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Abstract. In this paper the stochastic adaptive method has been developed to solve stochastic linear problems by a finite
sequence of Monte-Carlo sampling estimators. The method is grounded on adaptive regulation of the size of Monte-
Carlo samples and the statistical termination procedure, taking into consideration the statistical modeling error. Our
approach distinguishes itself by treatment of the accuracy of the solution in a statistical manner, testing the hypothesis of
optimality according to statistical criteria, and estimating confidence intervals of the objective and constraint functions.
The adjustment of sample size, when it is taken inversely proportional to the square of the norm of the Monte-Carlo
estimate of the gradient, guarantees the convergence a. s. at a linear rate.
We examine four estimators for stochastic gradient: by the differentiation of the integral with respect to x, the finite
difference approach, the Simulated Perturbation Stochastic Approximation approach, the Likelihood Ratio approach.
The numerical study and examples in practice corroborate the theoretical conclusions and show that the procedures
developed make it possible to solve stochastic problems with a sufficient agreeable accuracy by means of the acceptable
amount of computations.
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1. Introduction

Stochastic programming deals with a class of optimiza-

tion models in which some of the data may be subject to

significant uncertainty. Such models are appropriate when

data evolve over time and decisions have to be made prior

to observing the entire data streams. Stochastic gradient

type search is often applied in constructing numerical meth-

ods for stochastic problems. The procedures are usually

constructed expressing gradient as an expectation and then

evaluating this expectation by means of statistical simula-

tion by the Monte-Carlo method. Yudin (1965) was the first

to suggest such an idea of realizing by means of smoothing

operators. Later on, the application of smoothing and sta-

tistical simulation to stochastic optimization was consid-

ered in many papers and books (see, e.g., Rubinstein and

Shapiro (1993), Ermolyev and Norkin (1995), Sakalauskas

(2002), Marti (2005), etc.).

Hence, results of the stochastic problems can be de-

scribed as samples of random data, for which analysis, con-

sequently, we can use statistical methods. Since asymptotic

distribution of sampling estimators can be approximated

by the one- and multidimensional Gaussian laws (see, e.g.,

Bhattacharya and Ranga Rao, (1976)) we may apply well

developed theory of normal statistics to evaluation of sta-

tistical error of sampling estimators as well as decision

making about optimum finding.

The purpose of this work is to examine the convergence

of estimators obtained during simulation of stochastic prob-

lems and consider applicability of this approach to testing

optimality hypothesis in stochastic programming.

2. Monte-Carlo estimators for stochastic optimization

We consider a nonlinear stochastic optimization prob-

lem:

n

Xx

xEfxF
ℜ⊂∈

→ξ≡ min),()( , (1)

where the objective function is expectation of random func-

tion ( )ξ,xf , depending on random vector ξ , defined by
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the distribution density function ),( ⋅xp , and the feasible

set n
Xx ℜ⊂∈   is a bounded and convex linear set in gen-

eral:

{ }0, ≥== xbAxxX ,

m
Rb∈ , A  is the  mn × -matrix, ∅≠X  (see Ziemba &

Mulvey (1998), Sakalauskas (2000), Andersson et al (2001),

etc.).

The gradient search is the most often used way of con-

structing methods for numerical optimization. Since math-

ematical expectations in (1) are computed explicitly only

in rare cases, it is complicated all the more to analytically

compute the gradients of functions, containing this expres-

sion. The Monte-Carlo method is a universal and conve-

nient tool of estimating these expectations and we try to

apply it to estimate derivatives, too. Let us introduce a set

of Monte-Carlo estimators needed for construction of sto-

chastic optimization procedure. First, let us consider the

expectation:

∫ ⋅≡ω= n

R
dyyxpyxfxEfxF ),(),(),()( , (2)

where the function f and the density function p are assumed

differentiable with respect to x in the entire space n
ℜ .

The differentiability of integrals of this kind has been

studied rather well, and there exists a technique for sto-

chastic differentiation to express such an objective func-

tion and its gradient both together as expectations in the

same probability space (see, Rubinstein ans Shapiro (1993),

Uriasyev (1994), Prekopa (1999), Ermolyev et al (2003),

etc.). Let us denote the support of random vector as

}{ nRxyxpyxS ∈>= ,0),()( . Then it is not difficult to see

that the vector-column of gradient of this function could be

expressed as (Sakalauskas (2002)):

( )
)).,(ln

),(),((),()(

ω∇

⋅ω−ω+ω∇=∇

xp

ExfxfxfExF

x

x

(3)

We can see that it is possible to express the expectation

and its gradient through a linear operator from the same

probability space. Hence, operators (2) and (3) can be esti-

mated by means of the same Monte-Carlo sample.

