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Abstract. Cable structures are very efficient (in economic aspect) when applied to cover large spans. The cable structure
consists of a single cable or a network of cables. The cable attractive feature is the highest ratio of strength to weight
amongst other carrying structural elements, usually applied in engineering practice. But a cable is a specific structural
element able to response only one type of deforming — tension (flexural rigidity actually vanishes). Therefore, when
loaded a cable shapes the form to resist tension only. This adaptation is followed by large nonlinear displacements. Thus,
the nature of geometrical nonlinear cable behavior is quitie a different from that of rigid structural elements. Both
elements response via small deformations when loaded, but large displacements of a cable are conditioned by its adap-
tation to loading, and those of rigid structural elements — by actual deformations. One can also note that deformations of
a cable are significantly less than those of rigid structural elements, but at the same time actual cable displacements are
significantly larger. Thus, the main disadvantage of a cable structure is its response to loading by large displacements
caused by asymmetric loading component (usually met in engineering practice, e.g. the design of suspension bridges,
coverings of stadium, etc). Therefore stiffness conditions predominate in the actual codified cable design. Having iden-
tified governing factors conditioning displacement magnitudes one can introduce the constructional means/solutions
assigned to reduce them if required. Therefore the evaluation of cable displacements by a reliable and sufficiently exact
method compatible with the calculation of actual engineering structures is under current necessity. When analyzing total
displacements the principle of superposition is employed in a special sequence. Total displacement is split into two
components: kinematic and elastic. The first component represents cable form shaping the loading, the second one is
conditioned by elastic deformations. Any point displacement of an asymmetrically loaded cable can be expressed via its
middle span. The developed analytical expressions to evaluate middle span displacements are presented. They enable to
identify maximal displacements and their locations. The developed analytical method for total displacements evaluation
is tested numerically. The comparative analysis in respect of the influence of various parameters conditioning displace-
ment magnitudes is performed. The displacement evaluation errors, their causality conditioned by the application of
approximate- widely applied engineering methods, are discussed.

Keywords: cable structure shape, nonlinear analysis, asymmetric loading, total displacements

1. Introduction

Cable or combined structures containing a single cable
or cable networks are widely employed as the main carry-
ing elements in engineering practice. It is conditioned by
an attractive combination: small weight and high strength
(the highest ratio of strength to weight) when compared
with other usually applied carrying structural elements.

Small weight is one of the governing factors to choose the
carrying structure for covering large spans (e g bridges) or
large spaces (e. g. stadiums) [1-12]. However, the excel-
lent carrying strength of a cable is accompanied by an es-
sential disadvantage — it responses to asymmetric loading
via large displacements. This is conditioned by a specific
feature of a cable — it can resist only one type of deforming
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—tension (flexural rigidity actually vanishes). Therefore the
adaptation to loading is followed by certain shape changes
to fit the loading. Analyzing cable shape changes, one must
note that the main contribution to developed total displace-
ments is related to the ones, ensuring adaptation to asym-
metric loading. These displacements are denoted as kine-
matic components of total displacements or simply — kine-
matic displacements. The other displacement components
accumulated by actual deformations are significantly less
kinematic ones. This is conditioned by cable material prop-
erties, where high elastic strength is correlated to high elas-
ticity modulus. One must mark that cable response to load-
ing via kinematic displacements is strongly nonlinear, i.e.
geometrical nonlinearity of specific nature is noticed. There-
fore cable reaction to loading by total displacements is also
geometrically nonlinear.

The main disadvantage of a loaded cable structure is
developed large displacements conditioned mainly by ki-
nematic displacements ([3, 4, 8—11, 13, 14]). One must note
that the distribution of internal forces in a cable generally
depends on its shape, the elastic displacements can be de-
fined only having accurately evaluated the kinematic ones.
Design and analysis of cable structures was investigated in
many works ([1, 3, 8, 14-17]). Most of them are assigned
to evaluation of cable total displacements ([3, 16-20]), these
neglecting a qualitative analysis of a confounding factor,
i.e. the influence of kinematic displacements on the actual
shape of a cable and its influence to actual stress and strain
state.

