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Abstract. The purpose of this paper is to suggest a method and software for evaluating queuing approximations.

A numerical queuing model with priorities is used to explore the behaviour of exponential phase-type approximation of

service-time distribution. The performance of queuing systems described in the event language is used for generating

the set of states and transition matrix between them. Two examples of numerical models are presented – a queuing

system model with priorities and a queuing system model with quality control.
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1. Introduction

Queuing models are important tools for studying the

performance of complex systems, but despite the substantial

queuing theory literature, it is often necessary to use ap-

proximations in case a system is non-markovian. Use of

phase-type (PH) distributions is a common means of obtain-

ing tractable queuing models [1–4]. The approach of this

investigation is to begin with service-time distribution to be

approximated. A simple three-moment approximation, along

with a more refined approximation taking into account dis-

tribution shape, is presented for an original input distribu-

tion. Then both the original and approximating distributions

are used in modelling the queue with simple priorities.

It is known that creation of analytical models requires

large efforts. Use of numerical methods permits to create

models for a wider class of systems. The process of creat-

ing numerical models for systems described by Markov

chains consists of the following stages: 1) definition of the

state of a system; 2) creating equations describing a Markov

chain; 3) computation of stationary probabilities of a

Markov chain; 4) computation characteristics of the sys-

tem performance. The most difficult stages are obtaining

the set of all the possible states of a system and transition

matrix between them. A method for automatic construction

of numerical models for systems described by Markov

chains with a countable space of states and continuous time

is used in the work.

2. Approximation of service-time distribution

Let us consider the M/G/c queue. In this multi-server

model with c servers the arrival process of customers is a

Poisson process with rate l and the service time S of a cus-

tomer has a general probability distribution function G(t).

It is assumed that r = lE (S)/c is smaller than 1. The M/G/c

queue with general service times permits no simple ana-

lytical solution, not even for an average waiting time. Use-

ful approximation can be obtained by the mixture and con-

volutions of exponential (phase-type) distributions. Then a

Markov chain with a countable space of states and continu-

ous time can represent the evolution of the system. Sup-

pose we let 3,1, =kmk
 denote the kth non-central mo-

ment (i e E [ k
S ] , where S is a random variable of service

time). Construct a new random variable Y which can be

represented as
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where ,2,1, =iYi  are independent random variables ha-

ving exponential distributions with means 1/1 µ  and 2/1 µ ,

respectively; 121 =+ pp . The random variable Y equals

the sum of independent variables with random number N
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of summands. N is non-negative, integer-valued random

variable with E(N) < ∞ having geometrical distribution. Its

probability density is the following:
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If 21 µ=µ , then probability density of Y is given by

( ) yp
epyf 22

22
µ−µ= .

Define a random variable X in this way:
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where 1X  and 2X  are independent random variables hav-

ing exponential distribution with parameters 1µ  and 22µp ,

respectively; 21 pp + =1.

Statement. Random variables X and Y determined by

(3) and (1) are equivalent.

Proof. We will show that probability density functions

of X and Y are equal. It is easy to verify that the density

function of X is given by

( ) ( )xpxx
epe

p

p
exf 2211

221
121

11
1

µ−µ−µ− µ−µ
µ−µ

µ
+µ=

or

( ) .221

122

12

122

12
12 









µ−µ

µ
−

µ−µ

µ−µ
µ= µ−µ− xpx

e
p

p
e

p
pxf

(4)

Expressions (2) and (4) are identical.

Note. Duration of service time as a random variable

given by (3) allows us to apply a method for automatic con-

struction of numerical models for queuing systems de-

scribed by Markov chains. It would be impossible to do so

with expression (1).

Moment matching is a common method for approxi-

mating distributions, especially in the area of queuing ap-

proximations. Though two-moment queuing approxima-

tions are common, they may lead to a serious error when

the coefficient of variation, ν (the standard deviation di-

vided by the mean), is high [1, 5]. The first three moments

of any non-degenerate distribution with support on [0, ∞)

can be matched by the distribution (4).

To obtain the values of the parameters ,, 21 µµ
1p and

2p  of approximation, a complex system of non-linear equa-

tions needs to be solved:
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The solution of the system is the following [6]:

3,1,
!