Thus, assume here that the Monte-Carlo samples of a

certain size N are possible to provide for any  nRx∈ :

),,...,,( 21 NyyyY = (4)

where iy  are independent random variables, identically

distributed with the density nRp
+

→Ω⋅ :)( , and the sam-

pling estimators are computed:
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The estimator of a gradient:

∑
=

= N
j

jyxg
N

xG
1

),(
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(7)

and the sampling covariance matrix

( )1

1
( )

( ( , ) ) ( ( , ) ) ' ,
N j j
j

Z x
N n

g x y G g x y G
=

= ⋅
−

− ⋅ −∑ � � (8)

where ),( ⋅xg  is the stochastic gradient, i.e., such random

vector that )(),( xFxEg ∇=ξ , will be of use further.

Note, the distribution of sampling estimators (5) and

(7) can be approximated by the one- and multidi-mensional

Gaussian laws (see, e.g., Bhattacharya and Ranga Rao,

(1976)). In solution of problem (1) the gradient is zero

(Polyak (1987)). Therefore it is convenient to test the va-

lidity of the stationary condition by means of the well-known

multidimensional Hotelling T2-statistics (see, e.g.,

Krishnaiah, and Lee (1980), etc.). Namely, the optimality

hypothesis (i.e. of equality of the gradient to zero) might be

accepted for some point x with significance µ−1  accord-

ing to Fisher criteria if:

1( ) ( ( )) ( ( )) ( ( )) /

( , , ).

t t t t

t

N n G x Z x G x n

Fish n N n

−

− ⋅ ⋅ ⋅ ≤

µ −

� �

(9)

Next, we can use the asymptotic normality again and

decide that the objective function is estimated with a per-

missible accuracy ε , if its confidence bound does not ex-

ceed this value:

,/)(
~

2 ε≤⋅η⋅ β NxD (10)

where βη  is the β  – quantile of the standard normal distri-

bution.

3. Computer simulation of Monte-Carlo estimators

Let us consider the example:

,min),()( 0
n

x

xEfxF
ℜ∈

→ξ≡

where

,)))cos(1(()(
1

2

0 ∑ =
⋅−⋅+=

n

i iiiii ycbyayf

iy  are random and normally ),( 2dxN i  distributed, d =

0.5, 
i

a  are uniformly distributed in [2, 5], 
i

b  – in [1, 2]

and 
i

c  – in [–0.5, 0.5] and 1002 ≤≤ n .

We examine four estimators for stochastic gradient
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following from the expression (3). Assume for simplicity

the sample (4) being standard normal in our example. First

estimator easily follows by the differentiation of the inte-

gral (2) with respect to x:

 )(),( ydxfyxg x ⋅+∇= . (11)

Since analytical gradient in (11) is not always available

the finite difference approach is of interest. In this approach

each ith component of the stochastic gradient is computed as:

δ

⋅+−ς⋅δ+⋅+
=

)()(
),(

ydxfydxf
yxg i

i , (12)

iς  is the vector with zero components except ith one, equal

to 1, δ  is some small value.

Since expression (12) requires to compute the function

n + 1 times the Simulated Perturbation Stochastic Approxi-

mation approach (Spall (1992)), which require only one

additional function value computation was examined, too:

    ,
2

)()(
),(

δ⋅

ν⋅δ−⋅+−ν⋅δ+⋅+
=

ydxfydxf
yxg (13)

where ν  is the random vector obtaining values 1 or –1 with

probabilities p = 0.5 (see Spall (1992)), δ  is some small

value.