The stiffness requirements in concert with the strength
ones are introduced in design codes. They state that gener-
ally extreme (usually maximal vertical) displacement due

to all considered load combinations i =1, ..., can not
exceed the prescribed magnitude Wy, , i.e. Omax i < Wim

forall i=1 ..,n.

Therefore identifying a governing factor for cable dis-
placement magnitude is the reliable estimation of kinematic
displacements conditioning correct evaluation of total dis-
placements (elastic ones are prescribed by the latter ones)
is very important. One can mention the authors who recom-
mend only to analyze the kinematic displacements, mostly
influencing the cable shape ([8, 10, 13, 15, 18]). Many in-
vestigations on the evaluation of kinematic displacements
are assigned to so called engineering methods employing
the superposition principle when splitting the actual loads
to symmetric and asymmetric components ([10, 13, 15]).
Such rather simplified approach, in some cases yields an
inadmissible error valuating the shape of a suspension cable,
responding to loading in a geometrically nonlinear way of
specific nature. The investigation [14] indicates the errors
conditioned by replacing of actual asymmetric loading to
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symmetric and asymmetric components. Aiming to uprate
the accuracy of engineering methods, the equivalent cor-
recting loading, is proposed to introduce ([8, 21]). One must
mark that such approach seems to be rather simplified and
artificial, furthermore no any clear definition or algorithm
to identify the equivalent loading is presented. Note that
one can find only few ([8, 22]) investigations, assigned on
corrected evaluation of kinematic displacements. However,
a more exhaustive cable kinematical behavior analysis
should be useful in practical aspect: that evaluating the ac-
tual shape and stress state of a loaded cable; that determin-
ing the cases/bounds for admissible application of engineer-
ing methods.

The evaluation of cable shape by employing general
analytical expressions is rather complicated, as requires
many computational efforts during iterative problem solu-
tion procedures ([3, 8, 16, 17]). Therefore the direct em-
ployment of above expressions for practical calculations/
design is under question. Thus, the creation of the method
allowing the evaluation of cable shape via total (kinematic
and elastic) displacements with sufficient accuracy and rela-
tively smaller computational efforts, is under actual neces-
sity.

The paper is assigned to the shape analysis of an asym-
metrically loaded suspension cable via total displacements
by splitting them to kinematic and elastic components. Ki-
nematical displacements are analyzed for cable loaded and
unloaded parts. The developed analytical expressions for
their determining are presented. A method of evaluating
elastic displace- ments (conditioned by the kinematic ones)
and subsequently the total ones is presented. The obtained
analytical expressions are illustrated by numerical applica-
tions. The evaluation of errors conditioned by the applica-
tion of engineering methods is discussed.

2. Estimating of kinematic displacements

2.1. Vertical kinematic displacements

It is known that the equilibrium shape (form) of a cable
when subjected by symmetrical (uniformly distributed per
cable span) loading (e.g. that of cable weight force or that
of analogous applied additionally) fits quadratic parabola.
Such loading causes only elastic cable displacements with
maximal one at cable middle span ([3, 8, 14, 17]). The
supplemental uniformly distributed load applied onto the
cable part from support till middle span (a typical case)
enables the cable to change the primary shape to a new one
(due to a new moment diagram), i.e. the cable adapts to
respond the loading via tensile resistance. This process is
accompanied by large displacements. Seeking to obtain pure
kinematic displacements one must eliminate the contribu-
tion of elastic displacements. It can be done introducing
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infinitesimally large cable axial stiffness EA - o, where
A is cable cross-sectional area, E' is material elasticity modu-
lus. In this case elastic displacements vanish. Practically it
can be done introducing a sufficiently large e.g. elasticity
modulus, resulting in the elastic displacements of magni-
tudes available to neglect in the analysis of total displace-
ments. Thus, the cable primary shape change i.e. developed
displacements are conditioned by kinematic ones only. Due
to widely applied engineering methods ([10, 13, 15]) maxi-
mal displacements develop in both (subjected to supple-
mental loading and free from it) cable parts. They are as-
sumed to be equal in absolute magnitudes, resulting the
middle span displacement to be zero. Such an approach al-
lows obtaining simpler analytical solutions, but certainly
conditions the errors when determining actual cable kine-
matic displacements.

