
ISSN 1392-8619 print/ISSN 1822-3613 online

ÛKIO TECHNOLÛKIO TECHNOLÛKIO TECHNOLÛKIO TECHNOLÛKIO TECHNOLOGINIS IR EKOGINIS IR EKOGINIS IR EKOGINIS IR EKOGINIS IR EKONOMINIS VYSTYMASONOMINIS VYSTYMASONOMINIS VYSTYMASONOMINIS VYSTYMASONOMINIS VYSTYMAS

TECHNOLTECHNOLTECHNOLTECHNOLTECHNOLOGICAL AND ECONOMIC DEVELOGICAL AND ECONOMIC DEVELOGICAL AND ECONOMIC DEVELOGICAL AND ECONOMIC DEVELOGICAL AND ECONOMIC DEVELOPMENT OF ECONOMYOPMENT OF ECONOMYOPMENT OF ECONOMYOPMENT OF ECONOMYOPMENT OF ECONOMY

http://www.tede.vgtu.lt

2006, Vol XII, No 4, 341–346

A PRIORI FILTRATION OF POINTS FOR FINDING CONVEX HULL

Laura Vyšniauskaitė1, Vydūnas Šaltenis2

Vilnius Pedagogical University, Studentų g. 39, LT-08106 Vilnius, Lithuania

E-mails: 1valaura22@yahoo.com; 2saltenis@ktl.mii.lt

Received 15 June 2006; accepted 20 November 2006

Abstract. Convex hull is the minimum area convex polygon containing the planar set. By now there are quite many
convex hull algorithms (Graham Scan, Jarvis March, QuickHull, Incremental, Divide-and-Conquer, Marriage-before-
Conquest, Monotone Chain, Brute Force). The main attention while choosing the algorithm is paid to the running time.
In order to raise the efficiency of all the algorithms an idea of a priori filtration of points is given in this article. Besides,
two new algorithms have been created and presented. The experiment research has shown a very good efficiency of
these algorithms.

Keywords: convex hull, a priori filtration of points, efficiency, Graham Scan, Jarvis March, Quickhull.

1. Introduction

Convex hull is the minimum area convex polygon con-

taining the planar set (Fig 1).

The definition of the convex hull which is given above

is for planar points. The convex hull of a set of points S in n

dimensions is the intersection of all convex sets containing

S. For N points
N

ppp ...,,,

21
 the convex hull CH is given

by the expression [1]:

.1λandallfor 0λ ,λ

1 1 











=≥≡ ∑ ∑
= =

N

j

N

j

jjjj
 j pCH

Finding the convex hull of a set of points is one of the

main problems in computational geometry and computer

graphics.

In robotics the convex hull is central to path planning

and collision avoidance task. In pattern recognition and

image processing the convex hull appears in clustering, and

computing similarities between sets. In computational ge-

ometry, the convex hull is often a valuable tool in devising

efficient algorithms for a number of seemingly unrelated

problems [2].

Convex hull also serves as a first preprocessing step to

many, if not most, geometric algorithms. For example, con-

sider the problem of finding the diameter of a set of points,

which is the pair of points a maximum distance apart. The

diameter will always be the distance between two points

on the convex hull. So the algorithm for computing diam-

eter proceeds by first constructing the convex hull, then for

each hull vertex finding which other hull vertex is farthest

away from it [3].

Only a small part of implementation cases of convex

hull has been mentioned. So it is no wonder that much work

has been done creating algorithms of the convex hull.

We can find these algorithms in scientific press by now:

Graham Scan, Jarvis March, QuickHull, Incremental, Di-

vide-and-Conquer, Marriage-before-Conquest, Monotone

Chain, Brute Force.

2. Graham Scan

The Graham scan algorithm is often cited as the first

“computational geometry” algorithm. The algorithm works

in three phases [4]:

1. This algorithm starts by finding the lowest point.Fig 1. The convex hull for a random set of points

342 L. Vyšniauskaitė, V. Šaltenis / ŪKIO TECHNOLOGINIS IR EKONOMINIS VYSTYMAS – 2006, Vol XII, No 4, 341–346

This point will be the pivot, and is guaranteed to be

on the hull.

2. All the remaining points are sorted by their polar

angle with respect to the low point and the x-axis

(Fig 2).

3. The algorithm then goes counter-clockwise connect-

ing points “around the circle”, but if it has to make a

right turn, then it backs up and skips that point

(Fig 3).

This algorithm and its implementation has been cov-

ered in great detail by O’Rourke [5].

3. Jarvis March

This is perhaps the most simple-minded algorithm for

the convex hull, and yet in some cases it can be very fast.

The basic idea is as follows [6]:

1. This algorithm starts by finding the lowest point,

which is guaranteed to be on the hull.

