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Abstract. The paper discusses how the used norm and corresponding Lipschitz constant influence the speed of algo-
rithms for global optimization. For this reason Lipschitz constants corresponding to different norms were estimated.
Different test functions for global optimization were solved using branch-and-bound algorithm for Lipschitz optimiza-
tion with different norms. Experiments have shown that the best results are achieved when combination of extreme

(infinite and first) and sometimes Euclidean norms is used.
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1. Introduction

Global optimization is considered in this paper. Math-
ematically the problem is formulated as

J*=max f(x),
xeD

where an objective function f{x), /: R"—>R, is a nonlinear
function of continuous variables, D C N" is a feasible re-
gion, n is number of variables. Besides the global optimum
f* one or all global optimizers x* : f{x*) = f* should be
found.

Branch and bound is a technique to solve global op-
timization problems. Branch-and-bound algorithms divide
the feasible region into subregions and detect subregions
which cannot contain global optimizer evaluating bounds
for the optimum over considered subregions. Optimization
stops when global optimizers are bracketed in small sub-
regions guaranteeing the required accuracy.

Lipschitz optimization is one of the most deeply inves-
tigated subjects of global optimization. It is based on the
assumption that the slope of an objective function is
bounded [1]. The advantages and disadvantages of Lipschitz
global optimization methods are discussed in[1, 2]. A func-
tionf: D — R, D C R", is said to be Lipschitz if it satisfies
the condition

lf()— )| < Ljx-y

where L > 0 is a constant called Lipschitz constant, D is
compact and || || denotes the norm. Euclidean norm is used
most often, but other norms could also be considered. In
this work we investigate how the used different norm and
corresponding Lipschitz constant influence the speed of
algorithms for global optimization.

,Vx,yeD, (D)

2. Branch and bound with simplicial partitions for
Lipschitz optimization

The general n-dimensional simplex-based branch and
bound algorithm for Lipschitz optimization is proposed in
[3]. The rules of selection, covering, branching and bound-
ing are justified by the results of experimental investiga-
tion.

An n-dimensional simplex is the convex hull of a set of
n + 1 affinely independent points in n-dimensional space.
In one-dimensional space a simplex is a line segment, in
two-dimensional space it is a triangle, in three-dimensional
space it is a tetrahedron. A simplex is a polyhedron in
n-dimensional space which has a minimal number of ver-
texes (n + 1). Therefore, if bounds for the optimum over a
sub-region defined by polyhedron are estimated using func-
tion values at all vertexes of the polyhedron, a simplex
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subregion requires the smallest number of function evalua-
tions to estimate bounds.

Usually, a feasible region in Lipschitz optimization is
defined by a hyper-rectangle — intervals of variables. To
use simplicial partitions, the feasible region should be cov-
ered by simplexes. Experiments in [3] have shown that the
most preferable initial covering is face to face vertex trian-
gulation — partitioning of the feasible region into finitely
many n-simplexes, the vertexes of which are also the ver-
texes of the feasible region.

There are several ways of dividing the simplex into sub-
simplexes. Experiments in [3] have shown that the most
preferable partitioning is subdivision of simplex into two
by a hyper-plane passing through the middle point of the
longest edge and the vertexes which do not belong to the
longest edge.

In Lipschitz optimization the upper bound for the opti-
mum is found exploiting Lipschitz condition (1):

f(x)= f(y)+L]x=y]-

It is suggested in [3] to estimate the bounds for the opti-
mum over the simplex using function values at one or more
vertexes. The lower bound for the optimum is the largest
value of the function at the vertex:

LB(I) = max f(x,).

x, el

where x, is a vertex of the simplex /. The upper bound for
the optimum

UB(I) = min(f(xv) +L max"x -X, ||)
X, xel

In this work the values of function at all the vertexes of
the simplex are used. The branch-and-bound algorithm may
be represented by the following pseudo-code:

LB =—co

UB =00

While (UB — LB > Y)) AND (D=J)
UB =00
Take a simplex / from D

LB =max (LB, max f(x,))
x, el
For all the vertexes x, of simplex /

UB = min (UB, min(f(xv)+ Lmalx "x—xv

b

If (UB = LB) divide simplex [ into two.

3. Norms and corresponding Lipschitz constants

Although in Lipschitz optimization different norms can
be considered to calculate distances:
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W, (Sl s xew
=

Euclidean norm (g =2) is used most often. The efficient
algorithms for Lipschitz optimization exist for one-dimen-
sional case. In one-dimensional case, all norms are equal.
Evaluated bounds in a multidimensional case depend on
the norm used.