Consider the behavior of a suspension cable subjected
to the following loading: uniformly distributed load ¢, ap-
plied per total span (symmetric load); uniformly distributed
load p, applied onto left half span //2 (asymmetric load)
(see Fig 1).
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Fig 1. Cable shape change due to an asymmetric load

The primary shape (cable axis) corresponds to quadratic
parabola function:

2(x)= |\/|o(>%0 - f0(4% _4x7|2)’ )

here My(X) is the moment caused by symmetric load g;

H, is a thrusting (tensile) inner cable force.

The axis of a displaced cable (due to kinematic displace-
ments) is described by the following functions different for

cable left 7, (X) and right 7 (X) parts ([23]), namely:
g D

= f
Z”(( ) kl %{ 4y 4)(/) (2)

4

for x<1/2,and

()= ®
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for 1/2<x<1,
here
fiq is cable sag of kinematic nature (kinematic sag) at

cable middle span fixed after applying supplemental load-
ing in concert with symmetric one g;

y =p/q is ratio of symmetric and asymmetric loads
(ratio of their intensities).

The cable kinematic sag at middle span f,; can be ex-

pressed via primary cable sag f, (the middle span vertical

displacement of cable subjected by symmetric load p),
namely:

fig = fo + Ofy . 4

Analyzing the relations (2) and (3) one can find that the
function describing the cable left part axis is the sum of two
parabola functions, while the one of the right part corre-
sponds to the sum of parabola and line functions.

The location of maximal displacement (deflection) can
be identified by equaling the first derivative of function to

zero, i.e. 7, (x) =0 results:

X:I_m_ (5)
4 (1+y)

The position of maximal deflection depends on loads
ratio Yy =p/(, as one can find from expression (5). The
variation of Y in the bounds from 1 to 10 results an ad-
equate variation the position of maximal deflection inside

+0.386 | -

One can find that the determination of any point kine-
matic sag of an asymmetrically loaded cable is rather simple
applying the formulae (2) and (3), but the cable middle span

the bounds fixed by x* = (0.437

sag f,; must be known. To obtain the latter value one must
apply a full set of equations (i.e. statical, geometrical an
physical ones) ([3, 8, 10, 14, 17]).

The cable primary length according to the well-known
formula is ([14]):
8 f¢

S O+ =

31 ©

The cable length can be determined as the sum of cable
left and right parts fixed for changed shape by:

1/z
Sk = Sk tsk =I "‘05_[ B ( X)dex+

05 I i (O dx. %

/2
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The solution of (7), combining (2) and (3), finally yields:

8 fig A+y+5y /160

O+ .
N Ol+y+y/4 0

(8)

When the cable shape changes are conditioned only by
kinematic displacements S, = S, then the cable kinematic

sag is calculated by:

_ (1+y/2)
J1+y+5V /16

The formula (9) results the cable kinematic sag at middle

)

span f,, to be less the primary one f, in the case when
Y #0. Thus, the kinematic displacement at middle span Af
is of a negative sign (i.e. it is directed up, in opposite to
loading direction). The kinematic displacement Af, mag-

nitude, taking into account (4) can be calculated by

1+y/20
y H
¢ O

A, = -1, %l— (10)
U

where &= /1+y+5y//16 -

The expression (10) proves that kinematic displacement
Af, is always directed up for any positive Y. This is evi-
dently illustrated via the graph, presented in Fig 2. The graph
is simulated for a suspension cable of span | =100 m and
primary sags f; =10 m and f; =20 m.