Let us consider Likelihood Ratio approach to obtain the

next expression for stochastic gradient, which also requires

only one additional function computation (Rubinstein and

Shapiro (1983)). Namely, since random error in the example

(10) is additive we may change variables in the integral (3)

and evaluate stochastic gradient by:

( )
d

yExfydxf
yxg

⋅ξ−⋅+
=

),()(
),( . (14)

Let us consider simulation results. The optimal point is

known for the task considered: 
 x

+
= 0 . Thus, 400 Monte-

Carlo samples of size N = (50, 100, 200, 500, 1000) were

generated and the T 2 – statistic in criterion (9) were com-

puted for each sample using estimators (11)–(14). The hy-

pothesis on the difference of empirical distribution of this

statistic from the Fisher distribution was tested according

to the criteria 2
ω  and 

2Ω . Values of  2
ω  and 

2Ω statistics

computation for estimator (14) on variable number and

sample size are given in Table 1 and 2. The critical value is
2

ω  = 0.46 (p = 0.05), and that of the next one is 
2Ω  = 2.49

(p = 0.05). Values of statistics exceeding critical value are

bolded.

As follows from simulation results the distribution of

Hotelling statistics (9) can be approximated by Fisher dis-

tribution appropriately choosing sample size. The required

Monte-Carlo sample size for the dimensionality of task

necessary to approximate the Hotelling statistics in (9) by

Fisher distribution is given in Table 3. Similar results are

obtained for other estimators, too.

Besides, the dependencies of the frequency of op-

timality hypothesis (equality of gradient to zero) according

to criterion (9) on the distance +
−= xxr  to the optimal

point were studied.

These dependencies for n = 2 and more variables are

presented in Fig 1–5 (for confidence 0.95α = ). Thus, the

computation results show that analytical (11) and differ-

ence approach (12) estimators provide a good coincidence

of Hotelling statistics with Fisher distribution, which can

be applied for optimality testing in a wide range of dimen-

sionality of stochastic optimization problem (2 ≤ n ≤ 100).

Table 3. Required Monte-Carlo sample size by number of
variables

selbairavforebmuN eziselpmasolraC-etnoM

01 001

02 0001

04 0022

06 0033

08 0054

001 0006

Table 1. 2
ω   criteria results by variable number and sample size

N
n

05 001 002 005 0001

2 03.0 42.0 01.0 80.0 40.0

3 73.0 21.0 90.0 60.0 40.0

4 91.0 91.0 31.0 80.0 40.0

5 57.0 31.0 21.0 80.0 60.0

6 35.1 43.0 01.0 01.0 80.0

7 65.1 93.0 31.0 80.0 90.0

8 18.1 24.0 72.0 81.0 01.0

9 81.4 64.0 62.0 02.0 21.0

01 21.8 65.0 35.0 52.0 71.0

Table 2. 2Ω   criteria results by number of variables and sample
size

N
n

05 001 002 005 0001

2 75.2 41.1 66.0 56.0 24.0

3 87.2 28.0 56.0 06.0 72.0

4 57.3 71.1 97.0 35.0 13.0

5 43.4 64.1 58.0 46.0 63.0

6 13.8 43.2 97.0 97.0 67.0

7 41.8 27.2 40.1 25.0 54.0

8 22.01 55.2 78.1 98.0 25.0

9 68.02 95.2 75.1 14.1 87.0

01 75.04 96.3 15.3 65.1 89.0
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Fig 1. Frequency of optimality hypothesis (n = 2) Fig 2. Frequency of optimality hypothesis (n = 10)

However, Simulation Perturbation Stochastic Approxima-

tion (13) and Likelihood Ration (14) estimators can be ap-

plied for stochastic gradient estimation only for tasks of

not very large dimensionality: 1 ≤ n ≤ 20.

4. Study of two-stage stochastic problem

We consider a two-stage stochastic optimization prob-

lem with complete recourse:

{ }( ) ( , ) min
x D

F x c x E Q x w
∈

= ⋅ + → (15)

subject to the feasible set

}{ , nD x A x b x
+

= ⋅ = ∈ℜ , (16)

where

    ( , ) min [ | , ],m

yQ x q y W y T x h y R
+

ω = ⋅ ⋅ + ⋅ ≤ ∈ (17)

the vectors b, q, h and matrices A, W, T are of the appropri-

ate dimensionality. Assume vectors q, h and matrices W, T
random in general, and, consequently, depending on an
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elementary event Ω∈ω  from certain probability space

( ).,, PΣΩ

Let us derive the analytical gradient estimator for this

problem. First, by duality of linear programming we have

that:

