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STRATEGIES OF SELECTING THE BASIS VECTOR SET IN THE RELATIVE MDS
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Abstract. In this paper, a method of large multidimensional data visualization that associates the multidimensional
scaling (MDS) with clustering is modified and investigated. In the original algorithm, the visualization process is di-
vided into three steps: the basis vector set is constructed using the k-means clustering method; this set is projected onto
the plane using the MDS algorithm; the remaining data set is visualized using the relative MDS algorithm. We propose
a modification which differs from the original algorithm in the strategy of selecting the basis vectors. In our modifica-
tion, the set of basis vectors consists of vectors that are selected from k clusters in a new way. The experimental inves-
tigation showed that the modification exceeds the original algorithm in visualization quality and computational ex-
penses.
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1. Introduction

Objects from the real world are often described by some

attributes (parameters). If these attributes are numerical

ones, it is possible to form multidimensional vectors, cor-

responding to each analysed object. Denote the multidi-

mensional vectors by 1 2, ,..., mX X X  ( iX =

1 2( , ,..., )i i i
nx x x , 1,...,i m= ). Here m is the number of the

analysed objects, n is the number of attributes of the ob-

jects. A human being can comprehend visual information

easier and more quickly than the numerical one. So, it is

useful to present multidimensional vectors in some visual

form. Various methods can be used for this purpose. It is

possible to divide them into two groups: (1) dimension re-

duction methods (principal component analysis [1], pro-

jection pursuit [2], multidimensional scaling [3], etc.); and

(2) methods based on neural networks (self-organizing maps

(SOM) [4], combination of the SOM and Sammon's map-

ping [5], etc.).

The multidimensional scaling method (MDS) [3] is a

popular method usable to visualize multidimensional data.

However, we face some problems when we have to project

(visualize) a large data set or to map a new data point among

the previously mapped points. In the MDS method, every

iteration requires each point to be compared with all the

other points and the iteration complexity is 2( ).O m   Thus,

the MDS method is unsuitable for large data sets: it takes

much computing time or there is not enough computing

memory. Furthermore, it is necessary to recalculate the pro-

jection of all data points, when a point has to be mapped.

Various methods have been suggested for mapping of new

points without recalculating all the previously mapped

points: Sammon's mapping based on an artificial neural

network (SAMANN) [6], simple two-dimensional mapping

[7], distance mapping [8], incremental scaling [9], relative

MDS [10], and neuroscale [11].

In this paper, we focus on the relative MDS method and

analyse strategies of the selecting the basis vector set. One

strategy has been proposed and analysed in [12], that is

based on the results of k-means algorithm. We propose two

other superior strategies.

2. Data analysis methods

The multidimensional scaling (MDS) is a group of meth-

ods that project multidimensional data to a low (usually

two) dimensional space and preserve the interpoint distances

among data as much as possible. Let us have vectors

1 2
( , ,..., )i i i i

n
X x x x= , 1,...,i m=  ( ).i nX R∈    The pending
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problem is to get the projection of these n-dimensional vec-

tors iX , 1,...,i m=  onto the plane 2R . Two-dimensional

vectors 1 2 2, ,..., mY Y Y R∈  correspond to them. Here

1 2
( , )i i iY y y= , 1,...,i m= . Denote the distance between the

vectors iX  and jX  by 
*

ijd , and the distance between the

corresponding vectors on the projected space ( iY  and jY )

by ijd . In our case, the initial dimensionality is n, and the

resulting one is 2. There exists a multitude of variants of

MDS with slightly different so-called stress functions. In

our experiments, the raw stress (1) is minimized.

* 2

, 1

( ) .

m

MDS ij ij

i j
i j

E d d

=

<

= −∑ (1)

Various types of minimization of the stress function are

possible [3], [13]. In this paper, we use the SMACOF algo-

rithm based on iterative majorization. It is one of the best

optimisation algorithms for this type of minimization prob-

lem [14]. This method is simple and powerful, because it

guarantees a monotone convergence of stress function [3],

[14].

