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Abstract. Applications of information technologies are often related to making some schedules, timetables of tasks or
jobs with constrained resources. In this paper we consider job scheduling and optimization algorithms related to re-
sources, time and other constraints. Schedule optimization procedures, based on schedule coding by priority list of jobs,
are created and investigated. Optimal priority list of jobs is found by approaching algorithms of local and global search,
namely, random search and simulated annealing methods with the variable neighborhood, defined by the decoding
procedure applied. Computational results with testing data from project scheduling Library are given.
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1. Introduction

Information systems and their applications are often

related to making some schedules, timetables of tasks or

jobs with constrained resources. Input data for such prob-

lems is a set of jobs, their duration, priority rules (succes-

sors, predecessors), and necessary resources. The aim is to

find such a schedule, which meets the requirements of job

priority relations, resource constraints minimizing it by

some criteria. In many cases, this criterion is project’s fin-

ishing time.

In this paper, we consider job scheduling and optimiza-

tion algorithms related to resources, time, and other con-

straints. In most cases, complexity of scheduling problems

belongs to complexity class NP [1]. Optimal solution can

be found using full binary recombination [2] or using meth-

ods based on ideas of branch and bound methods [3], etc.

It is usually difficult to perform a full binary recombina-

tion in real computer time, therefore, in order to schedule

and optimize jobs, we may apply heuristic methods based

on priority rules [4], evolution process ideas [5, 6], local

search [7–9], variable neighborhood methods [10, 11], etc.

Test results show that development and investigation of

these methods are the promising direction to create effi-

cient scheduling methods. Schedule optimization procedure

discussed in this paper is based on coding and decoding of

schedule depending on job priority list. Optimal priority

list of jobs can be found by composing global search pro-

cedures and algorithms of local search.

In this paper, we explore application of Monte Carlo

[12], simulated annealing [13] methods to schedule opti-

mization. Computational results are given using data sets

from project scheduling library (PSPLib) [14, 15].

2. Formulation of the schedule optimization problem

Input data for schedule planning and optimizing is a set

of jobs and their duration, definition of resource constraints,

a set of priority relations.

Let us denote  1}{0,1,..., += nn,J a set of jobs, jobs

No. 0 and No. (n + 1) are dummy and means the beginning

and the end of the whole project, Jjd j ∈ ,  – duration of

j th job, Jjd j ∈≥  ,0  – non-negative numbers and

010 == +ndd .

We can define priority relations in a set J as a set of
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pairs }.  beforeexecutedbemust  | )( { jii, jC =  Let us

denote a set of resources }.{1,..., mK =  All resources are

renewable and non-additive – at every moment we can use

fixed amount of each type of resources, remains are gone.

Let us assume that amounts of resources Kk, Rk ∈> 0

are constant. Let us denote the starting moment of thj  job

by 0,≥js  and correspondingly 0≥jkr  – amount of th
k

resource, needed for performing this job. Let us assume

started jobs must be performed without breaks. Then the

finishing time of thj  job can be defined as  .jjj  d  s c +=

The problem of schedule making may be reduced to the

problem of finding a vector ( )10 ,...,
+

= nsss   of jobs' start-

ing time which meets priority and resource requirements

and minimizes a certain objective function. An objective

function may reflect the economical outlay (outgoing), yield

(incoming), finishing time, etc. Project finishing time is one

of the most analyzed schedule optimality criteria which will

be applied in this paper.

Let us denote }{)( jj ct sJ| jtA <≤∈=   – a set of exe-

cutable jobs at the time moment t, )(sT  – project finishing

time, .)( 1+
= ncsT

After these definitions we can formulate the problem

minimizing the objective function )(sT .

Find )( min sT
s

, subject to:

,) ,(, Cjisc ji ∈≤

0≥js ,  ,jjj  d  s c +=   Jj∈ , (1)

1
)(

0,
+

∈

≤≤≤∑ n
tAj

kkj ctRr . (2)

The objective function defines the finishing time of the

whole job project, inequality (1) describes priority relations,

and inequality (2) requires to pay heed to resource con-

straints.

3. Schedule coding and decoding

Efficiency of schedule optimization algorithm depends

on solution coding [10, 11, 16]. In this paper, we analyze

job scheduling problems under resource constraints with

solution coding in the shape of a priority list [4, 17]. The

job priority list ( )121 ,,...,,,0 += nn bbbbb  can be determined

by jobs' starting time vector s, where 
ji bb ss ≤ , if ji < . It

is very important that this vector of starting moments must

meet priority relations and resource constraints. On the other

hand, for given priority list, we can find the vector of job

starting time concerted with priority list and initial priority

constraints. For this we use the serial decoder described in

section 3.2.