2. At each step, test each of the points, and find the

one which makes the largest right-hand turn. That

point has to be the next one on the hull.

Because this process marches around the hull in counter-

clockwise order, like a ribbon wrapping itself around the

points, this algorithm is also called the “gift wrapping” al-

gorithm.

4. Quickhull

This is an algorithm that deserves its name. The basic

idea is as follows:

1. Choose the points with smallest (
1

p) and largest

(2p) x coordinates.

2. Divide the rest of the points into those in the upper

part of the hull and those in the lower part.

3. Recursively do the following for each part:

1) Find a point
3

p , that maximizes the triangular area

(
32 ,,

1
ppp). It will be on the hull.

2) For each other point, determine if it is:

• inside the triangle (disregard it);

• outside the left;

• outside the right

4. Call recursively with left and right points.

The algorithm has been suggested by Eddy [7] and Bykat

[8].

5. The Running Time

The convex hull is often used as implementation of other

algorithms. If there are only a few points, then it is not a big

deal which algorithm to pick. But more usually different

numbers of points are processed, so the main criterion of

these algorithms is the running time of the convex hull.

The running time depends on the distribution of points, the

number of vertexes and especially – the number of original

points (Table 1).

So one way to increase the efficiency of all the algo-

rithms – is to decrease the number of original points as much

as possible. For reaching this purpose we can use a priori

filtration of points, which is presented in this article.

6. A Priori Filtration of Points

The purpose of a priori filtration is not only to decrease

the number of original points, but also to divide the array

of points into the smaller arrays, and only then to start the

search of the convex hull. There are suggested the follow-

ing stages of filtration:

1. To find the extreme points: the leftmost point (L),

the rightmost point (R), the uppermost point (U) and the

lowermost one (D). These points are sure to be vertexes of

the convex hull.

Fig 2. The sorted points

Fig 3. The main stage illustration of the Graham Scan

Table 1. The running time of the algorithms [9]

n is the number of points,

n is the number of points in CH (h ≤ n).

mhtiroglA ytixelpmoC

hcraMsivraJ O(hn)

lluhkciuQ O(hn)

nacSmaharG O(ngoln)

latnemercnI O(ngoln)

reuqnoC-dna-ediviD O(ngoln)

niahCenotonoM O(ngoln)

tseuqnoC-erofeb-egairraM O(hgoln)

ecrofeturBeviaN O(n4)

ecrofeturBretteB O(n3)

L. Vyšniauskaitė, V. Šaltenis / ŪKIO TECHNOLOGINIS IR EKONOMINIS VYSTYMAS – 2006, Vol XII, No 4, 341–346 343

2. When extreme points are connected by segments

we get a square (Fig 4).

3. All points, which are inside the square ULDR, are

discarded and are not analysed anymore, be-cause they will

not be the vertexes of the convex hull. The remaining points,

taking into account the future operations, are divided into

1–4 arrays. The smaller number of points there is in the

array, the easier and faster the further computation.

When the array of original points is decreased and di-

vided into several and smaller arrays, we can invoke any

convex hull algorithm chosen.

7. The New Convex Hull Algorithms

As mentioned above two new algorithms for finding

convex hull of points are presented in this article.

7.1. An Idea of the Algorithm No 1

1. The algorithm starts with a priori filtration of points.

2. When the part of points, which does not belong to

the convex hull is discarded, all remaining points are di-

vided into 4 different arrays:

1) S1 – points, outside the edge LU (these points are

marked by a black circle in Fig 4);

2) S2 – points, outside the edge LD (these points are

marked by a black pentagon in Fig 4);

3) S3 – points, outside the edge DR (these points are

marked by a black square in Fig 4);

4) S4 – points, outside the edge UR (these points are

marked by a black triangle in Fig 4);

3. Every array of points is connected separately. Let

us start with S1.

First of all we are searching for the point of array S1

that is farthest from the segment LU. When this point is

found (let it be the point F
1
), it is included in the array of

hull points and the decrease of S1 is started. For that reason

we draw two segments LF
1
 (the leftmost point with the cho-

sen point) and F
1
U (chosen point with the uppermost point).

So we get triangular LF
1
U. All points, which are inside this

triangular, are discarded from the array, because they do

not belong to the convex hull (Fig 5).

Then we are searching for the farthest point of array S1

of remaining points. This point is included in the array of

hull and connected by segments with extreme points L, U.

All the points inside the new triangular are discarded from

the array S1 (Fig 6).

Repeat everything until array S1 is empty or the last

point remains. This point is also included in the array of

hull (Fig 7).