,
2 321

3

1

2

12
2 ==

+−

−
=µ k

k

m
g

gggg

gg k
k ; (6)

( ) ( )
( )2

1221

2

12

22

1212

1

22

411

ggg

ggagg

−µ−

−+µ−±µ+
=µ ;

( )
( ) 1112

112
1

1

1

µ+−µµ

−µµ
=

g

g
p ;

( ) 1112

1
2

1 µ+−µµ

µ
=

g
p .

3. Approximation of lognormal distribution

Suppose that service-time is distributed according to

lognormal distribution with probability density

( ) ( )[ ] 0,2/lnexp
2

1 22
>αλ−−

πα
= xx

x
xg (7)

and parameters 05,0,9,0 −=λ=α . The first three non-

central moments are

42618,11 =m , 57225,42 =m  and .3606,283 =m (8)

The approximating density parameters are the follow-

ing:

,75935,01 =µ  ,141605,02 =µ

.99441,0,00559,0 21 == pp (9)

The original and approximating densities are shown in

Fig 1.

4. Numerical model of queuing system with simple

priority

First of all the created software is tested with a simple

system that has analytical formulas to calculate system cha-

racteristics.

Suppose that there are two classes of customers in a

queuing system. Their service times follow a lognormal

distribution. The arrival process is Poisson with the parame-
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ters 21 and λλ , respectively. We shall suppose that class 1

has a higher simple priority than class 2. This queuing model

has 1l and 2l  waiting positions for each class of customers

to await service, respectively. Let us calculate the mean num-

ber of customers in the queue and the mean waiting time of

a customer in each class.

Let us assume that service-time distribution is ap-

proximated by expression (3). The scheme of considering a

system is represented in Fig 2.

A new customer cannot be accepted for servicing while

a previous one has not passed throughout all the phases of

service.

A Markov chain with the countable space of states and

continuous time can describe the functioning of such a sys-

tem. To construct a numerical model of the system the ap-

proach proposed in [7] will be applied.

The set of events in the system is:

{ }54321 ,,,, eeeeeE = ,

where

1e  – a customer arrived from class 1;

2e  – a customer arrived from class 2;

3e  – completed service in the first phase with probabi-

               lity 2p ;

4e  – completed service in the first phase with probabi-

               lity 1p ;

5e  – completed service in the second phase.

The set of all the feasible states of the system is:

( ){ } 22114321 ,0;,0,,,, lnlnnnnnN === ,

where

1n  – number of customers from class 1 present in the

         system;

2n  – number of customers from class 2 present in the

         system;
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The mean number of customers ( )1L and ( )2L in the

queue and the mean waiting time ( )1W and ( )2W of a cus-

tomer in each class are given by the following formulas:
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where ( )4321 ,,, nnnnπ  is the stationary probability of the

system state. As an example describe the event 3e  in the

event language.

Fig 1. Densities of lognormal distribution (continuous line) and

approximation (dot line)

Fig 2. Queuing system with simple priority

The created software, using the description of events,

generates the set of feasible states of the system, the matrix

of transition rates between them and the stationary prob-

abilities of the states. Applying the obtained probabilities,

it is possible to compute the desired characteristics of the

system performance.



298 G. Mickevičius, E. Valakevičius / ŪKIO TECHNOLOGINIS IR EKONOMINIS VYSTYMAS – 2006, Vol XII, No 4, 295–300

4.1. Results

If the number of waiting positions for service in each

class of customers is unlimited, e g ∞=1l  and ∞=2l ,

then the values ( )i
W  and ( )iL  can be calculated by the ana-

lytical formulas:
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where E(x) and ( )Xσ  are the mean and the standard de-

viation of the service time.

The results of the analytical model with the parameters

,57225,4,42618,1,9.0,05,0 21 ===α−=λ mm

,09,0,2,0,3606,28 213 =λ=λ=m ∞=∞= 21 , ll ,

are the following:

( )
1855,0

1
=qL ,  

( )
1423,0

2
=qL .

The results of the numerical model with the following

values of parameters

,9,0,2,0 21 =λ=λ

,227796,0µ,74437,0µ 21 ==

25,25,018503,0 211 === llp

are:

  
( )
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1
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( )

1424,0
2

=qL .

