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Abstract. Applications of information technologies are often related to making some schedules, timetables of tasks or
jobs with constrained resources. In this paper we consider job scheduling and optimization algorithms related to re-
sources, time and other constraints. Schedule optimization procedures, based on schedule coding by priority list of jobs,
are created and investigated. Optimal priority list of jobs is found by approaching algorithms of local and global search,
namely, random search and simulated annealing methods with the variable neighborhood, defined by the decoding
procedure applied. Computational results with testing data from project scheduling Library are given.
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1. Introduction

Information systems and their applications are often
related to making some schedules, timetables of tasks or
jobs with constrained resources. Input data for such prob-
lems is a set of jobs, their duration, priority rules (succes-
sors, predecessors), and necessary resources. The aim is to
find such a schedule, which meets the requirements of job
priority relations, resource constraints minimizing it by
some criteria. In many cases, this criterion is project’s fin-
ishing time.

In this paper, we consider job scheduling and optimiza-
tion algorithms related to resources, time, and other con-
straints. In most cases, complexity of scheduling problems
belongs to complexity class NP [1]. Optimal solution can
be found using full binary recombination [2] or using meth-
ods based on ideas of branch and bound methods [3], etc.
It is usually difficult to perform a full binary recombina-
tion in real computer time, therefore, in order to schedule
and optimize jobs, we may apply heuristic methods based
on priority rules [4], evolution process ideas [5, 6], local
search [7-9], variable neighborhood methods [10, 11], etc.
Test results show that development and investigation of

these methods are the promising direction to create effi-
cient scheduling methods. Schedule optimization procedure
discussed in this paper is based on coding and decoding of
schedule depending on job priority list. Optimal priority
list of jobs can be found by composing global search pro-
cedures and algorithms of local search.

In this paper, we explore application of Monte Carlo
[12], simulated annealing [13] methods to schedule opti-
mization. Computational results are given using data sets
from project scheduling library (PSPLib) [14, 15].

2. Formulation of the schedule optimization problem

Input data for schedule planning and optimizing is a set
of jobs and their duration, definition of resource constraints,
a set of priority relations.

Let us denote J ={0,1,....n,n+1} a set of jobs, jobs
No. 0 and No. (n + 1) are dummy and means the beginning
and the end of the whole project, d j.J€J = duration of

Jj™ job, dj20,jeJ - non-negative numbers and
dy=d,;1 =0.

We can define priority relations in a set J as a set of
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pairs C ={(i,j) | i must be executed before j}. Let us
denote a set of resources K = {1,...,m}. All resources are
renewable and non-additive — at every moment we can use
fixed amount of each type of resources, remains are gone.
Let us assume that amounts of resources R, >0, ke K
are constant. Let us denote the starting moment of j’h job
by 5,20, and correspondingly r; >0 —amount of K
resource, needed for performing this job. Let us assume
started jobs must be performed without breaks. Then the
finishing time of j’h jobcanbedefinedas ¢; = s; +d;.
The problem of schedule making may be reduced to the
problem of finding a vector s = (so, Sy +1) of jobs' start-
ing time which meets priority and resource requirements
and minimizes a certain objective function. An objective
function may reflect the economical outlay (outgoing), yield
(incoming), finishing time, etc. Project finishing time is one
of the most analyzed schedule optimality criteria which will
be applied in this paper.

Letusdenote A(r)={jeJ]s; <t<c;} —asetofexe-
cutable jobs at the time moment ¢, 7(s) — project finishing
time, 7'(s)=c, 41

After these definitions we can formulate the problem
minimizing the objective function 7(s) .

Find min 7'(s), subject to:
S

CiSSj, (i,j)EC,
SjZOs C_]':Sj"’_djs jer (1)
ZijSRk, OStSan. (2)
JEA(r)

The objective function defines the finishing time of the
whole job project, inequality (1) describes priority relations,
and inequality (2) requires to pay heed to resource con-
straints.