Then all chosen vertexes of hull are sorted by decreas-

ing the x-coordinate. All chosen points are checked to be-

long to the convex hull invoking an idea of the Graham

Scan. We are checking the curve turn by connecting one

point with another one. If connecting one point with an-

other one the curve turns to the right, then this point is dis-

carded from the array of the hull (Fig 8).

When this test is finished, we have one part of convex

hull vertexes (Fig 9).

4. The analogous operations are done for remaining

arrays S2, S3 and S4.

Fig 4. The square, after connecting extreme points

Fig 5. The original stage illustration of the algorithm No 1

Fig 6. An intermediate stage illustration of the algorithm No 1

Fig 7. An intermediate stage illustration of the algorithm No 1

344 L. Vyšniauskaitė, V. Šaltenis / ŪKIO TECHNOLOGINIS IR EKONOMINIS VYSTYMAS – 2006, Vol XII, No 4, 341–346

7.2. An Idea of the Algorithm No 2

1. The algorithm starts with a priori filtration of points.

2. When the part of points, which does not belong to

the convex hull is discarded, all remaining points are di-

vided into 2 different arrays:

1) S1 – points, outside the edges RU and UL (these

points are marked by a black circle and a black triangle

in Fig 2).

2) S2 – points, outside the edges LD and DR (these

points are marked by a black pentagon and a black square

in Fig 2).

3. Then all points of array S1 are sorted by decreasing

the x-coordinate and all points of array S2 are sorted by

increasing the x-coordinate.

4. Every array of points is connected separately. Let

us start with S1.

The hull is constructed by invoking an idea of the Gra-

ham Scan. We are checking the curve turn by connecting

one point with another one. If connecting one point with

another one the curve turns to the right, then this point is

discarded from the array of the hull (Fig 10).

 When all points of array have been checked, we have

the upper part of the convex hull vertexes (Fig 11).

 5. The analogous operations are done for remaining

array S2.

8. Experimental Investigation

8.1. The Efficiency of A Priori Filtration of Points

The efficiency of a priori filtration of points has been

researched by the experiments. It has been counted how

many points have been discarded during the filtration. The

points have been generated in the area of size 100 000 000 ×

100 000 000 points, repeating 50 times. The number of

points has been changed from 10 to 100 000 points. The

total average of discarded points is illustrated in Fig 12.

The efficiency of a priori filtration of points has been

confirmed. After disposing only a few extra operations it is

possible to decrease the amount of the original points by

almost 50 %.

8.2. Efficiency Experiments of the Algorithms

The efficiency of new algorithms has been compared

experimentally to the three most popular algorithms (Gra-

ham Scan, Jarvis March and Quickhull). The running time

of algorithms depends not only on the number of points but

on the number of vertexes too, so two different distribu-

tions of points are analysed:

• All points are generated inside a square;

• All points are arranged on a circle.

The main information about computer that has been used

in research is: Pentium 4 CPU 2 GHz.

Fig 8. An intermediate stage illustration of the algorithm No 1

Fig 9. The last stage illustration of the algorithm No 1

Fig 10. The original stage illustration of the algorithm No 2

Fig 11. The last stage illustration of the algorithm No 2

Fig 12. The total average of discarded points

L. Vyšniauskaitė, V. Šaltenis / ŪKIO TECHNOLOGINIS IR EKONOMINIS VYSTYMAS – 2006, Vol XII, No 4, 341–346 345

8.2.1. All Points Are Inside The Square

The original random points with uniform distribution

have been generated in the area of size 15 000 × 10 000

points. The results of running time dependence on number

of points are illustrated in Figs 13–15.

Newly suggested algorithm No 2 has outrun the Gra-

ham Scan, and algorithm No 1 has been the fastest of all

analysed algorithms.

The running time of the three most efficient algorithms

has been checked generating original points in the

100 000 000 × 100 000 000 area of points. The number of

points has been changed from 5000 to 100 000 points. The

results were the same (Fig 16). Newly suggested algorithm

No 1 has been the first in efficiency test.

All the three most efficient algorithms are input-sensi-

tive, i.e. the running time depends on distribution of points.

The experiments have been carried out with unfavourable

conditions, when all points belong to the convex hull.

8.2.2. All Points of a Set are on a Circle

The original points have been generated on the circle

within 50 000 000 points radius. The results of running time

dependence on number of points are illustrated in Fig 17.

This time Quickhull and both suggested algorithms have

proved to be the most efficient of all analysed algorithms.

Algorithm No 1 has outrun the two most popular algorithms

(Jarvis March and Graham Scan). Algorithm No 2 has out-

run even Quickhull and has been the first in this efficiency

test.