The increment of load ratio Y is compatible with the
increment of negative (directed up) middle span vertical dis-
placement Afy . This relationship is nonlinear one, as one
can find from Fig 2. Find that kinematic displacement at
middle span Af, is equal to zero only when Yy =0. Be-
sides, applying the statical equations, one can obtain the

relationship of thrusting force H,; vs kinematic displace-

0,25

0

—B—sag=10.0m

—2&—sag=20.0m
-1,25 P~
-1,75

Fig 2. Cable middle span vertical displacement (in m) versus
load ratio Y
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ment Afy , reading

_d®(1+y/2)

TR (11

On the basis of the analysis of formulae (10) and (11),
one can state that the application of the engineering method
(assuming the middle span vertical displacement of an asym-
metrically loaded cable to be Af, =0), results in errors de-

termining the actual cable shape.

2.2. Horizontal kinematic displacements

Kinematic horizontal displacements develop simulta-
neously with vertical kinematic ones ([8, 9, 14]). They are
directed to a cable part loaded by asymmetric load p. In
other words, one can say that the left cable part contribu-
tion to total cable length increases and that of the right part
—decreases. Taking into account this feature, one can deter-
mine both, i.e. middle span kinematic displacements of left
and right cable parts, namely:

Ahy = (Sk —So)cosPy (12)

and

Ahy =(Sk —So)cosdy, (13)

where ¢, is angle between cable slope and horizontal axis.

Assuming ¢, = 0 at a cable middle span and employ-

ing (6), (7) and (8) one can obtain the formulae to deter-
mine horizontal kinematic displacements:

O 1+5y/4 +7V//16 O
4
Ahkzggfo+m‘k)2( . )—fozg, (14)
- (1+y/2) g
Ay == %f A )? (134 437 19) fZg
hk = o A To AT “Toq (15
3p (1+y/2)? g 19

The analysis of the above formulae shows that horizon-
tal kinematic displacements as well as vertical ones depend

on cable primary sag f, and loads ratio Y. The graphs of
middle span horizontal displacements vs Y are illustrated
for cable of | =100 m and f; =10 m in Fig 3.

Besides, when analyzing the formulae (14) and (15), one
can find that middle span kinematic displacements are re-
lated to kinematic vertical ones. Numerical simulations

proved the horizontal kinematic displacements Ah, and

Ah,,  to be the magnitudes of the same order as Afy . Also

one can find that horizontal kinematic displacements of cable
left and right parts are equal in absolute values, i.e.

[ah[=[an|.
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Fig 3. Horizontal middle span kinematic displacements of
cable (] =100 m, fp =10 m) left and right parts (in m) vs

loads ratio Y

One can note that middle span kinematic displacements
prescribe the shape of an asymmetrically loaded cable as
well as its deformed state. It is evident that as efficient tools,
reducing maximal vertical displacements, constructive
means can serve to constraint horizontal kinematic displace-
ments.

3. Maximal cable kinematic displacements

The codified design aims to evaluate maximal vertical
displacements, as it was mentioned above, to check whether
stiffness conditions are not violated. Thus, pure (EA — )
maximal vertical kinematic displacements, as governing ones
when conditioning loaded cable shape, are to be determined.

