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Abstract. The aim of the article is to present a developed algorithm of a stepped structural optimization method in the
case of load combinations. The presentation of external loading via load combinations usually is employed in design
codes. The pin-jointed steel structures as light-weight ones are widely used in actual engineering practice. The employ-
ment of dissipative features of material via elastic-plastic model ensures a significant reduction of structural carrying
capacity reserves (essential economic effect) versus the employment of structural response only in the elastic range. The
stability, stiffness, constructional requirements and actual functions for cross-sectional properties of standard profiles
are employed in the optimization process aiming to obtain an optimal light-weight structure which deformed behavior is
compatible with codified requirements for such class of engineering structures. FEM mathematical models realizing

structural optimization method steps are developed.

Keywords: clastic-plastic pin-jointed structure, load combinations, stepped optimization, stability, stiffness and con-

structional constraints

1. Introduction

A demand of large span/volume storages hangars, sport
halls, stadiums, as well as active spread of telecommunica-
tion services in Lithuania, East Europe during last decades
stimulated the designing of large dimensioned or tall light-
weight quickly erectable buildings. Steel structures actually
match all these requirements. Ductility as an attractive quality
of steel structure ensures the efficient employment of supple-
mental carrying capacity resources vs the brittle ones or those
designed to response in an elastic way. Dissipation of steel
structures, conditioned by yielding of structural members
causes the redistribution of internal forces i.e. adapting of
the structure to loading.

One can list many investigations of the analysis of struc-
tures, taking into account dissipative/elastic-plastic proper-
ties [ 1-6]. Among many investigations one can mention the
ones, employing the mathematical programming theory com-
bining with extreme energy principles and theory of duality
[7-11]. Rigid-plastic structural optimization [7, 8, 11] yields
the solution — optimal distribution of structural parameters

according to plastic collapse conditions, resulting in zero
carrying capacity reserve. But one must note that a struc-
ture, e.g. a steel one designed on the basis of such solution
(introducing small safety factor) responses to loading by
large displacements not admitted in actual engineering prac-
tice. The introduction of displacement constraints compli-
cates the problem essentially realizing it numerically due to
complementarity conditions. They are included in a math-
ematical model of the problem. The additional evaluation
of stability requirements (often being a governing factor
estimating the admissible behavior of a light-weight steel
structure) causes supplemental numerical difficulties. As an
alternative to a direct optimization method the stepped op-
timization method was proposed [12, 13].

One must note that generally the deformable response
of an elastic-plastic structure up to the state of prior to plas-
tic collapse depends on the actual loading history. That
means that individual loading trajectory causes individual
story of developing internal forces and displacements. If
loading trajectories of a structure are not fixed (as in usual
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practice) only variation bounds of above residual values can
be identified [14]. One can mention the investigations on
optimization of structures considering residual displacement
restrictions [15]. Numerical solution of problems is very
complicated even in such formulation. Introduction con-
straints in respect of total displacement magnitudes should
complicate it more.

The current investigation is assigned to developing of
the stepped optimization method for elastic-plastic struc-
tures taking into account total displacement and stability
constraints, both in concert with constructional ones. The
non-uniqueness effect of the structural residual response
values is evaluated in the following way: the structure stiff-
ness conditions are formulated in respect of total displace-
ment constraints for each individual load combination; the
strength/stability conditions — in respect of extreme axial
forces developed by all load combinations. Anyway, the
obtained solution satisfies all introduced requirements vs
all considered load combinations and can be considered as
a tool for actual design compatible with principles employed
in design codes.

The mathematical models employed in certain stages of
stepped optimization are developed applying FEM tech-
niques. Actual functional relations of cross-sectional prop-
erties are identified to employ them in a solution process. A
numerical example illustrating the application of the devel-
oped method is presented by stepped optimization of a space
pin-jointed tower subjected to load combinations.

