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Abstract. The paper discusses how the used norm and corresponding Lipschitz constant influence the speed of algo-
rithms for global optimization. For this reason Lipschitz constants corresponding to different norms were estimated.
Different test functions for global optimization were solved using branch-and-bound algorithm for Lipschitz optimiza-
tion with different norms. Experiments have shown that the best results are achieved when combination of extreme
(infinite and first) and sometimes Euclidean norms is used.
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1. Introduction

Global optimization is considered in this paper. Math-

ematically the problem is formulated as

),(max* xff
Dx∈

=

where an objective function f(x), f : ℜn→ℜ, is a nonlinear

function of continuous variables, D ⊆ ℜn is a feasible re-

gion, n is number of variables. Besides the global optimum

f* one or all global optimizers x* : f(x*) = f* should be

found.

Branch and bound is a technique to solve global op-

timization problems. Branch-and-bound algorithms divide

the feasible region into subregions and detect subregions

which cannot contain global optimizer evaluating bounds

for the optimum over considered subregions. Optimization

stops when global optimizers are bracketed in small sub-

regions guaranteeing the required accuracy.

Lipschitz optimization is one of the most deeply inves-

tigated subjects of global optimization. It is based on the

assumption that the slope of an objective function is

bounded [1]. The advantages and disadvantages of Lipschitz

global optimization methods are discussed in [1, 2]. A func-

tion f : D → ℜ, D ⊆ ℜn, is said to be Lipschitz if it satisfies

the condition

DyxyxLyfxf ∈∀−≤− ,,)()( , (1)

where L > 0 is a constant called Lipschitz constant, D is

compact and  denotes the norm. Euclidean norm is used

most often, but other norms could also be considered. In

this work we investigate how the used different norm and

corresponding Lipschitz constant influence the speed of

algorithms for global optimization.

2. Branch and bound with simplicial partitions for

Lipschitz optimization

The general n-dimensional simplex-based branch and

bound algorithm for Lipschitz optimization is proposed in

[3]. The rules of selection, covering, branching and bound-

ing are justified by the results of experimental investiga-

tion.

An n-dimensional simplex is the convex hull of a set of

n + 1 affinely independent points in n-dimensional space.

In one-dimensional space a simplex is a line segment, in

two-dimensional space it is a triangle, in three-dimensional

space it is a tetrahedron. A simplex is a polyhedron in

n-dimensional space which has a minimal number of ver-

texes (n + 1). Therefore, if bounds for the optimum over a

sub-region defined by polyhedron are estimated using func-

tion values at all vertexes of the polyhedron, a simplex
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subregion requires the smallest number of function evalua-

tions to estimate bounds.

Usually, a feasible region in Lipschitz optimization is

defined by a hyper-rectangle – intervals of variables. To

use simplicial partitions, the feasible region should be cov-

ered by simplexes. Experiments in [3] have shown that the

most preferable initial covering is face to face vertex trian-

gulation – partitioning of the feasible region into finitely

many n-simplexes, the vertexes of which are also the ver-

texes of the feasible region.

There are several ways of dividing the simplex into sub-

simplexes. Experiments in [3] have shown that the most

preferable partitioning is subdivision of simplex into two

by a hyper-plane passing through the middle point of the

longest edge and the vertexes which do not belong to the

longest edge.

In Lipschitz optimization the upper bound for the opti-

mum is found exploiting Lipschitz condition (1):

( ) ( )f x f y L x y≤ + − .

It is suggested in [3] to estimate the bounds for the opti-

mum over the simplex using function values at one or more

vertexes. The lower bound for the optimum is the largest

value of the function at the vertex:

),(max)( v
Ix

xfILB
v
∈

=

where x
v
 is a vertex of the simplex I. The upper bound for

the optimum

.max)(min)( 




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∈
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v
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xxLxfIUB
v

In this work the values of function at all the vertexes of

the simplex are used. The branch-and-bound algorithm may

be represented by the following pseudo-code:

LB = –∞

UB = ∞

While (UB – LB > ∑) AND (D≠∅)

UB = ∞

Take a simplex I from D

LB = max (LB, ( )max
v

v
x I

f x
∈

)

For all the vertexes x
v
 of simplex I

UB = min (UB, ( )( )min v v
x I

f x L x x
∈

+ −max )

If (UB ≥ LB) divide simplex I into two.

3. Norms and corresponding Lipschitz constants

Although in Lipschitz optimization different norms can

be considered to calculate distances:

.,

/1

1

n

q
n

i

q
iq

xxx ℜ∈

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Euclidean norm (q = 2) is used most often. The efficient

algorithms for Lipschitz optimization exist for one-dimen-

sional case. In one-dimensional case, all norms are equal.