3.1. Cable left part displacements

The vertical kinematic displacements of the left loaded
by p cable part, can be obtained as the difference of de-
formed and primary cable shapes ([8, 14, 22]):

W (%) =2 () =70 (%), (16)
where

Zo (X) is cable left part primary shape function;

Z (X) is cable left part shape function after its loading

by p.
Combining (1) and (2) relations with (16) one can ob-
tain the formula for determining vertical kinematic displace-

ment of cable left part (x<1/2):

(x) = fo + O, ElD4x 4x O, O3x 4x435
ke (1+y/2) ﬁ EI 158
ux 4x?0
-——B 17
OﬁT |2 ﬁ ( )

When analyzing formula (17), one can find cable left

part displacements to be dependant on primary sag f,, loads
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ratio Y and cable middle span kinematic displacement Af,
magnitudes.
Location of maximal kinematic displacement ), can

be defined when equaling the first derivative of the displace-

ment expression (17) to zero, i.e. Wik (X) =0 ([22)):

*

(2+3y/2-2¥)

|
— 18
4 (1+y—€) (18)

Analyzing (18) one can find the maximal left part dis-
placement to be departed from the left support by distance

X <|/4 .Numerical simulations resulted x”=0.9571/4,
when y=1; x”=0.9211/4,when Yy =3.

Maximal kinematic displacement of cable left part is
obtained combining (18) and (10). It reads:

_ 0 vy O
o =fod2B- a5+ (3p2
on o@ B BZ)% 10 25( B ﬁ)g, (19)
1-&+3y/4
1-E+y

Taking x* =|/4 one can obtain an approximate for-

where 3=

mula for determining the left part displacement ([23]):

_3, u+2y/3) O
_ZfOBT 15 (20)

Find that the latter formula is quite simple one not re-
quiring significant computational efforts. It yields an insig-
nificant error (comparing with (19) and is less 1.6 % (for
instance, when Y =10 — it is 0.14 %; when Yy =1 — it is
1.56 %).

The relations of maximal cable left part kinematical dis-

@y (%)

placements Wy max Vs loads ratio Y are presented graphi-
cally in Fig 4 for two different primary sags.
The graph shows them to be nonlinear ones. For pri-

mary sag fy=1/10=100: Wy mx =0.721m when
4
35
3
25 X{

—e&—sag =20.0m
—f—sag =10.0m

Fig 4. Cable left part maximal kinematic displacements

W max Vs versus loads ratio Y
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y=1; and Wy ma =1.367 m when Yy =10. For primary
sag fy =1/5=20.0: Wy ma =1.443 m when Y =1;and

Wk max =2.735 m when Yy =10.

It is evident that aiming to reduce the maximal vertical
displacements under constant loads ratio Y, one must re-

duce primary sag f,. But one must keep in mind that this
results in the enlargement of cable thrusting force H,; (see
(11)).

3.2. Cable right part displacements

The right (unloaded) cable part displacements , are

always negative — directed up for Yy >0. They can be de-
termined in an analogous way as these of the cable left part.

Having replaced index | by index » in (16) one obtains:

e (X) =2 %0 (%), 1)
where
Zq (X) is cable right part primary shape function;
Z (X) is cable right part shape function after its load-

ing by .
Combining (1) and (2) relations with (16) one can ob-

tain the formula for determining cable right part (X 21/ 2)

iR

%I‘%_‘ll_fm (22)

vertical kinematic displacement:

fo + O, DD4x 4x2 0
(1+y/ 2)

Wy (x) =
~f,

The analysis of (22) shows that the right unloaded cable
part maximal displacement depends on the same factors as

the loaded cable left part, namely: primary sag f,, loads

ratio Y and cable middle span kinematic displacement Af, .

Maximal right part kinematic displacement is located at

e =

Formula (23) shows that the variation of maximal dis-

*k

3
X =—
4

placement is not sensitive to different loads ratio Y magni-
tudes and can be approximated by constant magnitude

wrk,max

placement according to this location does not result in the
significant error, not exceeding 2.0%. Therefore the maxi-
mal displacement of an unloaded part can be determined
via the formula analogous to (20). It reads:

[, (x=31/4). The evaluation of maximal dis-
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25 ——@—sag = 10.0m

_’3 ] =f}— sag =20.0m
-3,5

-4
-4,5

-5
-5,5 I

Fig 5. Cable right part maximal kinematic displacements

Wk max Vs versus loads ratio Y

3. 0n O O
G (%) =7 fo T3 %E' (24)