2. Stepped optimization algorithm in case of load
combinations

A stepped optimization method is an efficient alterna-
tive [12, 13] of considered optimization problem solution
vs the one solved in a direct way. It aims to avoid numerical
difficulties (conditioned by necessary involvement of
complementarity conditions) realizing direct optimization
problem. The method ensures significant savings of com-
putational efforts and resources. The algorithm of stepped
optimization is described by performing certain optimiza-
tion cycles. The cycle realizes the subsequent solutions of
certain sub-problems — stages. The cyclic solution process
is continued to the problem convergence. The main stages
of a cycle of structural optimization are:

1. Determination of the values of elastic structural re-
sponse, namely: displacements and axial forces due
to all load combinations, creation of the envelope of
axial forces.

2. Determination of the actual axial forces and displace-
ments due to each load combination and those due
to the envelope of axial forces. Certain analysis prob-
lems of elastic-plastic structure are solved for this

purpose.
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3. Determination of the optimal distribution of struc-
tural member areas, satisfying strength, stiffness and
constructional requirements in respect of considered
load combinations. The results of stage 2 are em-
ployed.

The stepped (cyclic) nature of problem solution is pre-
scribed by a circumstance that elastic response values are
conditioned by certain distribution of member areas, i.e. the
optimization result of a cycle.

Let the considered load combination index be denoted
via N=1, 2, ..., w. Then the elastic solution of structure
due to considered combination gn is expressed by n-di-
mensional (where n is the number of members — finite ele-
ments) vector of axial forces and m-dimensional (where m
is the number of global displacements) vector of displace-
ments, reading:

ND = (N3, )T = (N33 N, N2 Ng,n)T :
ul = (ul, )T = (ud,, u’;,z,...,dgyi,...,d;m)T_

They are obtained by:
N2 =[K] B [c] [K]7FT ©

ul = [K] RO, )

The above expressions employ the following structure
FEM values:

[K ] is (n X n) -dimensional quasidiagonal structure stiff-
ness matrix of elemental axial stiffnesses EAj/I;

(j =12 .., n) in case of alike material, i.e. alike elasticity

modulus E;

[K] I[C]T HZH [C] is (m>< m)-dimensional stiff-
ness matrix of a structure where BZE is (6n X 6n) - dimen-
sional quasidiagonal matrix of a structure obtained by as-

semblage of the elements stiffness matrices BZ ]H in glo-
bal coordinate system ([12]);
[C] is (6n>< m) -dimensional configuration matrix of

local U and that of global U displacements;

B&H is (6n X n) -dimensional fictitious matrix of struc-

ture elements equilibrium eqns BEBN” =F" in global co-
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ordinate system, where vector F" couples element ends

nodal forces of structure. Note that [C]T FM=F",

The actual axial forces and displacements caused by load
combination N are:

N = N7 +NQ 3)
and
u=ut+ ugd. (4)

The residual components of above values N and u]

are determined via the solution of the analysis problem for
load combination N:
Find

Ds (6] Al -05'[q ¥ +0sKy[d ¥+

BT (NN (NN :
(%)
subject to
A =0, A)=0, (6)
where:

T
A = (7\21) is a vector of Lagrange multipliers of

complementary slackness conditions for tensile members,
T
reading A} (—N? -N? +N0) =0;
T . . .
A) = (Kg’j) is a vector of Lagrange multipliers of

complementary slackness conditions for compressive mem-
. N (N 4N =
bers, reading A (Nr +Ne +Ng ) =0;
T — .
Np = (N0,1' No2s NO,nO) , No = A0y, where 4 is
member cross-sectional area and Oy is material yield limit;

T
Ncr :(Ncr,lvNcr,21 N ) ) Ncr = Aocr , Where

» Ner,ny
A is member cross-sectional area and O = Oy X is mem-

ber critical stress obtained employing buckling factor X <1;

H1=(d" &8 (K] 8&[c] ) (58 [Klaw

— T
=4 B[] [M44. )
Then the required residual values are obtained by:
N?=[G] (a] -33) . ®)
ul = [H] (2] -23). ©)
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The structure minimum weight optimization problem
(compatible with optimal distribution of its member areas)
reads:

find
Mo % 0O
PO L0 — min, (10)
[kzzlpkrzl r|:|
subject to
-0,A; <-Nj, -0, (X;A )Ny (D
ut_,adm < utn < ut+,adma
n=12..,w0; t=12..,m, (12)
A(Z A(ming k=112! ---!n09 (13)
here:

