0.0620 0.0608
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Month Volatility OWMA –
Volatility

IOWMA – 
Volatility

HOWMA – 
Volatility

IHOWMA – 
Volatility

May 0.0604 0.0585 0.0567 0.0585 0.0551
June 0.0590 0.0575 0.0562 0.0576 0.0551
July 0.0585 0.0572 0.0557 0.0569 0.0552
August 0.0528 0.0516 0.0497 0.0501 0.0488
September 0.0509 0.0503 0.0460 0.0486 0.0445
October 0.0532 0.0543 0.0465 0.0542 0.0456
November 0.0531 0.0561 0.0462 0.0582 0.0454
December 0.0437 0.0460 0.0378 0.0474 0.0368

Table 10. Volatility for EUR/MXN 2016 using the case 1 formulation

Month Volatility OWMA –
Volatility

IOWMA – 
Volatility

HOWMA – 
Volatility

IHOWMA – 
Volatility

January 0.0497 0.0470 0.0470 0.0482 0.0476
February 0.0650 0.0603 0.0647 0.0630 0.0693
March 0.0695 0.0650 0.0689 0.0687 0.0744
April 0.0651 0.0608 0.0627 0.0644 0.0657
May 0.0604 0.0577 0.0574 0.0610 0.0593
June 0.0590 0.0567 0.0570 0.0600 0.0594
July 0.0585 0.0563 0.0566 0.0592 0.0597
August 0.0528 0.0510 0.0502 0.0524 0.0525
September 0.0509 0.0498 0.0465 0.0509 0.0478
October 0.0532 0.0536 0.0472 0.0566 0.0491
November 0.0531 0.0553 0.0468 0.0606 0.0489
December 0.0437 0.0455 0.0382 0.0496 0.0394

Table 11. Volatility for EUR/MXN 2016 using the case 2 formulation

Month Volatility OWMA –
Volatility

IOWMA – 
Volatility

HOWMA – 
Volatility

IHOWMA – 
Volatility

January 0.0497 0.0503 0.0491 0.0476 0.0463 
February 0.0650 0.0661 0.0640 0.0625 0.0602 
March 0.0695 0.0707 0.0682 0.0670 0.0640 
April 0.0651 0.0662 0.0641 0.0627 0.0603 
May 0.0604 0.0612 0.0596 0.0579 0.0560 
June 0.0590 0.0599 0.0582 0.0567 0.0548 
July 0.0585 0.0594 0.0576 0.0563 0.0542 
August 0.0528 0.0534 0.0522 0.0505 0.0491 
September 0.0509 0.0514 0.0503 0.0486 0.0474 
October 0.0532 0.0538 0.0525 0.0510 0.0494 
November 0.0531 0.0538 0.0524 0.0510 0.0493 
December 0.0437 0.0442 0.0433 0.0418 0.0408 

End of Table 9
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Table 12. Volatility for EUR/USD 2016 using the general formulation

Month Volatility OWMA –
Volatility

IOWMA – 
Volatility

HOWMA – 
Volatility

IHOWMA – 
Volatility

January 0.0182 0.0175 0.0171 0.0171 0.0170
February 0.0160 0.0152 0.0155 0.0150 0.0153

March 0.0158 0.0152 0.0149 0.0150 0.0141
April 0.0150 0.0140 0.0148 0.0135 0.0142
May 0.0155 0.0138 0.0160 0.0132 0.0156
June 0.0160 0.0146 0.0162 0.0140 0.0158
July 0.0160 0.0155 0.0150 0.0148 0.0144

August 0.0157 0.0156 0.0146 0.0148 0.0139
September 0.0158 0.0159 0.0143 0.0152 0.0136

October 0.0156 0.0159 0.0133 0.0155 0.0126
November 0.0151 0.0163 0.0126 0.0165 0.0120
December 0.0154 0.0159 0.0137 0.0160 0.0133