As it is seen from the results, software calibration is

successful, and we can move forward with analysing queu-

ing systems that do not have analytical formulas to calcu-

late various system characteristics.

5. Numerical model of queuing system with quality

control

Suppose that there are one flow of customers and two

queuing systems. Their service time follows a lognormal

distribution. The arrival time process is Poisson with the

parameter λ . This queuing model has 1l and 2l waiting

positions before each queuing system to await service. This

system holds quality control that redirects already processed

customers to go through both queuing systems again. Let

us calculate the mean number of customers in both queues

and the mean waiting time of a customer in each queue.

A new customer cannot be accepted for servicing while

a previous one has not passed throughout both phases of a

queuing system.

The set of events in the system is:

{ }987654321 ,,,,,,,, eeeeeeeeeE = ,

where

1e  – a customer arrived to the first queuing system;

2e  – completed service of the first queuing system in

the first phase with probability 1p ;

3e  – completed service of the first queuing system in

the first phase with probability 2p ;

4e  – completed service of the first queuing system in

the second phase;

5e  – completed service of the second queuing system

in the first phase with probability 1p ;

6e  – completed service of the second queuing system

in the first phase with probability 2p  and a customer has

passed quality control;

7e  – completed service of the second queuing system

in the first phase with probability 2p  and a customer has

failed quality control;

8e  – completed service of the second queuing system

in the second phase, and a customer has passed quality con-

trol;

9e  – completed service of the second queuing system

in the second phase, and a customer has failed quality con-

trol.

The set of all the feasible states of the system is:

( ){ } ,,0;,0,,,,,, 2411654321 lnlnnnnnnnN ===

where

1n  – number of customers in the first queue;
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Let us assume that service-time distribution is approxi-
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mated by expression (3). The scheme of considering the

system is represented in Fig 3.

The mean number of customers ( )1L and the mean

waiting time ( )1W of a customer in the first queue are given

by the following formulas:

( ) ( );,,,,,

654321

1

1 ,,,,,
6543211
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= nnnnnn

l

m

j
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where ( )654321 ,,,,, nnnnnnπ  is the stationary probability

of the system state. As an example describe the event 3e  in

the event language.

Fig 3. Queuing system with quality control

The created software, using the description of events,

generates the set of feasible states of the system, the matrix

of transition rates between them and the stationary prob-

abilities of the states. Applying the obtained probabilities,

it is possible to compute the desired characteristics of the

system performance.

5.1. Results

The results of the numerical model with the following

values of parameters

,1=λ

20,9,0,018503,0 211 =+== llpp

 are:

( )
9849.8

1
=qL ,  

( )
6322.7

2
=qL ,

( )
0706.12

1
=qW ,  

( )
4796.33

1
=qW .

6. Conclusions

The method and created software for automatic con-

struction of numerical models for systems described by

Markov chains together with queuing approximation allows:

• to analyse complex Non-Markovian queuing sys-

tems applying Markov chains theory;

• queuing systems with the infinite space of states can

be approximated by the countable space of states.
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NEMARKOVIŠKŲ APTARNAVIMO SISTEMŲ MODELIAVIMAS

G. Mickevičius, E. Valakevičius

Santrauka

Eilių teorijos modeliai plačiai taikomi įvairioms sudėtingoms sistemoms analizuoti. Beveik visi modeliai kuriami su prielaida, kad

stochastinis procesas, vykstantis sistemoje, yra Markovo procesas. Tačiau dažniausiai ši prielaida nepasitvirtina. Straipsnyje pateikta

metodika, kaip nemarkoviškus aptarnavimo sistemų modelius aproksimuoti markoviškais modeliais, naudojant eksponentinių fazių

skirstinius. Sistemos funkcionavimas aprašomas įvykių kalboje. Sukurtoji programinė priemonė C++ kalboje pagal aprašymą generuoja

sistemos galimų būsenų erdvę, perėjimo intensyvumų tarp jų matricą bei suskaičiuoja stacionariąsias būsenų tikimybes. Pateikti du

aptarnavimo sistemų pavyzdžiai, iliustruojantys pateiktąją metodiką.

Reikšminiai žodžiai: eilių modelių aproksimavimas, fazių tipo skirstiniai, skirstinių suderinimas, Markovo grandinės, skaitmeninis

modelis.
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