At first, we must be sure that the priority list is con-

certed with priority constraints. Let us denominate the

priority list from which we can find a vector of jobs' start-

ing time concerted with priority relations as a feasible pri-

ority list. Using a set of priority relations we can check

whether the solution is feasible or not. For any feasible job

priority list, by applying the serial decoding procedure, we

can determine jobs' starting time vector which may mini-

mize the project finishing time, according to priority rela-

tions, resource constraints, and a given job priority list.

Operating with job priority lists, the constructed algorithm

must enable us to find such job priority list which corre-

sponds to an optimal solution of the problem (1), (2).

3.1. Determination of admissibility of the job priority

list

Let us introduce the binary matrix ( )njivV ij ≤≤= ,1, ,

CjiifvCjiifv ijij ∉=∈= ),(,0,),(,1 , related with a set of

priority constraints and define a full priority relations ma-

trix ( )njigG ij ≤≤= ,1, . This matrix describes all jobs

which must be done corresponding to all chains of priority

relations. So, 1=kjg , if it is possible to find such a se-

quence of index pairs that Ckk ∈),( 1 , Ckk ∈),( 21 , ...,

Cjkl ∈),( . The matrix V has the following feature:

01 =⇒= jiij vv . The matrix G also has this feature. The

priority list is feasible if ji bb ,  are the components of b,

0, =⇒<
ij bbgji  applies for any pair ),( ji bb .

3.2. The serial priority list decoder

This procedure computes the early starting moments of

jobs, according to jobs' priority list concerted with priority

relations, and resource constraints. In schedules obtained

in such a way, none of jobs can be started earlier than cal-

culated time, without break of priority relations or resource

constraints. We can call such schedules active ones [11].

Let us describe the algorithm for determination of the ac-

tive schedule.

Step 1. Set initial 000 == cs . Let 1=i .

Step 2. Let us agree that starting time of the first )1( −i

jobs from the priority list have already been determined.

So, we know all 1,, −≤ ijcs
jj bb .

Let us denote the moment:

).max,maxmax(
10

10

1,
ll

iblb

b
il

b

il

g
i scT

−≤≤

−≤≤

=

=

The starting time of the next job is equal to this mo-

ment if resource constraints are met:

ib Ts
i
= , if KkRr k

iTAj
jk ≤≤≤∑

∈

1,

)(

.

If resource constraints are not met, then the starting time

of this job is equal to finishing time of the first finished job,

when resource constraints are met:
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11,,1,
)(

.min

−≤≤>≤≤≤∑
∈

=

ijTcKkRr

bb

ijbk

jbcAj
jk

ji
cs

The finishing time of this job can be calculated sim-

ply:

.
iii

bbb dsc +=

Step 3. If ni = , then {
1)(

+
+= nb dcST

n

, end of algo-

rithm}, or else { 1+= ii , go to step 2}.

It is easy to see that it is necessary to make )( mnO ⋅ ele-

mentary operations for performing step 2 of the algorithm

[11]. Therefore, the complexity of decoding procedure from

the viewpoint of computer operations number is )( 2 mnO ⋅ .

4. Schedule optimization algorithms

Using the serial decoding procedure of the job priority

list we can construct schedule optimization algorithms,

applying several random heuristic procedures. We investi-

gate the efficiency of these procedures by statistical simu-

lation.

4.1. Optimization by crude random search

In the simplest way, we can apply a crude random search

by Monte Carlo method – to generate some number of ran-

dom priority lists, select from them the feasible list with

minimal finishing time using proper amount of resources.

Let us describe the statistical simulation algorithm of sched-

ule optimization by Monte Carlo method.

Let us denote MAXIT  – a number of iterations,

MAXD  – a number of descents by random search, ,AVGZ

AVGZF – an average of reached objective function values

after MAXD  descents, T – objective function value,

STEP  – number of iterations for fixing intermediate

reached objective function values.

Step 5 allows us to fix intermediate average values of

the objective function and, later, to compare them with the

average of best reached value of the objective function af-

ter MAXD descents.

4.2. Optimization by simulated annealing method

Let us consider simulated annealing (SA) algorithm

based on the priority list and the serial decoding procedure

[4, 17]. The main idea of algorithms such as SA, is the so-

lutions generation method and special rules for accepting

new randomly generated solutions [13]. New solutions are

generated from the current solution environment, while

calculating the values of the objective function. Usually

depth (radius) of environment is decreasing through opti-

mization procedure, starting from the fixed value. In order

to move from the current solution to a new one we apply

Metropolis rule, which allows, with a certain probability,

to accept solutions with a worse objective function value

(accept worse solution with the probability

)exp(
)()( *

kt

bTbT
p

−

= , here )(bT  is current solution,

)(* bT  – new solution).