3. Schedule coding and decoding

Efficiency of schedule optimization algorithm depends
on solution coding [10, 11, 16]. In this paper, we analyze
job scheduling problems under resource constraints with
solution coding in the shape of a priority list [4, 17]. The
job priority list b = (O,bl ,by sy by ) can be determined
by jobs' starting time vector s, where Sp, < Sh, ifi<j. It
is very important that this vector of starting moments must
meet priority relations and resource constraints. On the other
hand, for given priority list, we can find the vector of job
starting time concerted with priority list and initial priority
constraints. For this we use the serial decoder described in
section 3.2.

At first, we must be sure that the priority list is con-
certed with priority constraints. Let us denominate the
priority list from which we can find a vector of jobs' start-
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ing time concerted with priority relations as a feasible pri-
ority list. Using a set of priority relations we can check
whether the solution is feasible or not. For any feasible job
priority list, by applying the serial decoding procedure, we
can determine jobs' starting time vector which may mini-
mize the project finishing time, according to priority rela-
tions, resource constraints, and a given job priority list.
Operating with job priority lists, the constructed algorithm
must enable us to find such job priority list which corre-
sponds to an optimal solution of the problem (1), (2).

3.1. Determination of admissibility of the job priority
list

Let us introduce the binary matrix V' = (Vii’ 1<i,j< n),
vy = LifG,j)eC, Vi = 0, if (i, j) & C ,related with a set of
priority constraints and define a full priority relations ma-
trix G= (gij,l <i,j< n) This matrix describes all jobs
which must be done corresponding to all chains of priority
relations. So, g;; =1, if it is possible to find such a se-
quence of index pairs that (k,k))eC, (k,ky)eC, ..,
(k;,j)e C . The matrix V has the following feature:
vj =1 = vj; =0. The matrix G also has this feature. The
priority list is feasible if p,;,5 ; are the components of b,

i<j=8p5 =0 applies for any pair (;,0;).

3.2. The serial priority list decoder

This procedure computes the early starting moments of
jobs, according to jobs' priority list concerted with priority
relations, and resource constraints. In schedules obtained
in such a way, none of jobs can be started earlier than cal-
culated time, without break of priority relations or resource
constraints. We can call such schedules active ones [11].
Let us describe the algorithm for determination of the ac-
tive schedule.

Step 1. Set initial sq =c; =0.Let i=1.

Step 2. Let us agree that starting time of the first (i —1)
jobs from the priority list have already been determined.
So, we know all Sb,5Cb, > j<i-1,

Let us denote the moment:

T; = max( max cp, max sp).
8py ;=1 0</<i-1
0</<i-1

The starting time of the next job is equal to this mo-
ment if resource constraints are met:

sp =T ,if Y rn <RI<k<K.
’ jea)
Ifresource constraints are not met, then the starting time
of'this job is equal to finishing time of the first finished job,
when resource constraints are met:
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Sp. =

1

mincy, .
J

Y SR Isks<K, ¢ >TSSl
Jedep))

The finishing time of this job can be calculated sim-
ply:

Cbl_ :Sbl- +dbi'

Step 3.If j = n, then {7(S) =c; +d,,;,end of algo-

rithm}, orelse {; =i +1, go to step 2}.

It is easy to see that it is necessary to make O(n-m) ele-
mentary operations for performing step 2 of the algorithm
[11]. Therefore, the complexity of decoding procedure from

the viewpoint of computer operations number is O( n?- m).

4. Schedule optimization algorithms

Using the serial decoding procedure of the job priority
list we can construct schedule optimization algorithms,
applying several random heuristic procedures. We investi-
gate the efficiency of these procedures by statistical simu-
lation.

4.1. Optimization by crude random search

In the simplest way, we can apply a crude random search
by Monte Carlo method — to generate some number of ran-
dom priority lists, select from them the feasible list with
minimal finishing time using proper amount of resources.
Let us describe the statistical simulation algorithm of sched-
ule optimization by Monte Carlo method.

Let us denote MAXIT - a number of iterations,
MAXD —anumber of descents by random search, AVGZ,
AVGZF — an average of reached objective function values
after MAXD descents, T — objective function value,
STEP — number of iterations for fixing intermediate
reached objective function values.