Evaluated bounds in a multidimensional case depend on

the norm used.

The estimate of Lipschitz constant should be avail-able

to evaluate bounds exploiting Lipschitz condition. The value

of Lipschitz constant depends on the used norm.

Theorem 1. For Lipschitz function f(x), f : ℜn → ℜ,

( ) ( ) p q
f x f y L x y− ≤ − , (2)

where ( ){ }sup :p p
L f x x D= ∇ ∈  is Lipschitz constant,

( )
1

,…,
n

f f
f x

x x

 ∂ ∂
∇ =  

∂ ∂ 
 is gradient of the function f(x), and

1/p + 1/q = 1, 1 ≤ p, q ≤ ∞.

To make the proof clearer let us assume that n = 2. Then

for , ,x y D∀ ∈  we get

( ) ( )

( ) ( ) ( ) ( )1 2 1 2 1 2 1 2
, , , , 

f x f y

f x x f y x f y x f y y
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(using inequality of triangle)
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(from middle values theorem)
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(using Hölder's inequality)
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where 1 ≤ p, q ≤  ∞, 1/p + 1/q = 1, c = (c
1
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2
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( ) ( ) ( )
qp

f x f y f c x y− ≤ ∇ − ≤

( ){ }sup : .
qp

f c c D x y∇ ∈ −

Denoting

( ){ }sup :p p
L f c c D= ∇ ∈ ,

we get (2).

In conclusion, the supremum of p norm of gradient of

the function is Lipschitz constant for q norm in Lipschitz

condition.

4. Experimental rezults

4.1. Estimation of Lipschitz constants

Various test functions for global optimization from [2]

and [4] were used in our experiments. Lipschitz constants

were estimated using Theorem 1. Therefore, points of the

feasible regions, where the norm of gradient of the objec-

tive function is the largest, were found. The largest values

of derivatives and Lipschitz constants for some norms are

shown in Table 1. Test functions are numbered according

to [2] and [4].

If the estimate of Lipschitz constant is smaller than its

actual value, the global optimum may be missed. If the es-

timate of Lipschitz constant is greater than its actual value,

the speed of optimization may be degraded. Therefore, the

estimate of Lipschitz constant should be as accurate as pos-

sible, but not smaller than its actual value.

The estimates of Lipschitz constant of the second norm

(p = q = 2) L
2
 were compared to those given in [2] which

are repeated in Table 1. Most of the estimates co-incide.

However, the estimates of Lipschitz constants of test func-

tions 20 and 21 are quite different. We believe that our es-

timates are correct. In the case of test function 20, the val-

ues of derivatives at the feasible point x = 1.0, y = 1.0, z = 0

are equal to 200 and, therefore,

2 2 2

2
200 200 200 346.41.L = + + ≈

Test function 21 was optimized successfuly with dif-

ferent norms and corresponding estimated Lipschitz cons-

tants. Therefore, there is no reason to doubt our estimates.

Test function 23 is three-dimensional generalization of

two-dimensional test function 13. If z = 0.25 test function

23 becomes test function 13 with L
2
 = 988.8 which is larger

than 971.59.

4.2. Optimization of two-dimensional test functions

The speed of global optimization was estimated using

the number of function evaluations criterion.

The results of experiments for n = 2 are shown in Table 2.

Test functions are numbered according to [2]. No single

Table 1. The largest values of derivatives and estimated Lipschitz constants

L
∞

noitcnuftseT L1 L2 L2 ]2[

]2[.1 5662.05 0.0 – 5662.05 662.05 5662.05 5662.05

]2[.2 89.1 0.6 – 89.7 3813.6 3813.6 0.6

]2[.3 90.701 842.43 – 833.141 34.211 44.211 90.701

]2[.4 0.0 0.2 – 0.2 2 2 0.2

]2[.5 0.1 0.1 – 0.2 0.1

]2[.6 8.652 0.8201 – 8.4821 95.9501 95.9501 0.8201

]2[.7 0.0012 0.80621 – 0.80741 7.18721 7.18721 0.80621

]2[.8 0.95 0.36 – 0.221 4313.68 4313.68 0.36

]2[.9 0.0257712 0.025164 – 0409362 7.1985222 2985222 0.0257712

]2[.01 0.31 0.11 – 0.42 920.71 430.71 0.31

]2[.11 510.24 0.22 – 510.46 624.74 624.74 510.24

]2[.21 4.04 0.04 – 4.08 285.65 258.65 4.04

]2[.31 18.889 448.0 – 456.989 18.889 28.889 18.889

]2[.02 0.002 0.002 0.002 0.006 14.643 59.442 0.002

]2[.12 23.81 23.0 210.0 256.81 223.81 626.24 23.81

]2[.32 87.889 10.0 61.0 59.889 18.889 95.179 87.889

]2[.42 807.01 801.21 7.01 615.33 93.91 93.91 801.21

]2[.52 291.1 383.2 291.1 767.4 919.2 919.2 383.2

]2[.62 0.08 0.08 0.46 0.422 99.921 0.031 0.08

]4[.5 0.80441 0.80861 0.0042 0.61633 9.76222 – 0.80861

( )
1 1x

f c' ( )
2 2x

f c' ( )
3 3x

f c'