P is steel density;

A, is member cross-sectional area corresponding to
k-th group of equal area members;

N, is anumber of members corresponding to k-th group;

L, isthe total length of members corresponding to k-th
group;

N+ +...+ N, =N; ny is the number of groups;

uf is actual displacement of considered load combi-
nation, being constrained in direction ¢;

m is the number of constrained displacements;

u: adm >0, Ugagm < O are the upper and the lower admis-
sible bounds for displacement to be constrained;

A min 18 the lower bound of cross-sectional area A
magnitude conditioned by minimal slenderness magnitudes
for certain classes of members fixed in design codes.

To obtain displacement expression u! via optimized pa-

rameters (i.e. areas) for expression (12) a virtual principle
is employed. The displacement expression finally reads:

uf = ji:l(u?,,» Jlic,Jar %’ (14)
where:

U?J is the vector of actual displacements of j-th finite

element ends determined by elastic plastic analysis of the
structure due to considered load combination;

Utn’ j isthe vector of virtual displacements of j-th finite

element ends obtained applying a unit load along direction
to the structure being in the state prior the plastic collapse
due to considered load combination;

v is a cycle counter of stepped optimization.
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Strength conditions (11) employ the actual magnitudes
of axial forces. They are obtained having solved the analy-
sis problem (5)—(6) in respect of the envelope of axial forces

Ng and N

tions. Then the solution of the analysis problem yields the

created from all considered load combina-

field of residual forces NtrOt . The actual forces under above

strength conditions then are as follow:

— tot — tot
N =N +Ng;, N =N +Ng;.

To relate the member values employed in optimization
procedures the relationship of radius of gyrationi vs cross-
sectional area 4 must be identified. The above values can
be approximated with sufficient accuracy (omitting for sim-
plicity the member index):

i =A™ (15)

Find that the strength condition for a compressive mem-
ber (see in (11)) is the nonlinear one, as buckling factor X
is functionally related via member area A. The slenderness

of pinned member is A = l—b =

i 1/
Wa
of inertia. The Euler's slenderness is Ag = ,/TIZE/ o, . Then

combining the expression for member buckling factor X
according to EC3 [16] with (15) the left part of strength
condition for compressive member (expressing the mem-

where | is moment

ber critical force Ng = A0y X) having performed the cer-

tain transformations finally reads:

cyA

Z_DQ D2
‘P+\/‘P WE

N, = , (16)

0 op’d

Y= OSéleBA— 025 Ab @

where o is a variance coefficient depending on member
profile manufacturing conditions.

The problem (10)—(13) is the nonlinear programming
problem due to nonlinear strength and stiffness conditions.
Its solution (i.e. determination of optimal distribution of
member areas) can be analyzed in respect of conditions to
be activated (satisfied as equalities). If the structural design
model is not constrained too much (due to introduced con-
structional requirements and/or by its topology combined
with the number of optimized parameters) to develop ex-
treme displacements, usually the stiffness constraints (at least
one of them) is activated ([12, 13]). But one can meet cases
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when strength conditions predominate (due to above de-
scribed reasons) in optimal structure, i.e. displacement con-
straints are not activated in the optimal solution of the prob-
lem.

Efficient numerical realization of the optimization prob-
lem requires fixing of the upper bounds of optimized pa-
rameters. The latter is obtained from rigid-plastic optimiza-
tion, which is also nonlinear due to nonlinear strength con-
ditions for compressive members.

3. Numerical example

The stepped optimization method techniques and opti-
mal solution analysis is performed for a 4-storey pin-jointed
steel tower with 20 nodes (see Fig 1a). The structure con-
sists of 56 members, its DOF = 48. The structural members

are designed of 4 different cross-section types: A, Ay, A;,

A, , constructed from cold formation pipes (variance coef-

ficient o = 0.34). Steel properties are: yield limit Oy =

235 Mpa, elasticity modulus £ = 210 GPa, density p =
7850 kg/m?>.

Four load combinations combining dead and temporary
loads are considered. The dead loading, consisting of 4 ver-

tical forces F =90 KN is included in all combinations. The

lateral loads of 1-st, 2-nd, 3-rd and 4-th combinations are
presented in Fig 1 b), Fig 1 ¢), Fig 1 d) Fig le), respec-
tively. Find that lateral loads are applied in each storey of
tower.