The relations of maximal cable right part kinematical
displacements Wy max Vs loadsratio Y are presented graphi-

cally in Fig 5. Numerical magnitudes are presented for con-

stant cable span | =100 m in cases of two primary sags,

namely fo =10m and fy, =20 m (analogous as of cable

analyzed in section 3.1 already).
Analyzing the graphs of Fig 5 one can find that an incre-
ment of loads ratio Y results in the increment (in absolute

values) of Wy max . For primary sag f; =1/10=10.0:
Wk max = ~0.924 mwhen Y =1;and Wy ma = —2.500 m
fo =1/5=20.0:
=-5.000 m

when Yy =10. For primary sag

Wi max = —1.848 m when Yy =1; and 0 a
when Yy =10.

A comparative analysis of formulae (23) and (24) shows
the maximal displacements of the right cable part free of
loading p to be larger than analogous ones of the cable loaded
part, i.e. |U)rk,max| >| qu,max| . This, probably unexpected
result can be explained by always negative middle span dis-
placement Afy . This was briefly discussed in [14].

Compare the above displacements developed for the
above described cable. The relative difference in percent-

age of Wy max VS Wk max 1S presented via the graph of Fig 6
for cable of | =100 m and fy =10 m: One can find that
the relative error gradually increases with the increment of
Y :incase of Y =1 the Wy ma is larger Wy max by 28 %;
in case of Y =5 the Wy ma is larger Wy max by 70 %; in
case of Y =10 the Wy mx 18 larger Wy max by 86 %.

One must remind the reader that vertical kinematic dis-
placement magnitudes are obtained to be equal ones in ab-
solute values for cable left and right parts if they are deter-
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mined via engineering methods ([13—18, 21]). Analyze a
relative error produced by valuating maximal vertical kine-
matic displacements (obtained by engineering methods) in

respect of cable primary sag f, and loads ratio Y . Numeri-
cal simulations resulted that no influence of f, on a rela-

tive error was observed. The magnitude of Y had an essen-
tial contribution to relative error magnitude (see graphs of

Fig 7 for cable | =100 m and f; =10 m). Valuating
W max : for Y =1 the error is 15.5%; for Y =5 the error is
42%; for Yy =10 the error is 52%. Valuating Oy ma : for
Y =1 the erroris 10%; for Y =5 the erroris 16%; for y =10

the error is 17%.

The analysis of the above graphs concludes that admit-
ted tolerance for error obtained employing engineering
methods to estimate vertical displacements, can be reached

only in case of Yy <1.

100,00%

80,00%

60,00% =
;/
40,00%
4/

20,00%

0,00%

1 2 3 4 5 6 7 8 9 10
Fig 6. Cable (1 =100 m, fy; =10m) relative difference

W max _(*}k,max| in % vs y

60,00%

50,00%

-
40,00% VA’/{

;/ —&—left part

—@—right part

30,00% ’//‘

20,00% /

¥
10,00%
0,00% -

1 2 3 4 5 6 7 8 9 10

Fig 7. Cable (1 =100 m, fy, =10 m) relative error in % of
vertical maximal displacements (obtained via engineering methods)

vs Y

4. Cable elastic and total displacements

The main cable design task is to design a structure satis-
fying stiffness conditions per all available loadings during
the structure maintenance period ([1, 3, 8, 9, 19]), as it was
fixed in introduction. To obtain relatively simple and suffi-
ciently accurate expressions available for practical design
purposes certain approximations in cable calculation are to
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be introduced. For this purpose the principle of superposi-
tion of the specific sequence is employed. Firstly, the cable
shape (kinematic displacements) due asymmetric loading
is determined; secondly, the elastic displacements are de-
termined due to this new — adapted to lading cable shape.
The total displacements then are obtained as the sum of ki-
nematic and elastic ones.