Relative MDS is proposed in [10]. In classification tasks,

it may be interesting to see where a new data point “falls”

among the known cases and discover the class topology of

its neighbouring known cases to get an insight on how a

classifier would classify this new point. The realization of

this purpose gives rise to the need for a method that allows

the mapping of one new point on a set of data points previ-

ously mapped, using the topology-preserving mapping. The

MDS is a topology preserving mapping, but it does not of-

fer a possibility to project new points on the existing set of

mapped points. To get a mapping that presents the previously

mapped points together with the new ones requires a com-

plete re-run of the MDS algorithm on the new and the old

data points. Let us denote the  number of known data points

by fixedN , the number of new data points by newN , the

total number of points considered during the mapping by

totalN  ( total fixed newN N N= + ), the set of known data

points by F (it will be called a basis vector set), the set of

new data points by M. The algorithm scheme is as follows:

1. Map set F using the MDS mapping (the number of

fixed points is equal to fixedN ).

2. Map set M in respect to the mapped set F using the

relative MDS mapping (the number of new points is

equal to newN ).

The relative MDS mapping differs from the normal

MDS by the fact that during the minimization of the stress

function only the points from set M are allowed to move,

while the points from set F are kept fixed. This is achieved

by modifying the stress function so that it sums only over

the distances that change during iterations, i.e., the distances

between the fixed and the moving points, and interpoint

distances between the moving points. The stress function

(1) is rewritten as:

* 2
_

, 1

* 2

1 1

( )

( ) .

new

new total

new

N

Relative MDS ij ij

i j
i j

N N

ij ij

i j N

E d d

d d

=

<

= = +

= − +

−

∑

∑ ∑ (2)

In our experiments, we use the Quasi-Newton algorithm

to minimize 
_Relative MDSE .

The k-means method is an iterative clustering algo-

rithm in which the analysed vectors are moved among the

sets of clusters until the desired set is reached [15]. Let the

set of vectors mapped to the ith cluster be
1 2{ , ,..., }iii iX X X

µ . Here µi  is the number of the objects

in the ith cluster (
1 2

( , ,..., )
ij ijij ij

nX x x x= , 1,..., ij = µ ). The

squared error is defined as:

2

1 1

|| || .

ik
ij

k i

i j

E X C

= =

= −∑∑
µ

(3)

Here 
1 2( , ,..., )i i i

i nC c c c=  is the centre of the cluster,

(

1

1
i

iji
k k

i j

c x

µ

=

=
µ
∑ , 1,...,k n= ).

3. Data sets for analysis

In the experiments, the data set, obtained using the el-

lipsoidal cluster generator [16], is used. This generator cre-

ates ellipsoidal clusters with the major axis of an arbitrary

orientation. The boundary of a cluster is defined by four

parameters:

1. the origin (which is also the first focus),

2. the interfocal distance, uniformly distributed in the

range [1.0, 3.0],

3. the orientation of the major axis, uniformly located

amongst all orientations,

4. the maximum sum of Euclidean distances to two foci,

depending to the range [1.05, 1.15] – equivalent to

the eccentricity ranging from [0.870, 0.952].

For each cluster, data points are generated at a Gaussian-

distributed distance from a uniformly random point on the

major axis, in a uniformly random direction, and are re-

jected if they lie outside the boundary. Using this ellipsoi-

dal generator, 1115 50-dimensional points are generated that

form 20 clusters. This set is used in the experiments of com-

parative analysis.

The other data set consists of the points of two hyper-
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spheres. 100 10-dimensional points are in each sphere. This

set is used to illustrate strategies of selection of the basis

vector set.

4. Strategies of selection of the basis vector set

In the relative MDS, there arises a problem of selection

of the basis vector set F. Some strategies can be used:

I. Set F consists of the cluster centres, obtained by

k-means clustering algorithm.

II. Set F consists of data set points that are the closest

points to the cluster centres, obtained by k-means

algorithm. Additional points of each cluster are

added to set F: these points are selected to be far-

thest from the respective cluster centres.

III. Set F consists of data set points, chosen randomly

from the whole data set.

Strategy I was proposed and analysed in [12]. We pro-

pose here Strategies II and III. The general scheme of visu-

alization process is presented in Fig 1.