The estimate of Lipschitz constant should be avail-able
to evaluate bounds exploiting Lipschitz condition. The value
of Lipschitz constant depends on the used norm.

Theorem 1. For Lipschitz function f{x), f: R"— R,
)=r L, fx=, @
where L, =sup {”Vf (x)"p X e D} is Lipschitz constant,

Vf (x) = (%, . ,gj is gradient of the function f{x), and
1 n

I/p+1/g=1,1<p, g < oo,
To make the proof clearer let us assume that n =2. Then

for Vx,y € D, we get

[ (x)=1 ()=
|f(x1,x2)—f(y1,x2)+f(y1,x2)—f(y1,y2)|

(using inequality of triangle)

f(xl’x2)_f(yl’x2)|
| |

= |x1_JV1| |xl_y]|+
|f(y1>x2)—f(J’1aJ’2)|
-|x2 _J/2| =
|x2 —y2|
(from middle values theorem)
2
2|/ '(Ci)“xi i

i=1

(using Holder's inequality)

1/p 1/q
(Blr )] (Bwear )

where 1 <p,g< oo, 1/p+1/g=1,c=(c, c,) € D. Since

5 . 1/q
sl =(Ehnt )

/p

forcel, (el |
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7 ()= r () =[wr ()], -1, <

sup {"Vf(c)"p ce D} [x —y"q )
Denoting

L,= sup{"Vf(c)"p ce D} ,

we get (2).

In conclusion, the supremum of p norm of gradient of
the function is Lipschitz constant for ¢ norm in Lipschitz
condition.

4. Experimental rezults

4.1. Estimation of Lipschitz constants

Various test functions for global optimization from [2]
and [4] were used in our experiments. Lipschitz constants
were estimated using Theorem 1. Therefore, points of the
feasible regions, where the norm of gradient of the objec-
tive function is the largest, were found. The largest values
of derivatives and Lipschitz constants for some norms are
shown in Table 1. Test functions are numbered according
to [2] and [4].

If the estimate of Lipschitz constant is smaller than its
actual value, the global optimum may be missed. If the es-

timate of Lipschitz constant is greater than its actual value,
the speed of optimization may be degraded. Therefore, the
estimate of Lipschitz constant should be as accurate as pos-
sible, but not smaller than its actual value.

The estimates of Lipschitz constant of the second norm
(p = g = 2) L, were compared to those given in [2] which
are repeated in Table 1. Most of the estimates co-incide.
However, the estimates of Lipschitz constants of test func-
tions 20 and 21 are quite different. We believe that our es-
timates are correct. In the case of test function 20, the val-
ues of derivatives at the feasible pointx=1.0,y=1.0,z=0
are equal to 200 and, therefore,

L, =+200% +2002 + 200 ~346.41.

Test function 21 was optimized successfuly with dif-
ferent norms and corresponding estimated Lipschitz cons-
tants. Therefore, there is no reason to doubt our estimates.

Test function 23 is three-dimensional generalization of
two-dimensional test function 13. If z = 0.25 test function
23 becomes test function 13 with L, = 988.8 which is larger
than 971.59.

4.2. Optimization of two-dimensional test functions

The speed of global optimization was estimated using
the number of function evaluations criterion.

The results of experiments for n =2 are shown in Table 2.
Test functions are numbered according to [2]. No single