The elastic displacements are caused by thrusting force

H,, as it was mentioned above. The compatibility equation

of strains yields:

Asy+Asy =0, (25)
here
DSy =5 ~Sq (26)
and
H,
A =_- Y
8= @7

where 5 and S, are cable lengths prior and after its de-

formation, respectively.
Cable length prior deformation is defined by (8); that of
after deformation by:

2 0
s Ok §Lﬁ+y+5f/16m

31 gl+ry+V/4pg (28)

The cable total sag at middle span f; can be expressed
as the sum of kinematic fy; and that of elastic Afy ones:
fy = fiq +Ofy . (29)

Kinematic displacement f,, is defined by (9) or (4).

Then the total sag at a middle span is obtained by:
Af = Af, + Ay . (30)

When combining (25)—(29), one obtains an expression
to determine the elastic sag at a cable middle span:

Hi So 3 (1+y+¢/4)
EA g(1+y+5y/16)

Afdz +2fklAfe| - :07 (31)

where

b, = A%@+y/2)

1 B(fig * Alg) G2

One can note that the solution of (31) for Afy yields
the known third order (cubic) equation ([3, 8, 10, 14]). Afy

also can be obtained per iterative procedures. But one must
note that both solution ways require significant computa-
tional resources, therefore they are not always acceptable
in cable design.
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Applying the equation (31) and combining (32) one can
obtain a simplified (approximate) formula for middle point
elastic sag determination:

.3 dfatyio°
128 EAFZ (1+y +5Y/16) (33)

Afy

Find that (33) is analogous to the known approximate
formula for estimating the elastic middle point sag in the
case of symmetric loading.

The formula (33) enables direct (without supplement
calculations) determination of elastic displacement in the

case of known kinematic sag f,,. The expression (33) can

also serve choosing the cable cross-sectional area, aiming
to fit the cable to stiffness requirements. The formula is uni-
versal in respect of its application, i.e. for symmetric and

asymmetric loadings. In the case of symmetric load (Y =0)

formula (33) becomes the known equation ([8,10]).
The analysis of formulae (30) and (33) concludes that

total displacement at middle span Af can obtain positive

and negative magnitudes due to load intensities magnitudes,
their ratio Y and cable axial stiffness EA. One can choose

the magnitudes of above parameters to obtain Af =0, re-

sulting in equal (in absolute values) vertical displacements
for both cable parts. It is evident that purposeful handling

of cable primary sag f, its stiffness £4 and loads ratio Y

results in the desirable shape and stress state of cable. One
can obtain the set of above parameters resulting the cable
left part vertical displacements to be larger (in absolute)
values vs the ones of the right part.

5. Concluding remarks

A geometrically nonlinear analysis of a cable is of spe-
cific nature. It is conditioned by cable ability to response
loading only via shape, able to resist tension. Total displace-
ments consist of kinematic (cable shape adapting to load-
ing) and elastic (result of axial deformations) counterparts.
To identify the total displacements the following sequence
is proposed: first, identification of kinematic displacements;
second, determination of elastic displacements according
to axial forces compatible the cable shape already adapted
the loading. The total displacements are the sum of kine-
matic and elastic ones. Such an approach of determining
actual displacements ensures sufficient accuracy and com-
patibility with actual practical design of cables.

The developed analytical expressions are proposed to
identify kinematic displacements for both parts of an asym-
metrically loaded cable, including maximal ones and their
location points. It is proved that maximal (in absolute val-
ues) kinematic displacements develop in an unloaded cable
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part and that the cable middle span displacement is always
negative (directed up). The obtained analytical expressions
for cable middle span displacement (vertical and horizontal
ones), employed in obtained relations, ensure obtaining of
any cable point kinematic displacements. Horizontal and
vertical kinematic displacements are related. It was defined
that cable middle span displacement depends on a cable
primary sag, symmetric and asymmetric loads ratio. Thus,
cable stabilization can be obtained by reducing the above
mentioned parameters.