In Fig 2, the projections of two spheres are pre-sented

for illustration of the strategies. At first, it is necessary to

form the basis vector set F. The points of the formed basis

set F are mapped on the plane, using the MDS algorithm.

Using Strategy I, set F consists of the centres of 20 clusters

(marked by circled crosses in Fig 2 a). Using Strategy II,

set F consists of two sub-sets: (a) two points (marked by

circled crosses in Fig 2 b), which are closest to the centres

of two clusters and (b) 9 points of each cluster (marked by

unfilled circles in Fig 2 b). Using Strategy III, set F con-

sists of 20 points from the data set chosen randomly: the

visualization results are very similar to these of Fig 2 a.
The number of the basis vectors fixedN  is equal to 20 in all

the three cases (Strategies I, II, and III). Then the remain-

ing points (set M), marked by filled circles, are mapped by

the relative MDS algorithm.

To compare the obtained visualization results, the pro-

jection error is calculated:

* 2 * 2( ) ( ) .

m m

ij ij ij

i j i j

E d d d

< <

= −∑ ∑ (4)

The projection error E (4) is used here instead of MDSE

(1), because the inclusion of the normalized parameter

* 2( )

m

ij

i j

d

<

∑  
gives a clear interpretation of image quality that

does not depend on the scale and the number of distances

in an n-dimensional space. The reason for using E rather

than the squared error 2E  is that 2E  is almost always very

small in practice, so E values are easier to discriminate [3].

Of course, the error E (4) may be used in the MDS, how-

ever, it is impossible to decompose and apply this error for

Fig 1. Scheme of the visualization process: (1) selection of the
basis vector set, (2) the basis vector set is projected by MDS map-
ping, (3) the remaining points are projected by relative MDS
mapping

Fig 2. Projections of two spheres: (a) using Strategy I

0.12814E = , (b) using Strategy II  0.12265E =
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the relative MDS. Therefore, MDSE  (1) is minimized.

Using Strategy II, the projection error (4) is obtained a

little smaller ( 0.12265)E =  than using Strategy I

( 0.12814)E =  (Fig 2).

5. Results of comparative analysis

With a view to evaluate the influence of a basis vector

set on the visualization results, three strategies, mentioned

above, are compared.

Using Strategy I, the basis vector set is constructed from

centres of clusters. An experiment consists of two stages of

the whole data set visualization: (a) the mapping of the ba-

sis vector set using the MDS algorithm and (b) the map-

ping of the remaining data using the relative MDS algo-

rithm. As the results of the k-means clustering algorithm

depend on the selection of initial centres of the clusters, the

Fig 3. Dependence of the projection error on computing time

Fig 4. Dependence of the projection error on the number of the
basis vectors

experiment has been repeated for 10 times choosing differ-

ent sets of initial cluster centres for each fixed number of

clusters 100, 200,..., 800fixedN = .

Using Strategy II, the experiments are performed with

the following number of clusters: 10, 20,…, 80. Here the

nearest points to the cluster centres plus 9 or less additional

points from each cluster are used to form the basis vector

set F. The number of additional points depends on cluster-

ing results: one or some clusters, obtained by the k-means

algorithm, may consist of less than 9 points. So, the num-

ber of the basis vectors fixedN  is almost equal to 100,

200,…, 800. Each experiment has been repeated for 10 times

choosing different sets of the initial cluster centres.

Using Strategy III, the experiments are done with the

following number of the data set points chosen randomly:

100, 200,..., 800fixedN = . Each experiment has been re-

peated for 10 times choosing a different set of points.

The projection error (4) is used to estimate the visual-

ization results. These errors, obtained in 10 experiments,

are averaged for each strategy individually. The dependence

of the projection error on computing time is presented in

Fig 3. Numbers, marked near the curves, denote the num-

bers of the basis vectors fixedN . Fig 3 a shows that the

lower projection error is obtained by using Strategy II than

using Strategy I. The computing time is saved: a lower pro-

jection error is obtained faster even with larger number of

the basis vectors. When all points ( 1115m = ) of the data

set are mapped by MDS, the computing time is 13 511 s,

and 0.26554E =  (after 200 iterations). Using the modifica-

tion of the relative MDS, the projection error is lower, and

the computing time is saved significantly (4000 s,

0.25670E =  in the worst case). Fig 3 b shows that the

projection errors are very similar, using Strategies II and

III. This fact proves the efficiency of the relative MDS for

mapping the large data set.