Step 1. SUMZF =0, SUMZ =0, M =0.

Step2. IT =0, Z" =1el0.
Step 3. IT = IT +1. Generate feasible priority list
b= (bl s by ), N —number of jobs: Generate sequen-

tially numbers of jobs 4, in such a way that b; #b;,
16, j<N, gy 5 =0,i<].

Step 4. Calculate the value of objective function
Z=T(b).1f Z<Z" ,then Z' =Z.

Step 5. If (IT mod STEP=0) then

SUMZ[ IT div STEP] = SUMZ[ IT divSTEP] + Z" .

Step 6. If /T < MAXIT , then go to Step 3, otherwise go
to Step 7.

Step 7. SUMZF = SUMZF +Z" .
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Step8. M =M +1.1f M < MAXD, then go to Step 2,
otherwise go to Step 9.
Step 9. AVGZ[i] =SUMZ[i]/ MAXD, for all

i=1..(MAXIT divSTEP ) ; AVGZF = SUMZF / MAXD .

Step 5 allows us to fix intermediate average values of
the objective function and, later, to compare them with the
average of best reached value of the objective function af-
ter MAXD descents.

4.2. Optimization by simulated annealing method

Let us consider simulated annealing (SA) algorithm
based on the priority list and the serial decoding procedure
[4, 17]. The main idea of algorithms such as SA, is the so-
lutions generation method and special rules for accepting
new randomly generated solutions [13]. New solutions are
generated from the current solution environment, while
calculating the values of the objective function. Usually
depth (radius) of environment is decreasing through opti-
mization procedure, starting from the fixed value. In order
to move from the current solution to a new one we apply
Metropolis rule, which allows, with a certain probability,
to accept solutions with a worse objective function value

(accept worse solution with the probability

p:exp(%:(b)) , here T(b) is current solution,

T (b) — new solution).

Theoretical recommendations for choice of appropriate
parameters of SA in continuous optimization, that gain the
algorithm's convergence to global optimum, has been con-
sidered in [16, 18]. We applied these suggestions to sched-
uling problems introducing the following rules:

pr=po/k®, tp=10/kP, 0<a,p<l, (3

here k — iteration number (variable), the parameter p; mo-

dels depth of environment, #;, corresponds to the parameter
of temperature in SA algorithm. We used the initial values
po = N/const and ty = MJD/const (MJD — maximum

job duration, const — simple constant which depends on
problem dimension). During optimization this method ac-
cepts not only the better solutions; while applying Metropo-
lis acceptance criterion, this method with a little probability
(which also depends on the temperature parameter ) also
accepts worse schedules than the current ones. Influence of

adjusting rules for the parameters p; and 7, on conver-

gence speed and accuracy of the solution was considered
in papers [16, 18].

Below we discuss about constructing of the SA algo-
rithm for schedule optimization. Let us call two priority
lists as neighboring, if we can get one from another by ap-
plying only one elementary operation, such as moving a
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job from one priority list's position to another (Shift) or
replacing two jobs positions in priority list (Swap) [19].

Let us consider / and ¢ as holding two positions in prio-
rity list, [#q, 1</,g<n.

We can get the priority list b from the list b by apply-
ing Shift operation, accordingly renumbering the job prior-
ity list: if ¢ >/ ,then b', =b,,;, [Sx<q,if g <[, then
b'y=by_1, g<x<I.After this let us set b'; =b; . Other
elements of the list 4 are the same as in the list 5. We can
get the priority list 5 from the list 5 by applying Swap
operation in the following way: 0', =b;, b';=b, . Other
elements of 5 are the same as in . We can get swap opera-
tion by applying shift operation twice.

The SA algorithm is as follows:

Stepl. £ =0.

Step 2. Let us assume that k steps of the algorithm are
already done. The current job priority list is b, objective
function value with this listis Z1=T(b) (calculated using
the serial priority list decoder described in section 3.2).
Calculate step parameters p; and ¢, applying (3).

Step 3. Randomly generate numbers ¢ and I, /[ # ¢,
1</, g <n. With the probability p, =0.5, perform ei-
ther shift or swap operation.