The approximate solution reducing computational ef-
forts and compatible with engineering practice for elastic
displacement evaluation is presented.

The obtained formulae enable: handling of the loaded
cable shape and its stress state by varying the primary sag,
axial stiffness of cable and the loads ratio; choosing of the
cable cross-sectional area to ensure stiffness and strength
conditions prescribed by design codes.

The performed numerical simulations proved that widely
employed engineering methods ensure admissible error
when estimating cable displacements only for cases when

y<1.
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APKRAUTO LYNO APYBRAIZOS NUSTATYMAS PER PILNUOSIUS POSLINKIUS

A. Juozapaitis, A. Norkus

Santrauka

Kabamosios konstrukcijos yra labai efektyvios (ekonominiu atzvilgiu), kai naudojamos dideliems tarpatramiams perdengti. Jos gali
biiti sudarytos i$ atskiry kabamuyjy lyny arba juy sistemy. Palyginti su iprastiniais laikan¢iyjy konstrukeijy elementais, kabamojo lyno
patraukluma atskleidzia maziausias santykis tarp jo laikomosios galios ir savojo svorio. Specifiné lyno savybé ta, kad jis gali dirbti tik
tempimui (jis praktiSkai neturi standumo lenkimui). Todél lynas, veikiamas nepusiausvirosios apkrovos, kei¢ia savo prading apybréza,
kad prisitaikytu prie jos, sukelian&ios tik tempimo iraZa. Sis prisitaikymas lemia didelius netiesinius poslinkius. Taigi lyno geometriskai
netiesinés elgsenos pobidis skiriasi nuo standziy konstrukcijy netiesinés elgsenos. Nors abiejy tipy elementuose pasireiskia nedidelés
deformacijos, dideli lyno poslinkiai yra sukeliami adaptacinio formos pasikeitimo, o standziuosiuose elementuose didelius poslinkius
sukelia tik deformacijos. Reikia pabrézti, kad lyno tampriosios deformacijos paprastai yra mazesnés uz analogiskas standziuosiuose
elementuose, bet lyno poslinkiai yra gerokai didesni. Taigi esminis apkrauto lyno elgsenos trikumas yra dideli poslinkiai, kuriuos lemia
asimetrinés apkrovos (biidingos tokioms konstrukcijoms, kaip kabamieji tiltai, stadiony stogy perdangos ir t. t.). Todél projektuojant
kabamasias konstrukcijas svarbiausios yra standumo salygos. Gana tikslaus ir patikimo metodo sukiirimas realiy kabamyjy konstrukci-
ju poslinkiams nustatyti yra neabejotinai aktualus. Nustatant pilnuosius (suminius) poslinkius, sumavimo principas realizuojamas tam
tikra seka. Poslinkiai skaidomi i du komponentus: kinematini ir tampryji. Pirmasis atsiranda dél lyno formos pasikeitimo, jam adaptuo-
jantis prie asimetrinés apkrovos pobiidzio, antrasis — dél tampriyjy deformaciju. Kiekvienas simetriskai apkrauto lyno poslinkis gali
biti iSreikstas naudojant vidurini lyno poslinki. Pateiktos patobulintos analitinés iSraiskos viduriniam lyno poslinkiui nustatyti. Jos
leidzia nustatyti didziausius lyno poslinkius ir juy vietas. Pateiktos iSraiSkos suminiams poslinkiams nustatyti yra patikrintos skaitiskai,
atlikta lyginamoji analizé siekiant jvertinti atskiry parametry, nusakanc¢iy poslinkio diduma, indélj. Aptartos poslinkiy nustatymo pa-
klaidos ir ju priezastys, gaunamos placiai taikant apytikslius inzinerinius metodus

Raktazodziai: kabamojo lyno apybraiza, netiesiné analiz¢, asimetriné apkrova, pilnieji poslinkiai.
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