Theoretical recommendations for choice of appropriate

parameters of SA in continuous optimization, that gain the

algorithm's convergence to global optimum, has been con-

sidered in [16, 18]. We applied these suggestions to sched-

uling problems introducing the following rules:

1,0,/,/ 00 <βα<=ρ=ρ βα kttk kk
, (3)

here k – iteration number (variable), the parameter kρ  mo-

dels depth of environment, kt  corresponds to the parameter

of temperature in SA algorithm. We used the initial values

constN /0 =ρ  and constMJDt /0 =  (MJD – maximum

job duration, const – simple constant which depends on

problem dimension). During optimization this method ac-

cepts not only the better solutions; while applying Metropo-

lis acceptance criterion, this method with a little probability

(which also depends on the temperature parameter  t) also

accepts worse schedules than the current ones. Influence of

adjusting rules for the parameters kρ  and kt  on conver-

gence speed and accuracy of the solution was considered

in papers [16, 18].

Below we discuss about constructing of the SA algo-

rithm for schedule optimization. Let us call two priority

lists as neighboring, if we can get one from another by ap-

plying only one elementary operation, such as moving a
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job from one priority list's position to another (Shift) or

replacing two jobs positions in priority list (Swap) [19].

Let us consider l  and q as holding two positions in prio-

rity list, ql ≠ , nql ≤≤ ,1 .

We can get the priority list '
b  from the list b by apply-

ing Shift operation, accordingly renumbering the job prior-

ity list: if lq > , then 1' += xx bb , qxl <≤ , if lq < , then

1' −= xx bb , lxq ≤< . After this let us set lq bb =' . Other

elements of the list b  are the same as in the list b. We can

get the priority list '
b  from the list b by applying Swap

operation in the following way: ,' lq bb =  ql bb =' . Other

elements of '
b  are the same as in b. We can get swap opera-

tion by applying shift operation twice.

The SA algorithm is as follows:

Step1. 0=k .

Step 2. Let us assume that k steps of the algorithm are

already done. The current job priority list is b, objective

function value with this list is )(1 bTZ =  (calculated using

the serial priority list decoder described in section 3.2).

Calculate step parameters kρ  and kt  applying (3).

Step 3. Randomly generate numbers q and l, ql ≠ ,

nql ≤≤ ,1 . With the probability 5.0=ep , perform ei-

ther shift or swap operation.

Step 4. If priority list obtained in such a way is not fea-

sible then repeat step 3 until obtained priority list is fea-

sible.

Step 5. Repeat steps 3 and 4 no less than kρ  times. Let

us denote '
b  priority list obtained from current b after per-

forming no less than kρ  allowable elementary operations.

Step 6. Calculate the objective function value

)(2 'bTZ =  for the obtained priority list using the serial

decoding procedure.

Step 7. Change the current priority list to another by

adapting Metropolis rule:

if )/)21exp(( ktZZ −<η , then '
bb =  (η  – randomly

generated number from )1,0( )

Step 8. 1+= kk . If maxkk < , then repeat step 2.

Several modifications of this basic algorithm can be

studied. In this algorithm numbers q and l were generated

with equal probabilities. However, we can set special prob-

abilities for obtaining numbers q and l, depending on jobs

positions in the priority list, the priority relations matrix,

etc.

5. Computational results

Constructed algorithms were tested with data sets from

project scheduling library PSPLib. In PSPLib one can find

a lot of data set instances of various classes of  RCPSP [14,

15].

5.1. Optimization by using crude random search and

simulated annealing methods

Several test data sets (also the best known solutions and

in cases of 30 jobs – global optimums are given) were cho-

sen with various numbers of jobs, their priority relations,

various needs, and resources. Convergence of objective

function was compared while applying random search

(marked “M-C”) as well as the method of simulated an-

nealing (SA) (consider Figures 1, 2, 3 and 4, accordingly

with 30, 60, 90 and 120 jobs). Due to the method of ran-

dom search, 100 descents each were performed and aver-

age of the objective function value after 100, 200, 300, 500,

and 1000 iterations each was fixed. Feasible priority list

was generated in every iteration; while comparing with the

previous reached value, improvement of objective function

value was searched.

The same comparative investigations were carried out

while applying the method of simulated annealing (in Fig-

ures marked “SA”). In every iteration the next priority list

is being formed after application of elementary operations

(according to SA method) to the current priority list. It is

being accepted or rejected. Since the computing time for

performance of a single iteration is similar for all studied

algorithms, the best achieved value of objective function

may be used as the criteria of algorithm quality. Thus, the

best reached objective function value (marked “best”) was

fixed at 100, 200, 300, 500, and 1000 iterations each. Opti-

mization while applying SA method was started from ran-

dom priority list. Figures 1, 2, 3, 4 display graphs which

show that SA method’s advantages are clearly highlighted

after a small number of iterations. The average of objective

function values (100 descents) achieved by SA method dif-

fers little from the best value achieved. This proves the re-

liability of the method because deviation (dispersion) from

the best value is not significant.