Table 1. The largest values of derivatives and estimated Lipschitz constants

Test function fy (¢ )| S "(c, )| L (5 )| L, L, L,[2] L,
1. [2] 50.2665 0.0 - 50.2665 50.266 50.2665 50.2665
2. 2] 1.98 6.0 - 7.98 6.3183 6.3183 6.0
3.[2] 107.09 34.248 - 141.338 112.43 112.44 107.09
4.12] 0.0 2.0 - 2.0 2 2 2.0
5.12] 1.0 1.0 - 2.0 N N 10
6. 2] 256.8 1028.0 - 1284.8 1059.59 1059.59 1028.0
7.12] 2100.0 12608.0 - 14708.0 12781.7 12781.7 12608.0
8. 2] 59.0 63.0 - 122.0 86.3134 86.3134 63.0
9. 2] 2177520.0 461520.0 - 2639040 2225891.7 2225892 2177520.0
10. [2] 13.0 11.0 - 24.0 17.029 17.034 13.0
11. [2] 42.015 22.0 - 64.015 47.426 47.426 42.015
12. [2] 40.4 40.0 - 80.4 56.582 56.852 40.4
13. [2] 988.81 0.844 - 989.654 988.81 988.82 988.81
20. [2] 200.0 200.0 200.0 600.0 346.41 244.95 200.0
21. [2] 18.32 0.32 0.012 18.652 18.322 42.626 18.32
23. 2] 988.78 0.01 0.16 988.95 988.81 971.59 988.78
24. 2] 10.708 12.108 10.7 33.516 19.39 19.39 12.108
25. 2] 1.192 2.383 1.192 4.767 2.919 2919 2.383
26. [2] 80.0 80.0 64.0 224.0 129.99 130.0 80.0
5. 4] 14408.0 16808.0 2400.0 33616.0 22267.9 - 16808.0
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Table 2. Numbers of function evaluations for n = 2

Test function € le ||x - y"m’1 L, ||x 7y||] Ly ||x—y||1_5 L, ||x — y"2 L ||x —ylloO
1. [2] 0.355 1087 2154 1587 1432 1087
2.12] 0.0446 266 393 362 353 312
3.[2] 11.9 7116 11044 9108 9046 11187
4. (2] 0.0141 53 56 76 82 95
5.[2] 0.1 102 102 157 165 199
6.[2] 44.9 1869 3021 2674 2164 2134
7.12] 542.0 12086 12661 12486 12442 21304
8. 2] 3.66 571 587 688 774 1131
9.12] 62900 15177 15402 15317 15388 28868
10. [2] 0.691 2464 2542 2731 3109 4577
11. 2] 0.335 5718 6978 6450 7054 9674
12.[2] 0.804 29605 29629 30195 37982 59146
13. 2] 6.92 22811 45856 37941 37941 22895

norm and corresponding Lipschitz constant is the best for
all test functions. The best results were achieved using com-
bination of two extreme norms

J4-8], =(jo-of +o-1") " =1,
Ja=cl, =(lo-1" +fo—o]"} " =1

L=yl =min{nfv=ol, . Lo o=} @)
Therefore, in this case the upper bound is the smallest
Let us investigate this case. In case n = 2 the feasible

region is square. Let us assume that it is unit square D =
[0,1] % [0,1]. It is covered by two right-angled equilateral
triangles (see Fig 1).

When the right-angled equilateral triangle is divided into
two through the middle of the longest edge, two right-angled
equilateral triangles are produced again. Since the upper
bound of optimum over the triangle is estimated using the
values of function at the vertexes and the maximum edges
from the considered vertex, two cases are possible. Let us
investigate the simplex ABC:

1) The distance from the vertex 4 to the vertex B and
from the vertex A4 to the vertex C (see Fig 1) is equal to 1
with all norms:

Fig 1. Covering of square by simplexes (triangles)

when Lipschitz constant is the smallest, i e L, ||x - y||1 ,as
|4-8], =...=|4-5], . [4-C],=-..=]|4-c],. and
L,<L,, where 1< p<co.

2) In the case of the vertexes B and C the smallest up-
per bound is when L, ||x - y"OO is used.

It is shown that the distance from the vertexes B and C
to the vertex A4 is equal to 1, and the distance between the
vertexes B and C depends on the norm used:

5—cl, =(lo-11" <o’} " =2 when p=1,

J3-cl, =max{jo-1 [1~of =1

Therefore,
A
L, |lx-y :max{fx' aqlls £ (e }.2,
B(0.1) D(11) =1, (@) |7, z)‘”p
ool = (| ) ) ) 2
where p>1,¢4>1 and i+l =1. From the last equation
p 9
q= L Denoting
p-1
4(0,0) (1,0) g a=|f,(a) =1, ().
p-1
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In the case when a = b, the inequality becomes equality.
In other cases the right-hand side is strictly greater than the
left-hand side, i e

Therefore, both experimental (Table 2) and theoretical
investigation shows that the combination of two extreme
cases (3) gives the best bounds for branch and bound with
right-angle equilateral triangle partitions.

When the combination (3) is used, the number of func-
tion evaluations is by 1 to 40 % smaller than that when
Euclidean norm is used. On average, for all the test func-
tions n = 2 used in our experiments, the combination (3)
reduces the number of function evaluations by 22 %.