Step 4. If priority list obtained in such a way is not fea-
sible then repeat step 3 until obtained priority list is fea-
sible.

Step 5. Repeat steps 3 and 4 no less than p;, times. Let
us denote b’ priority list obtained from current b after per-
forming no less than p; allowable elementary operations.

Step 6. Calculate the objective function value
Z2= T(b') for the obtained priority list using the serial
decoding procedure.

Step 7. Change the current priority list to another by
adapting Metropolis rule:

if n<exp((Z1-22)/t;), then b= b (n — randomly
generated number from (0,1))

Step 8. k=k+1.1f k <k then repeat step 2.

max »

Several modifications of this basic algorithm can be
studied. In this algorithm numbers g and / were generated
with equal probabilities. However, we can set special prob-
abilities for obtaining numbers ¢ and /, depending on jobs
positions in the priority list, the priority relations matrix,
etc.

5. Computational results

Constructed algorithms were tested with data sets from
project scheduling library PSPLib. In PSPLib one can find
a lot of data set instances of various classes of RCPSP [14,
15].
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5.1. Optimization by using crude random search and
simulated annealing methods

Several test data sets (also the best known solutions and
in cases of 30 jobs — global optimums are given) were cho-
sen with various numbers of jobs, their priority relations,
various needs, and resources. Convergence of objective
function was compared while applying random search
(marked “M-C”) as well as the method of simulated an-
nealing (SA) (consider Figures 1, 2, 3 and 4, accordingly
with 30, 60, 90 and 120 jobs). Due to the method of ran-
dom search, 100 descents each were performed and aver-
age of the objective function value after 100, 200, 300, 500,
and 1000 iterations each was fixed. Feasible priority list
was generated in every iteration; while comparing with the
previous reached value, improvement of objective function
value was searched.

The same comparative investigations were carried out
while applying the method of simulated annealing (in Fig-
ures marked “SA”). In every iteration the next priority list
is being formed after application of elementary operations
(according to SA method) to the current priority list. It is
being accepted or rejected. Since the computing time for
performance of a single iteration is similar for all studied
algorithms, the best achieved value of objective function
may be used as the criteria of algorithm quality. Thus, the
best reached objective function value (marked “best”) was
fixed at 100, 200, 300, 500, and 1000 iterations each. Opti-
mization while applying SA method was started from ran-
dom priority list. Figures 1, 2, 3, 4 display graphs which
show that SA method’s advantages are clearly highlighted
after a small number of iterations. The average of objective
function values (100 descents) achieved by SA method dif-
fers little from the best value achieved. This proves the re-
liability of the method because deviation (dispersion) from
the best value is not significant.

Hence, advantage of simulated annealing obviously
becomes evident already after a small number of iterations;
therefore, adjustment of environment depth was investigated
while optimizing by SA method.

65.0
60.0 .\’—’\0\%

—e—MC
55.0

—m— SA
50.0

—aA— best
100 \-—]}. |
40.0 - ‘

after after after after after
100 200 300 500 1000

Fig 1. Convergence of the objective function value to global mini-
mum (Number of jobs n = 30, Optimum of the objective function
Opt = 41)
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Fig 2. Convergence of the objective function value to global mini-
mum (Number of jobs n = 60, Optimum of the objective function
Opt="77)

Fig 3. Convergence of the objective function value to global mini-
mum (Number of jobs n = 90, Optimum of the objective function
Opt=67)
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v A 4 4 "
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130.0 o— best
110.0
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100 200 300 500 1000

50
481 —e— Ro=1
46
—=— Ro=1

44 | 0=10
42 —a— Variable Ro
40 ‘ ‘

after after after after after

100 200 300 500 1000

Fig 4. Convergence of the objective function value to global mini-
mum (Number of jobs n = 120, Optimum of the objective function
Opt =99)