Table 13. Volatility for EUR/USD 2016 using the case 1 formulation

Month Volatility OWMA –
Volatility

IOWMA – 
Volatility

HOWMA – 
Volatility

IHOWMA – 
Volatility

January 0.0182 0.0175 0.0171 0.0182 0.0179
February 0.0160 0.0152 0.0155 0.0159 0.0162
March 0.0158 0.0152 0.0149 0.0159 0.0149
April 0.0150 0.0140 0.0148 0.0143 0.0151
May 0.0155 0.0139 0.0160 0.0140 0.0166
June 0.0160 0.0146 0.0162 0.0148 0.0167
July 0.0160 0.0155 0.0151 0.0156 0.0153
August 0.0157 0.0156 0.0146 0.0157 0.0148
September 0.0158 0.0159 0.0143 0.0161 0.0144
October 0.0156 0.0159 0.0133 0.0164 0.0134
November 0.0151 0.0162 0.0127 0.0174 0.0127
December 0.0154 0.0159 0.0137 0.0169 0.0141

Table 14. Volatility for EUR/USD 2016 using the case 2 formulation

Month Volatility OWMA –
Volatility

IOWMA – 
Volatility

HOWMA – 
Volatility

IHOWMA – 
Volatility

January 0.0182 0.0182 0.0182 0.0171 0.0172 
February 0.0160 0.0160 0.0160 0.0151 0.0151 
March 0.0158 0.0158 0.0158 0.0149 0.0149 
April 0.0150 0.0150 0.0150 0.0141 0.0141 
May 0.0155 0.0155 0.0155 0.0146 0.0146 
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Month Volatility OWMA –
Volatility

IOWMA – 
Volatility

HOWMA – 
Volatility

IHOWMA – 
Volatility

June 0.0160 0.0160 0.0160 0.0151 0.0151 
July 0.0160 0.0160 0.0160 0.0151 0.0151 
August 0.0157 0.0158 0.0157 0.0149 0.0148 
September 0.0158 0.0158 0.0158 0.0149 0.0149 
October 0.0156 0.0156 0.0155 0.0147 0.0147 
November 0.0151 0.0151 0.0151 0.0143 0.0142 
December 0.0154 0.0154 0.0154 0.0146 0.0145 

Step 6. Taking into account example 1 (USD/MXN) and the information presented in sec-
tion 6.2 of this paper (EUR/MXN and EUR/USD) it is possible to note that with the use 
of different aggregation operators different perspectives for the volatility according if the 
attitude is given to both standard deviation and average or to one of them can be done. 
With this it is possible to generate new strategies for risk management according to this 
new data. For simplify the analysis a graph for the three cases for the general formulation 
of the OWA-Volatility is presented (see Figures 1−3).

If we analyze the data, it is possible to see that for example the month with more vola-
tility for USD/MXN is march and can range from 0.0601 (OWMA with case 1) to 0.0878 
(IHOWMA with case 2), in the case of the EUR/MXN is also march and can range from 
0.0640 (IHOWMA with case 2) to 0.0744 (IHOWMA with case 1) and for EUR/USD is 
January and range from 0.0170 (IHOWMA with general case) to 0.0182 (Volatility). These 
information is relevant because can be used to different things like speculation, risk manage-
ment strategy, take decision about buying or selling your products in an specific month of 
the year and many more (as can be seen there are different levels of volatility among different 
currencies so it is possible to make approaches where you can buy USD/MXN and then get 
them back from EUR/USD and change it back to EUR/MXN). Finally, it is important to take 
in account that with all these new scenarios it is possible to increase the knowledge of the 
financial market and explain in a better way how they will be in the future.

Additionally, a matrix with scatterplot graphs is presented (see Figure 4) to make a com-
parison between each of the methods, in a common way, it is found that each of these has 
a positive relationship, which is obvious derived from using the same data series as base. 
The interesting thing is in how there are relations that show a strength of relationship not 
as strong as is the case of IOWMA volatility and the HOWMA volatility and on the other 
hand we find strong relationships such as those presented with the IOWMA volatility and 
the IHOWMA volatility. This analysis is important because it allows us to find how the use 
of different operators can generate results with different interpretations and that they can 
differ from each other even when the same data is used to analyze.