The dependence of the projection error on the number

of the basis vectors fixedN  is presented in Fig 4. It shows

that the averaged projection error E constantly decreases,

when fixedN  increases, using Strategies II and III. Using

Strategy I, the averaged projection error E stabilizes for

300fixedN ≈ , and with an fixedN  increase, E changes

inessentially. The error E, obtained using Strategy I, is

greater than that, obtained using Strategies II and III.

The projection errors, obtained by using a different num-

ber of fixedN  (the number of clusters 10,20,...,50k = , and

the number of the data set points from each cluster

5,10,..., 25p = ) are presented in Table 1 and Fig 5 for Stra-

tegy II.

The experiments illustrate that the number k of clusters

has influence on the projection error and on the visualiza-

tion results (Fig 6). In this case (Table 1, Fig 2), it is neces-

sary to use more than 30 clusters. When the number p of
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the data set points from each cluster increases, the projec-

tion error decreases and the visualization quality improves.

However, too large number N
fixed 

 of the basis vectors in-

creases the computing time, while the error changes

inessentially. In Fig 6, the visualization results of the ellip-

soidal data are presented: (a)  10,k =  10,p =  (b) 50,k =

10.p =   The lower projection is obtained and the quality

of visualization is better in case (b).

6. Conclusions

The visual analysis of large data sets is a topical prob-

lem. However, when a large data set of multidimensional

vectors is visualized by the MDS method, it takes much

computing time. In this paper, we have investigated a modi-

fication of the MDS method for large data sets: at first,

some basis vectors are projected onto the plane, then the

remaining points are projected among the previously

mapped points.

The investigation allows to draw the following conclu-

sions:

• the strategy of selecting the basis vectors directly

influences the visualization results;

• the better visualization results are obtained when the

basis vectors are selected so that they cover the area

of location of analysed data set as uniformly as pos-

sible;

• when the number of the basis vectors increases, a

more precise projection is obtained, however, too

large number of the visualized basis vectors extends

the computing time;

• it is expedient to take the basis vectors from the data

points which are closest to the cluster centres in-

stead of direct selection of cluster centres as the ba-

sis vectors.

The efficiency of Strategy II and III is similar for the

ellipsoidal data set. Further investigations should be pur-

sued with the larger number of data sets in order to get the

exact estimates on comparative efficiency of these two strat-

egies.
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BAZINIŲ VEKTORIŲ PARINKIMO STRATEGIJŲ ANALIZĖ, TAIKANT
SANTYKINĮ DAUGIAMAČIŲ SKALIŲ METODĄ

J. Bernatavičienė, G. Dzemyda, O. Kurasova, V. Marcinkevičius

Santrauka
Nagrinėjamas daugiamačių skalių metodas (MDS), pritaikytas didelių duomenų aibių analizei. Bendra algoritmo schema išskiriama

į tris etapus: suformuojama bazinių vektorių aibė, paskui, naudojant klasikinį MDS algoritmą, baziniai vektoriai projektuojami į plokštumą,
likusi duomenų aibė vizualizuojama, naudojant santykinį MDS algoritmą. Originaliame algoritme bazinių vektorių aibė formuojama,
atsižvelgiant į k vidurkių klasterizavimo rezultatus. Šiame straipsnyje pasiūlytos dvi naujos bazinių vektorių parinkimo strategijos:
vienoje taip pat atsižvelgiama į k vidurkių klasterizavimo rezultatus, tačiau kitu būdu, kitoje baziniais vektoriais parenkami duomenų
aibės taškai. Eksperimentiniai tyrimai parodė, kad pasiūlytų strategijų naudojimas pagerina vizualizavimo kokybę, sutaupo skaičiavimo
laiką.

Reikšminiai žodžiai: daugiamačių skalių metodas, vizualizavimas, klasterizavimas, bazinių vektorių aibė, naujų taškų vaizdavimas.
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