Hence, advantage of simulated annealing obviously

becomes evident already after a small number of iterations;

therefore, adjustment of environment depth was investigated

while optimizing by SA method.

Fig 1. Convergence of the objective function value to global mini-
mum (Number of jobs n = 30, Optimum of the objective function
Opt = 41)
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5.2. Optimization by using simulated annealing

method with variable neighborhood

In section 4.2, we described in detail the SA algorithm.

Number of elementary operations in every iteration deter-

mines what space of possible solutions may be generated.

Optimization with a fixed number of elementary operations

was performed in every iteration of optimization procedure.

(Ro = 1 and Ro = 10. Consider Figures 5, 6, 7, 8). A small

number of elementary operations which allow forming

neighborhoods of the solution, form new solutions in a

“close distance” from the current one. Therefore search for

optimum takes more time – a big number of iterations is

required in order to come close to the optimal solution. On

the other hand, a fixed big number of elementary opera-

tions in every iteration even at the beginning provides a

possibility for generation of possible solutions in a “bigger

distance” from the current one (more chances to “cover”

the space of solutions). However, during the process of

optimization, when moving towards optimum, a too big

change often only prolongs the search for optimum. More-

over, checking of generated lists takes more time. Adjust-

ment of environment depth, according to a number of itera-

tions, allowed us to improve speed of convergence (in Fi-

gures 5, 6, 7, 8 marked “Variable Ro”). This adjustment of

environment depth in some cases allowed us to reach the

maximum result (to find a known optimum) already after a

small number of iterations.

Fig 2. Convergence of the objective function value to global mini-
mum (Number of jobs n = 60, Optimum of the objective function
Opt = 77)

Fig 3. Convergence of the objective function value to global mini-
mum (Number of jobs n = 90, Optimum of the objective function
Opt = 67)

Fig 4. Convergence of the objective function value to global mini-
mum (Number of jobs n = 120, Optimum of the objective function
Opt = 99)

Fig 5. Convergence of the objective function value to global mini-
mum using three types of environments (Number of jobs n = 30,
Optimum of the objective function Opt = 41)

Fig 6. Convergence of the objective function value to global mini-
mum using three types of environments (Number of jobs n = 60,
Optimum of the objective function Opt = 77)
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6. Conclusions and further research

1. Algorithms of planning and optimizing schedules

of jobs with resource constraints based on schedule coding

with the job priority list and the serial priority list decod-

ing procedure were discussed in this paper. Such schedule

coding allows us to apply several combinatorial optimiza-

tion methods.

2. Random search and simulated annealing algorithms

for RCPSP optimization were created. These algorithms

were investigated and compared by statistical modeling,

while using data sets and known solutions from PSP Li-

brary.

3. It was determined that the simulated annealing

method is more efficient than random search and it allows

reliably solve schedule optimization problems due to set-

ting proper parameters of the method.

4. Minimization of the objective function, while ap-

plying several dynamic environment depth adjustment

methods, showed that change of solution environment depth

allows to accelerate convergence to global optimum.

5. Test results showed that created algorithms are able

to find best known solutions of PSP Library while using

practically acceptable calculating resources.

6. Nearest further plans: selection and adjustment of

methods’ parameters and application of genetic algorithms

for optimization of a solution. This should improve con-

vergence to global optimum.
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RIBOJAMŲ TVARKARAŠČIŲ IŠTEKLIŲ OPTIMIZAVIMAS MODELIUOJAMOJO ATKAITINIMO IR KINTAMOS
APLINKOS PAIEŠKOS METODAIS

L. Sakalauskas, G. Felinskas

Santrauka

Taikant informacines technologijas dažnai susiduriama su įvairiomis darbų ar užduočių tvarkaraščių sudarymo problemomis, kai
ištekliai, reikalingi užduotims atlikti, yra riboti. Šiame straipsnyje yra nagrinėjami darbų tvarkaraščių sudarymo ir optimizavimo algoritmai,
atsižvelgiant į išteklių, laiko bei kitokius ribojimus. Sukurtos ir tiriamos tvarkaraščio optimizavimo procedūros,  paremtos tvarkaraščio
kodavimu pagal darbų pirmumo sąrašą. Optimalus darbų pirmumo sąrašas randamas derinant lokaliosios ir globaliosios paieškos
algoritmus – atsitiktinės paieškos ir modeliuojamojo atkaitinimo metodus su kintama aplinka. Pateikti skaičiavimo rezultatai, naudojant
testų duomenis iš tvarkaraščių sudarymo uždavinių bibliotekos.

Reikšminiai žodžiai: ribotų išteklių projektai, tvarkaraščio optimizavimas, Monte Karlo metodas, modeliuojamasis atkaitinimas,
kintamos aplinkos metodai.
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