To obtain the required coefficients for relation (15) a
functional analysis of i (in cm) versus 4 (in cm?) was per-

formed. The obtained coefficient magnitudes of &, and by

for cold formation pipes of different pipe thicknesses are
presented in Table 1.

When analyzing the curves of relation (15) in respect to
different thickness pipes, one can find them to be close to
linear.

The limitation A <A, =150 for member slenderness

was introduced. The basic optimization was performed for
pipes of 3 mm thickness. It yielded the minimum construc-

tional areas to be (in cm?): A" =80770, A" =

10.7700, A" =11.4230 and A" =13.4620.

The rigid-plastic solution (required to identify the limit
lower bounds for design parameters) yielded the final mini-
mal constructional magnitudes to be (in cm?):

=8.0770, =35.8102, =11.4230

'Alml n Agﬂl n Agml n

and AL“'F;} =20.6429, resulting the structure weight of
5645.2 kg.
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Fig 1. 56-member tower: a) general view, b) 1-st load combination, ¢) 2-nd load combination, d) 3-rd load combination, ¢) 4-th load
combination
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Table 1. Coefficients of relation (15)

Pipe thickness
(in mm) “ %
2 0.5659 0.9958
2.5 0.4534 0.9965
3 0.3784 0.9968
4 0.2834 0.9978
5 0.2267 0.9982
6 0.1892 0.9978
8 0.1420 0.9980
10 0.1135 0.9982
12 0.0945 0.9985
14 0.0810 0.9988

The stepped optimization dynamics is presented in Table
2 in case of the following admitted nodal displacement
magnitudes: for horizontal ones — 10 cm, for vertical ones —
3 cm. The last column of Table 2 is assigned for horizontal
(governing) nodal displacements as vertical ones develop
far from introduced constraining limits. When analyzing the
obtained solution (see the last row of Table 2), one can find
that stiffness constraints are not conditioning ones for mini-
mum weight structure responding to load combinations in
elastic-plastic range.

Two types of areas, namely the 1-st and the 3-rd reach
their minimal constructional magnitudes. The critical limit
states are reached in members /4—/8 and /6-19 in case of
the first load combination. No yielding limit states are
reached for all load combinations. The extreme displace-
ments develop in:
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direction x — in the 4-th node from the first load com-
bination, namely u,, =9.2368 cm;

direction y — in the 2-d node from the second load
combination, namely Uy, =84411 cm;

direction z — in the 2-d node from the second load
combination, namely u,, =-1.1681 cm.

When testing the structure for the smaller admitted hori-
zontal displacement bounds, it was found that stiffness con-
straints were activated only for displacement limit of 9.1 cm.
The stepped optimization dynamics in case of this constraint
is presented in Table 3.

Analyzing the obtained solution (see the last row of
Table 3), two types of areas, namely the 1-st and the 3-rd
reach their minimal constructional magnitudes. The critical
limit state is reached in member /6—19 in case of the first
load combination. No yielding limit states are reached for
all load combinations. The displacement limit of 9.1 cm is
reached in direction of the 4-th node from the first load
combination. The other extreme displacements develop in:

direction y —in the 2-nd node from the second load com-

bination, namely Upy =8.3686 cm;

direction Z - in the 2-nd node from the second load

combination, namely Uu,, = -1.3077 cm.

Due to the obtained optimal distribution of areas (see
the last row of Table 3) the actual profiles were chosen (see
Table 4). The structural weight of this structure is
6958.35 kg.