Fig 15. The results of running time dependence on the number of
points for the three most efficient algorithms

Fig 13. The results of running time dependence on number of
points

Fig 14. The results of running time dependence on number of
points

Fig 16. The results of running time dependence on number of points
for the three most efficient algorithms

346 L. Vyšniauskaitė, V. Šaltenis / ŪKIO TECHNOLOGINIS IR EKONOMINIS VYSTYMAS – 2006, Vol XII, No 4, 341–346

9. Conclusion

A priori filtration has been suggested in this article. The

idea of filtration is not only to decrease the number of origi-

nal points, but also to divide ones into the smaller arrays,

and in this way to ease and to speed up further computa-

tion. The results of the filtration research have shown that

after several extra operations it is possible by almost 50 %

to decrease the number of original points and, consequently,

to increase the speed of algorithms.

Two new convex hull algorithms (algorithm No 1, al-

gorithm No 2) have been created and suggested in this ar-

ticle. The efficiency of new algorithms has been compared

to the three most popular algorithms (Graham Scan, Jarvis

March and Quickhull). Algorithms have been compared by

the main criterion – the running time. The running time

depends not only on the number of points but sometimes

on distribution of points as well. Because of this reason

two different distributions of points have been investigated:

1) the points are generated inside the square; 2) All points

are arranged on a circle, i. e. all original points are vertexes

of convex hull. The most efficient algorithm in the first

case has been algorithm No 1, in the second one – algo-

rithm No 2.

References

1. Weisstein, E. W. Convex Hull. http://mathworld.wolfram.com/
ConvexHull.html

2. Bhagavathi, D.; Gurla, H.; Olariu, S.; Schwing, J. L. and
Zhang, J. Square Meshes Are Not Optimal For Convex Hull
Computation. In: Proceedings of the 1993 International Con-
ference on Parallel Processing, III – Algorithms & Applica-
tions. Boca Raton, FL: CRC Press, 1993, p. 307–310.

3. Skiena, S. S. The Stony Brook Algorithm Repository. 2001.
http://www.cs.sunysb.edu/~algorith/files/convex-hull.shtml

4. Graham, R. An efficient algorithm for determining the con-
vex hull of a finite point Set. Info. Proc. Letters, 1, 1972,
p. 132–133.

5. O’Rourke, J. Computational Geometry in C (2nd Edition),
Chap. 3: Convex Hulls in 2D. 1998. 376 p.

6. Jarvis R. A. On the identification of the convex hull of of a
finite set of points in the plane. Info. Proc. Letters, 2, 1973,
p. 18–21.

7. Eddy, W. A new convex hull algorithm for planar sets. ACM
Trans. Math. Software, 3(4), 1977, p. 398–403.

8. Bykat, A. Convex hull of a finite set of points in two dimen-
sions. Info. Proc. Letters, 7, 1978, p. 296–298.

9 Convex hull. http://www.algorithmist.com/index.php/
Convex_Hull

Fig 17. The results of running time dependence on number of
points

APRIORINIS TAŠKŲ FILTRAVIMAS, IEŠKANT IŠKILOJO APVALKALO

L. Vyšniauskaitė, V. Šaltenis

Santrauka

Plokštumos taškų iškilasis apvalkalas yra mažiausias galimas iškilasis daugiakampis, kai visi aibės taškai yra jo viduje arba ant
briaunų bei viršūnių. Jau šiuo metu literatūroje aptinkama nemažai skaičius iškilojo apvalkalo radimo algoritmų (Graham Scan, Jarvis
March, QuickHull, Incremental, Divide-and-Conquer, Marriage-before-Conquest, Monotone Chain, Brute Force). Renkantis algoritmą,
daugiausia dėmesio skiriama algoritmo atlikimo spartai.

Straipsnyje pasiūlyta, kokių veiksmų imtis, siekiant padidinti algoritmų spartą. Šiomis idėjomis remiantis, sukurti du nauji algoritmai,
pasižymintys labai dideliu efektyvumu.

Reikšminiai žodžiai: iškilasis apvalkalas, apriorinis taškų filtravimas, efektyvumas, Graham Scan, Jarvis March, QuickHull.

Laura VYŠNIAUSKAITĖ. Bachelor’s degree in Mathematics and Informatics (2003), Master’s degree in Informatics (2006) from
Vilnius Pedagogical University. Research interests: algorithm analysis and optimization.

Vydūnas ŠALTENIS graduated from the Kaunas Technological Institute, Lithuania. He received a Ph.D. degree from the Moscow
Energy Institute of the USSR Academy of Sciences in 1966 and the Degree of Habil. Doctor from the Institute of Mathematics and
Informatics, Vilnius in 1998. He is a principal researcher of the Systems analysis department at the Institute of Mathematics and
Informatics, Lithuania. His present research interests include both theory and applications of the structure of optimisation problems,
data and image analysis.