2 2
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norm and corresponding Lipschitz constant is the best for

all test functions. The best results were achieved using com-

bination of two extreme norms

{ }1 11 1
min , .L x y L x y L x y

∞ ∞
∞ ∞

− = − −, ,
(3)

Let us investigate this case. In case n = 2 the feasible

region is square. Let us assume that it is unit square D =

[0,1] × [0,1]. It is covered by two right-angled equilateral

triangles (see Fig 1).

When the right-angled equilateral triangle is divided into

two through the middle of the longest edge, two right-angled

equilateral triangles are produced again. Since the upper

bound of optimum over the triangle is estimated using the

values of function at the vertexes and the maximum edges

from the considered vertex, two cases are possible. Let us

investigate the simplex ABC:

1) The distance from the vertex A to the vertex B and

from the vertex A to the vertex C (see Fig 1) is equal to 1

with all norms:

( )

( )

1

1

0 0 0 1 1,

0 1 0 0 1.

p
p p

p

p
p p

p

A B

A C

− = − + − =

− = − + − =

/

/

Therefore, in this case the upper bound is the smallest

when Lipschitz constant is the smallest, i e 
1

L x y
∞

− , as

1
A B A B

∞

− = = −… , 
1

A C A C
∞

− = = −… , and

p
L L
∞
≤ , where 1 p≤ ≤ ∞ .

2) In the case of the vertexes B and C the smallest up-

per bound is when 
1

L x y
∞

−  is used.

It is shown that the distance from the vertexes B and C

to the vertex A is equal to 1, and the distance between the

vertexes B and C depends on the norm used:

( )
1

1
0 1 1 0 2

p
p p p

p
B C− = − + − =

/
/

, when 1p ≥ ,

{ }max 0 1 , 1 0 1.B C
∞

− = − − =

Therefore,

( ) ( ){ }

( ) ( )

1 2

1 2

1 21

1

1

1 2

max ' , ' 2 ,

' ' 2 ,

x x

p
p p

q

p x xq

L x y f c f c

L x y f c f c

∞
− = ⋅

 
− = + ⋅ 

 

/

/

where 1, 1p q> >  and 
1 1

1
p q
+ = . From the last equation

1

p
q

p
=

−
. Denoting

( ) ( )
1 21 2
'  'x xa f c b f c= =, ,

( ) ( )
1

1

2

p
p

p p p
a b a b

−

+ ≥ +

/

.Fig 1. Covering of square by simplexes (triangles)

Table 2. Numbers of function evaluations for n = 2

noitcnuftseT

]2[.1 553.0 7801 4512 7851 2341 7801

]2[.2 6440.0 662 393 263 353 213

]2[.3 9.11 6117 44011 8019 6409 78111

]2[.4 1410.0 35 65 67 28 59

]2[.5 1.0 201 201 751 561 991

]2[.6 9.44 9681 1203 4762 4612 4312

]2[.7 0.245 68021 16621 68421 24421 40312

]2[.8 66.3 175 785 886 477 1311

]2[.9 00926 77151 20451 71351 88351 86882

]2[.01 196.0 4642 2452 1372 9013 7754

]2[.11 533.0 8175 8796 0546 4507 4769

]2[.21 408.0 50692 92692 59103 28973 64195

]2[.31 29.6 11822 65854 14973 14973 59822

ε
1 1

L x y
∞

∞

−
,

, 1
L x y
∞

−
3 1 5.

L x y− 2 2
L x y−

1
L x y

∞

−
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In the case when a = b, the inequality becomes equality.

In other cases the right-hand side is strictly greater than the

left-hand side, i e

1p v vq
L x x L x x

∞

− ≥ − .

Therefore, both experimental (Table 2) and theoretical

investigation shows that the combination of two extreme

cases (3) gives the best bounds for branch and bound with

right-angle equilateral triangle partitions.

When the combination (3) is used, the number of func-

tion evaluations is by 1 to 40 % smaller than that when

Euclidean norm is used. On average, for all the test func-

tions n = 2 used in our experiments, the combination (3)

reduces the number of function evaluations by 22 %.