( ) |

( ) max 0, .T
u

n

h T x u

F x c x E u W q

u
+

 − ⋅ ⋅ 
   

= ⋅ + ⋅ + ≥  
  

∈ℜ   

(18)

It can be derived, that under the assumption on the ex-

istence of a solution to the second stage problem in (3) and

continuity of measure P, the objective function (4) is

smoothly differentiable and its gradient is expressed as:

( ) ( ( , )),xF x E g x∇ = ω (19)

where *( , )g x c T uω = − ⋅  is given by the a set of solutions

of the dual problem:

*( ) max [( ) |

0, ]

T T
u

T m

h T x u h T x u

u W q u

− ⋅ ⋅ = − ⋅ ⋅

⋅ + ≥ ∈ℜ (20)

(details are given in Rubinstein and Shapiro (1993), Shapiro

(2000), Sakalauskas (2004), etc.)

Fig 3. Frequency of optimality hypothesis (n = 20) Fig 4. Frequency of optimality hypothesis (n = 50)
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has 10 rows and 20 variables; the second stage has 20 rows

and 30 variables.

The estimate of the optimal value of the objective func-

tion given in the database is 182.94234 ± 0.066. Applica-

tion of the approach considered allows to improve the esti-

mate of the optimal value up to 182.59248±0.03300.

Now, let us consider the results, obtained in solving this

task 400 times by iterative approach using estimators (5)–

(6) and terminating conditions (9), (10), i.e., generation of

samples (4) and computation of estimators trials was bro-

ken when the estimated confidence interval of the objec-

tive function exceeds admissible value ε  and the criterion

(9) does not contradict to hypothesis of gradient equality to

zero. Termination occurs for all times, the frequency of ter-

mination under the number of iterations is given in the Fig 6.

5. Discussion and conclusions

Thus, the computation results show that analytical (11)

and difference approach (12) estimators provide a good

coincidence of Hotelling statistics with Fisher distribution,

which can be applied for optimality testing in a wide range

of dimensionality of stochastic optimization problem

( 1002 ≤≤ n ). However, Simulation Perturbation Stochas-

tic Approximation (13) and Likelihood Ration (14) estima-

tors can be applied for stochastic gradient estimation only

for tasks of not very large dimensionality: 201 ≤≤ n .

The termination procedure proposed allows to test the

optimality hypothesis and to evaluate the confidence inter-

vals of the objective and constraint functions in a statistical

way.

The numerical study and an example in practice cor-

roborate the theoretical conclusions on the method conver-

gence and show that the procedures developed make it pos-

sible to solve stochastic problems with a sufficient agree-

able accuracy by means of the acceptable amount of com-

putations.
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STOCHASTINIO PROGRAMAVIMO STATISTINIŲ KRITERIJŲ TAIKYMAS OPTIMALUMUI TESTUOTI

L. Sakalauskas, K. Žilinskas

Santrauka
Išnagrinėtas stochastinis taikomasis metodas stochastiniams tiesiniams uždaviniams spręsti naudojant baigtines Monte Karlo imtis.

Šis metodas remiasi Monte Karlo imties reguliavimo taisykle ir statistine stabdymo procedūra, naudojančia statistinę modeliavimo
paklaidą. Metodas skiriasi nuo kitų sprendinio tikslumo statistiniu tyrimu, optimalumo hipotezės tikrinimu, remiantis statistiniais kriterijais,
ir tikslo funkcijos bei ribojimų funkcijų pasikliautinųjų intervalų įvertinimu. Imties ilgis nustatomas atvirkščiai proporcingai gradiento
Monte Karlo įverčio normos kvadratui, ir tai garantuoja konvergavimą tiesiniu greičiu.

Nagrinėjami keturi stochastinio gradiento įverčiai: analitiškai diferencijuojant integralą x atžvilgiu, skirtuminiu, modeliuojamojo
pokyčio ir tikėtinumo santykio metodais. Skaitinis tyrimas ir pavyzdžiai praktiškai patvirtina teorines prielaidas ir parodo, kad sukurtos
procedūros leidžia spręsti stochastinius uždavinius gana tiksliai naudojant priimtiną skaičiavimų apimtį.

Reikšminiai žodžiai: tiesinis programavimas, stochastinis programavimas, optimizavimas, statistiniai kriterijai, Monte Karlo metodas.
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