4.3. Optimization of three-dimensional test functions

The experimental results for » =3 are shown in Table 3.
Test functions are numbered according to [2] and [4]. No
single norm and corresponding Lipschitz constant is the
best for all the test functions. Combination of two extreme
norms is not the best for all the test functions too. In this
case the best results were achieved using combination of
two extreme and Euclidean norms:

L) @

mln{ 1

Let us investigate this case when n = 3. Let us as-sume
that the feasible region is unit cube D = [0,1]x[0,1]x[0,1].
It is covered by four tetrahedrons (see Fig 2). Let us inves-
tigate the tetrahedron ABCE.

1) The distance from the vertex A4 to the vertex B, from
the vertex A4 to the vertex C and from the vertex A4 to the
vertex E (see Fig 2) is equal to 1 with all norms:

48], =(o-of +fo-1 +}-17) " =1,
||A—C||p = (|0—1|” +0-0[" +[1-1)" )Up =1,
-], =(lo-0f" +|o-of +|1_o|P)”‘” .y

Therefore, in this case (similarly to the case when n = 2),
the upper bound is the smallest when Lipschitz constant is

the smallest,ie L, ||x— y"] .
2) Inthe vertexes B, C and E when n = 3, the combina-

tion L, ||x - y”Oo does not always give the best upper bound.
Similarly to the case when n = 2, the largest distance from
a vertex, say the vertex E, to the other vertexes is 2P

=8l = (oo +fo1” +fo-1") " =27,
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Fig 2. Covering of cube by simplexes (tetrahedrons)

o=l = (o1 +fo-or sfo-1) " =2
|~ 4], =(j0-0 +Jo~o” +fo—1"} " =1
However, there is an additional third derivative

d =
inequality

. .( ¢ )‘ for estimation of Lipschitz constant, and the

-1
(a” 407 +¢”)2 7 >(a+be),

is not always correct. The inequality is correct if one of the
derivatives is equal to zero. Therefore, it is useful to in-
clude Euclidean norm in the combination (4).

Similarly, in the case of the tetrahedron EBCF, the maxi-
mal distance between vertexes is 27 :

=51, =0~ o1 +fo-1 )" -2,

S
£l =(jo-11" +lo~o +fo-1") " =27,
|8-cl, =(|0—1|”+|1_0|P+|1_1|p)“P:21,1,’
|B-F, (|0—1|”+|1_1|P+|1_0|p)”1’:21,13’

o= Fl, =(-1 +o-17 +p-op) " =2V

When the combination (4) is used, the number of func-
tion evaluations is by 8 to 58 % smaller than that when
Euclidean norm is used. On average, for all the test func-
tions » = 3 used in our experiments, the combination (4)
reduces the number of function evaluations by 39 %.
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Table 3. Number of function evaluations for n =3
Test function : okl [heaboly, | tlol | mhesl, | nlol

20. [2] 10.6 106877 75163 106877 178925 419088
21. [2] 0.369 8866 46964 16754 8896
23. 2] 41.65 96673 96673 527719 179953 96673
24. 2] 3.36 69743 61492 69756 100175 245398
25. 2] 0.0506 47260 20335 47487 23148 82533
26. [2] 4.51 21598 18679 21598 44189 131994
5. [4]. 5000.0 159559 103694 166157 117225 284069
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SKIRTINGU NORMU IR JAS ATITINKANCIU LIPSICO KONSTANTU ANALIZE GLOBALIAI OPTIMIZACIJAI
R. Paulavitius, J. Zilinskas

Santrauka

Siame darbe istirta, kaip jvairios normos ir jas atitinkan&ios Lip3ico konstantos veikia globalios optimizacijos algoritmy grei¢ius.
Siam tikslui buvo jvertintos {vairias normas atitinkangios Lip3ico konstantos. Saku ir réZiy algoritmas buvo naudojamas globalaus
maksimumo paieskai. Eksperimento rezultatai parodé, kad geriausi rezultatai gaunami, kai Lip$ico virSutiniam réZiui jvertinti naudojamas
krastiniy (begalinés ir pirmosios) normy junginys dvimaciam atvejui ir jy junginys su euklidine norma trimaciam atvejui.

ReikSminiai ZodZiai: globali optimizacija, Saky ir réZiy algoritmas, LipSico optimizacija, normos, LipSico konstanta.
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