5.2. Optimization by using simulated annealing
method with variable neighborhood

In section 4.2, we described in detail the SA algorithm.
Number of elementary operations in every iteration deter-
mines what space of possible solutions may be generated.
Optimization with a fixed number of elementary operations
was performed in every iteration of optimization procedure.
(Ro =1 and Ro = 10. Consider Figures 5, 6, 7, 8). A small
number of elementary operations which allow forming
neighborhoods of the solution, form new solutions in a
“close distance” from the current one. Therefore search for
optimum takes more time — a big number of iterations is
required in order to come close to the optimal solution. On
the other hand, a fixed big number of elementary opera-
tions in every iteration even at the beginning provides a
possibility for generation of possible solutions in a “bigger
distance” from the current one (more chances to “cover”
the space of solutions). However, during the process of
optimization, when moving towards optimum, a too big
change often only prolongs the search for optimum. More-
over, checking of generated lists takes more time. Adjust-
ment of environment depth, according to a number of itera-
tions, allowed us to improve speed of convergence (in Fi-

Fig 5. Convergence of the objective function value to global mini-
mum using three types of environments (Number of jobs n = 30,
Optimum of the objective function Opt = 41)

90

85 | —e— Ro=1
—=— Ro=10

80 1 —a— Variable Ro

75

after after after after after
100 200 300 500 1000

Fig 6. Convergence of the objective function value to global mini-
mum using three types of environments (Number of jobs n = 60,
Optimum of the objective function Opt = 77)

gures 5, 6, 7, 8 marked “Variable Ro”). This adjustment of
environment depth in some cases allowed us to reach the
maximum result (to find a known optimum) already after a
small number of iterations.
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100 ‘ ‘
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Fig 7. Convergence of the objective function value to global mini-
mum using three types of environments (Number of jobs n = 90,
Optimum of the objective function Opt = 67)

6. Conclusions and further research

1. Algorithms of planning and optimizing schedules
of jobs with resource constraints based on schedule coding
with the job priority list and the serial priority list decod-
ing procedure were discussed in this paper. Such schedule
coding allows us to apply several combinatorial optimiza-
tion methods.

2. Random search and simulated annealing algorithms
for RCPSP optimization were created. These algorithms
were investigated and compared by statistical modeling,
while using data sets and known solutions from PSP Li-
brary.

3. It was determined that the simulated annealing
method is more efficient than random search and it allows
reliably solve schedule optimization problems due to set-
ting proper parameters of the method.

4. Minimization of the objective function, while ap-
plying several dynamic environment depth adjustment
methods, showed that change of solution environment depth
allows to accelerate convergence to global optimum.

5. Testresults showed that created algorithms are able
to find best known solutions of PSP Library while using
practically acceptable calculating resources.

6. Nearest further plans: selection and adjustment of
methods’ parameters and application of genetic algorithms
for optimization of a solution. This should improve con-
vergence to global optimum.
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RIBOJAMU TVARKARASCIU ISTEKLIU OPTIMIZAVIMAS MODELIUOJAMOJO ATKAITINIMO IR KINTAMOS
APLINKOS PAIESKOS METODAIS

L. Sakalauskas, G. Felinskas

Santrauka

Taikant informacines technologijas daznai susiduriama su ivairiomis darby ar uzduociy tvarkaras¢iy sudarymo problemomis, kai
istekliai, reikalingi uzduotims atlikti, yra riboti. Siame straipsnyje yra nagrinéjami darby tvarkaraiéiy sudarymo ir optimizavimo algoritmai,
atsizvelgiant { iStekliy, laiko bei kitokius ribojimus. Sukurtos ir tiriamos tvarkara$¢io optimizavimo procediiros, paremtos tvarkara$cio
kodavimu pagal darby pirmumo sarasa. Optimalus darby pirmumo saraSas randamas derinant lokaliosios ir globaliosios paieskos
algoritmus — atsitiktinés paieskos ir modeliuojamojo atkaitinimo metodus su kintama aplinka. Pateikti skai¢iavimo rezultatai, naudojant
testy duomenis i§ tvarkaras¢iy sudarymo uzdaviniy bibliotekos.

Reik$miniai ZodZiai: riboty istekliy projektai, tvarkaras¢io optimizavimas, Monte Karlo metodas, modeliuojamasis atkaitinimas,
kintamos aplinkos metodai.
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