End of Table 14
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Figure 1. USD/MXN 2016 volatility by different operators for general formulation

Figure 2. EUR/MXN 2016 volatility by different operators for general formulation

Figure 3. EUR/USD 2016 volatility by different operators for general formulation
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Conclusions

The paper introduced an extension of the classical formulation of the volatility called the 
induced heavy ordered weighted moving average (IHOWMA) volatility. This extension in-
cludes the characteristics of the IHOWMA operator in the standard deviation and/or aver-
age that are the components of the classical volatility formula, in this sense, it is possible to 
aggregate the knowledge, experience and expectative of the decision maker by the use of an 
induced-order variable and a heavy weighting vector.

The definition and some of the families of the IHOWMA-volatility operator are pre-
sented. Those ranges of families are the OWMA-volatility, IOWMA-volatility and HOWMA-
volatility. Additionally, three different formulations are presented: 1) General formulation 
where the aggregation process is used in both the standard deviation and the average, 2) 
Case 1 formulation where the process is only applied to the standard deviation and 3) Case 
2 formulation where the aggregation is done in the average only.

An application of this extension is used in foreign exchange rate market. The forecast 
of the volatility for 2016 for the USD/MXN, EUR/MXN and EUR/USD currencies are pre-
sented. As can be seen with the use of the different operators the volatility between the cur-
rencies can change, these kind of information is very important because when we analyze 
the FOREX market it is important to note that not every agent interpreted the information 
in the same way. In these sense, the use of aggregation operators can help us to have a better 
idea of how can things can change if we include different aspects of the decision maker or 
the market into the formulation and in this way generate a better risk management strategy 
and these is the most important aspect of these new formulations, have a new approach of 

Figure 4. Matrix with scatterplot graphs for each method
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the future and know that the market can have different results and interpretations is very 
important in the economics markets that are characterized for its uncertainty.

In future research, we plan to make more extensions of aggregation operators using prior-
itized operators (Pérez-Arellano, León-Castro, Avilés-Ochoa, & Merigó 2017; Avilés-Ochoa, 
Perez-Arellano, León-Castro, & Merigó, 2017), Bonferroni means (Blanco-Mesa, Merigó, & 
Kacprzyk, 2016; Blanco-Mesa, León-Castro, & Merigó, 2018; Y. He, Z. He, & Chen, 2015), 
Choquet integrals (Belles-Sampera, Merigó, Guillén, & Santolino, 2014), distance operators 
(Merigó & Casanovas, 2011; Liu & Chen, 2017), Hesitant fuzzy sets (Ren, Xu, & Hao, 2017; 
Zeng & Yao, 2018), intuitionistic fuzzy sets (Liu, J. X. You, X. Y. You, & Su, 2016), multi-
criteria decision making (Zeng, Chen, & Li, 2016) and econometric techniques (León-Castro, 
Avilés-Ochoa, Merigó, & Gil-Lafuente, 2018; Avilés-Ochoa, León-Castro, Gil-Lafuente, & 
Merigó, 2018). Additionally, we will also use other operators in different kinds of problems 
like group decision making (Xu, 2006). Also, the development of the formulation for the 
OWA volatility and some of its extensions and families have been planned for future research, 
the main difference is that instead of using the moving average in the aggregation process, 
the information will be evaluated individually. 

We plan to use the powerful OWA type aggregation operators to further extend our mod-
els of the broadly perceived decision making in socio-economic systems to obtain a deeper 
insight of the stability of regional development strategies as already mentioned (Kacprzyk 
& Straszak, 1984; Yager et al., 2011; Kacprzyk, 2015). Moreover, we plan to further extend 
the use of our operators for a human consistent aggregation of preferences, testimonies and 
judgments under a fuzzy majority proposed in Kacprzyk (1986). In particular, we will deal 
with various classes of group decisions (Zeng, Llopis‐Albert, & Zhang, 2018; Merigó, Xu, 
& Zeng, 2013) and voting (Kacprzyk, Fedrizzi, & Nurmi, 1992), and consensus reaching 
(Herrera-Viedma, Cabrerizo, Kacprzyk, & Pedrycz, 2014; Kacprzyk & Fedrizzi, 1988, 1989; 
Kacprzyk, Zadrożny, & Raś, 2010).
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