Having performed the analysis of structural response it

Table 2. The space truss iterative solution convergence for Unor agm= 10 cm

nucyrrflir A, cm? A,, cm? As, cm? A,, cm? Wiight’ }Zie;l;
0 80.0000 80.0000 80.0000 80.0000 20211.19 3.8361
1 8.0770 36.4707 11.4230 25.9496 6203.61 9.2131
2 8.0770 36.4707 11.4230 25.7026 6179.98 9.2365
3 8.0770 36.4707 11.4230 25.6999 61180.04 9.2368
4 8.0770 36.4707 11.4230 25.6999 61180.04 9.2368
Table 3. The space truss iterative solution convergence for Ungr agm= 9.1 cm
nSr};lclin A,, cm? A,, cm? As, cm? A,, cm? Wfi(ight’ }ij:;eén;
0 80.0000 80.0000 80.0000 80.0000 20211.19 3.8361
1 8.0770 36.7644 11.4230 25.9496 6226.10 9.0995
2 8.0770 36.9347 11.4230 25.6017 6205.85 9.1000
3 8.0770 36.9390 11.4230 25.5932 6205.36 9.1000
4 8.0770 36.9391 11.4230 25.5930 6205.35 9.1000
5 8.0770 36.9391 11.4230 25.5929 6205.35 9.1000
[3 8.0770 36.9391 11.4230 25.5929 6205.35 9.1000
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Table 4. Data of the chosen pipe types

1-st 2-nd 3-rd 4-th

Diam., mm 88.9 323.9 139.7 244.5
Thickness 3 4 3 4

A, cm? 8.10 40.20 12.88 30.22
i, cm 3.04 11.31 4.83 8.5
A 150 54 134 90

was identified that now any strength condition is activated.
The extreme displacements develop in:
direction x — in the 4-th node from the first load combi-

nation, namely U,, =8.1983 cm;

direction y —in the 2-d node from the second load com-
bination, namely Uy, =7.5559 cm;

direction Z—in the 2-nd node from the second load com-
bination, namely Uu,, =-1.0441 cm.

The increment of total weight (reduction of extreme dis-
placements per considered load combinations) of designed
structure vs optimal one can be explained by the limited set
of manufactured pipes available to choose.

4. Conclusions

An algorithm of stepped optimization method in the case
of load combinations is developed. The proposed algorithm
employs developed FEM mathematical models for the analy-
sis and optimization in concert with the approximated rela-
tion of actually manufactured cross-sectional parameters
required for optimization procedures. Numerical simulations
proved the efficiency and good convergence of the devel-
oped algorithm. The results obtained via proposed tech-
niques also allow to make certain conclusions regarding an
influence of principle design scheme and constructional re-
quirements on available decisions aiming to reach other
optimality level of the structure.
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TAMPRIOS-PLASTINES LENGVOS LANKSTINES PLIENINES KONSTRUKCIJOS PAKOPINES OPTIMIZACIJOS

ALGORITMAS APKROVU DERINIU ATVEJU
A. Norkus, R. Karkauskas

Santrauka

Straipsnyje pateikiamas patobulintas pakopinés optimizacijos metodo algoritmas lengvai lankstinei plieno konstrukcijai (daznai
naudojamai inzineringje praktikoje), kurios iSoriné apkrova projektavimo normose paprastai modeliuojama apkrovy deriniais. Disipaciniy
savybiy {vertinimas, naudojant tamprios-plastinés medziagos modelj, lemia reik§minga konstrukcijos laikomosios galios rezervo
sumazinima (esmini ekonominj efekta) optimalios konstrukcijos, dirbancios tik tamprumo buklés, atzvilgiu. Standumo, stabilumo,
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konstrukciniai reikalavimai yra jvertinti. Optimizacijos procediiry metu naudojami funkciniai rysiai tarp skerspjtivio parametry, nustatyti
standartiniams profiliams. Visa tai leidzia suoptimizuoti konstrukcija, kurios atsakas apkrovimui yra adekvatus tokios klasés inzineriniy
konstrukcijy normatyviniams reikalavimams. Pateikiami patobulinti BEM matematiniai modeliai, naudojami pakopinés optimizacijos
stadijose.

RaktaZodZiai: tampri-plastiné lankstiné konstrukcija, apkrovy deriniai, stabilumo, standumo ir konstrukciniai apribojimai.
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