4.3. Optimization of three-dimensional test functions

The experimental results for n = 3 are shown in Table 3.

Test functions are numbered according to [2] and [4]. No

single norm and corresponding Lipschitz constant is the

best for all the test functions. Combination of two extreme

norms is not the best for all the test functions too. In this

case the best results were achieved using combination of

two extreme and Euclidean norms:

{ }

1 2 1 2

1 21 2
min , , .

v

v v v

L x x

L x x L x x L x x

∞
∞

∞
∞

− =

− − −

, , , ,

(4)

Let us investigate this case when n = 3. Let us as-sume

that the feasible region is unit cube D = [0,1]×[0,1]×[0,1].

It is covered by four tetrahedrons (see Fig 2). Let us inves-

tigate the tetrahedron ABCE.

 1) The distance from the vertex A to the vertex B, from

the vertex A to the vertex C and from the vertex A to the

vertex E (see Fig 2) is equal to 1 with all norms:

( )

( )

( )

1

1

1

0 0 0 1 1 1 1,

0 1 0 0 1 1 1,

0 0 0 0 1 0 1.

p
p p p

p

p
p p p

p

p
p p p

p

A B

A C

A E

− = − + − + − =

− = − + − + − =

− = − + − + − =

/

/

/

Therefore, in this case (similarly to the case when n = 2),

the upper bound is the smallest when Lipschitz constant is

the smallest, i e 
1

L x y
∞

− .

2) In the vertexes B, C and E when n = 3, the combina-

tion 
1

L x y
∞

−  does not always give the best upper bound.

Similarly to the case when n = 2, the largest distance from

a vertex, say the vertex E, to the other vertexes is 1
2

p/ :

( )
1

1
0 0 0 1 0 1 2 ,

p
p p p p

p
E B− = − + + + − =

/
/

( )

( )

1
1

1

0 1 0 0 0 1 2 ,

0 0 0 0 0 1 1.

p
p p p p

p

p
p p p

p

E C

E A

− = − + − + − =

− = − + − + − =

/
/

/

However, there is an additional third derivative

( )
3 3
'xd f c=  for estimation of Lipschitz constant, and the

inequality

( ) ( )
1

2 ,

p

p p p p
a b c a b c

−

+ + ≥ + +

is not always correct. The inequality is correct if one of the

derivatives is equal to zero. Therefore, it is useful to in-

clude Euclidean norm in the combination (4).

Similarly, in the case of the tetrahedron EBCF, the maxi-

mal distance between vertexes is 1
2

p/ :

( )

( )

( )

( )

( )

( )

1
1

1
1

1
1

1
1

1
1

1
1

0 0 0 1 0 1 2 ,

0 1 0 1 0 1 2 ,

0 1 0 0 0 1 2 ,

0 1 1 0 1 1 2 ,

0 1 1 1 1 0 2 ,

1 1 0 1 1 0 2 .

p
p p p p

p

p
p p p p

p

p
p p p p

p

p
p p p p

p

p
p p p p

p

p
p p p p

p

E B

E F

E C

B C

B F

C F

− = − + − + − =

− = − + − + − =

− = − + − + − =

− = − + − + − =

− = − + − + − =

− = − + − + − =

/
/

/
/

/
/

/
/

/
/

/
/

When the combination (4) is used, the number of func-

tion evaluations is by 8 to 58 % smaller than that when

Euclidean norm is used. On average, for all the test func-

tions n = 3 used in our experiments, the combination (4)

reduces the number of function evaluations by 39 %.

Fig 2. Covering of cube by simplexes (tetrahedrons)
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5. Conclusions

When the upper bound of optimum is evaluated in sim-

plex based branch and bound for Lipschitz optimization

using the values of function at vertexes of simplexes, no

single norm and corresponding Lipschitz constant is the

best for all the test functions. When n = 2, the best results

were achieved using combination of two extreme (infinite

and first) norms, and in this case the number of function

evaluations is by 22 % smaller that when Euclidean norm

is used. When n = 3, the best results were achieved using

combination of two extreme (infinite and first) and Euclid-

ean norms, and in this case the number of function evalua-

tions is by 39 % smaller than that when Euclidean norm is

used alone.
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Santrauka
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noitcnuftseT

]2[.02 6.01 778601 36157 778601 529871 880914

]2[.12 963.0 6688 6688 46964 45761 6988

]2[.32 56.14 37669 37669 917725 359971 37669

]2[.42 63.3 34796 29416 65796 571001 893542

]2[.52 6050.0 06274 53302 78474 84132 33528

]2[.62 15.4 89512 97681 89512 98144 499131

.]4[.5 0.0005 955951 496301 751661 522711 960482
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