
69

ISSN 1392-8619 print/ISSN 1822-3613 online

ÛKIO TECHNOLÛKIO TECHNOLÛKIO TECHNOLÛKIO TECHNOLÛKIO TECHNOLOGINIS IR EKOGINIS IR EKOGINIS IR EKOGINIS IR EKOGINIS IR EKONOMINIS VYSTYMASONOMINIS VYSTYMASONOMINIS VYSTYMASONOMINIS VYSTYMASONOMINIS VYSTYMAS
TECHNOLTECHNOLTECHNOLTECHNOLTECHNOLOGICAL AND ECONOMIC DEVELOGICAL AND ECONOMIC DEVELOGICAL AND ECONOMIC DEVELOGICAL AND ECONOMIC DEVELOGICAL AND ECONOMIC DEVELOPMENT OF ECONOMYOPMENT OF ECONOMYOPMENT OF ECONOMYOPMENT OF ECONOMYOPMENT OF ECONOMY

http://www.tede.vgtu.lt

2006, Vol XII, No 1, 69–75

ON MULTIDIMENSIONAL SCALING WITH EUCLIDEAN AND CITY BLOCK
METRICS

Antanas �ilinskas1, Julius �ilinskas2

Institute of Mathematics and Informatics, Akademijos g. 4, LT-08663 Vilnius, Lithuania
E-mail: 1antanasz@ktl.mii.lt, 2julius.zilinskas@mii.lt

Received 3 October 2005; accepted 4 January 2006

Abstract. Experimental sciences collect large amounts of data. Different techniques are available for information elici-
tation from data. Frequently statistical analysis should be combined with the experience and intuition of researchers.
Human heuristic abilities are developed and oriented to patterns in space of dimensionality up to 3. Multidimensional
scaling (MDS) addresses the problem how objects represented by proximity data can be represented by points in low
dimensional space. MDS methods are implemented as the optimization of a stress function measuring fit of the proxim-
ity data by the distances between the respective points. Since the optimization problem is multimodal, a global optimi-
zation method should be used. In the present paper a combination of an evolutionary metaheuristic algorithm with a
local search algorithm is used. The experimental results show the influence of metrics defining distances in the consid-
ered spaces on the results of multidimensional scaling. Data sets with known and unknown structure and different
dimensionality (up to 512 variables) have been visualized.

Keywords: Multidimensional scaling, global optimization, metaheuristics, city block metrics, visualization of multidi-
mensional data.

1. Introduction

Multidimensional scaling (MDS) is a technique for the
analysis of multidimensional data widely usable in different
applications [1]. The dissimilarity between pairs of n objects
is given by matrix δij, i, j = 1, …, n, and it is supposed that
δij = δji. Points xi, i = 1, …, n in embedding space Rm should
be found which interpoint distances fit given dissimilarities.
The problem is reduced to minimization of a fitness
criterion, e.g. so called STRESS function
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where X = (x11, …, xn1, x12, …, xnm), and dij(X) denotes the
distance between points xi and xj. It is supposed that the
weights are positive: wij > 0, i, j = 1, …, n. Most frequently
two dimensional (m = 2) embedding vector space Rm is
considered, for example, aiming to visualize the results of
MDS.

Although STRESS function is defined by the analytical
formula which seems rather simple, its minimization is

difficult. STRESS function normally has many local minima.
The minimization problem is high dimensional: X∈ RN

where the number of variables is equal to N = n×m.
Smoothness of STRESS depends on metrics of embedding
space, however, nondifferentiability normally can not be
ignored. Therefore MDS is a difficult global optimization
problem. Global optimization methods are developed for
various classes of multimodal problems [2]. Different global
optimization methods have been applied to MDS, e.g.
tunneling method in [3], evolutionary method in [4],
simulated annealing in [5–7].

2. Comparison of two metrics in the embedding space

Majority of publications on MDS consider STRESS
with Euclidean distances:
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However, the interest to the methods based on city block
distances increases:
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see, e.g. [5, 6]. For a review on MDS with city block
distances we refer to [5]. Points x

i
, defined using different

distances in the embedding space, can be interpreted as
different projections of the original objects in the embedding
space. Different projections can provide different
information on original objects thus enhancing exploratory
power of MDS methods. To understand what properties of
the original objects can be best highlighted using Euclidean
and city block metrics in the present paper we investigate
the images of the objects with known properties.

For this experiment a reliable global optimization
method is desirable. The results in [8–9] show that a
combination of evolutionary global search with an efficient
local descent is the most time consuming, but the most
reliable method. The implementation suitable for both
versions of STRESS function is favorable. Therefore we
have implemented a memetic algorithm with convex
crossover operator and uniform selection. To avoid
difficulties caused by nondifferentiability for local
minimization a search algorithm is preferable against a
gradient based descent algorithm. However, a good
convergence rate of the algorithm for smooth functions is
desirable. The known algorithm by Powell has the
properties mentioned above; the implementation of the
algorithm from [10] has been chosen.

We use several sets of data for testing. There are many
applications of MDS where data (objects) are a set of
multidimensional points. Dissimilarity is defined by the
distance in an original vector space. Such a problem is
important, e.g. for the analysis of bio-medical data. A
classical example is Iris data [11]. For an example of
visualization of objective and subjective data of the
population of patients we refer to [12].

Iris data are analyzed using different methods and they
have a well known structure: there are two contiguous
clusters and one well separated cluster. Images of Iris data
obtained by means of different MDS methods are expected
to highlight this structure of the data. There are 150
instances (50 in each of three classes: Iris Setosa, Iris
Versicolour, Iris Virginica) in this data. 4 numeric attributes
(sepal length, sepal width, petal length, petal width) define
multidimensional data. Therefore, dim = 4, n = 150.

The other data sets represent well understood geometric
objects: vertexes of multidimensional cubes and simplexes
of different dimensionality. For both types of objects
symmetric location of vertexes is characteristic. In the image
of a simplex special central location of the “zero” vertex is
expected while the other vertexes are expected to be shown

alike. All vertexes of a hypercube are equally far from the
center and compose clusters containing 2d points.

Vertexes of multidimensional simplex may be defined
by

1, if 1,
0, otherwise,ij
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where i = 1, …, dim+1, and j = 1, …, dim. The number of
vertexes of multidimensional simplex is n = dim+1.
The number of vertexes of multidimensional hypercube is
n = 2dim.

Finally a data set of a psychological experiment related
to soft drinks testing is used. In this case considered objects
are defined by means of a dissimilarity matrix where
dissimilarities are measured experimentally [13]. There are
ten objects representing each soft drink, therefore n = 10.

3. Experimental Results

The developed evolutionary global search algorithm with
different metrics has been used to visualize data sets. The
normalized best function value found is shown in figures:
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The images of Iris data visualized using
multidimensional scaling are shown in Fig 1. Four pictures
show the comparison of different metrics. In the original
space city block metric is used in the upper row and
Euclidean in the lower row. In the embedding space city
block metric is used in the left column and Euclidean in the
right column. Different classes of Iris data are denoted by
letters t (Iris Setosa), l (Iris Versicolour) and g (Iris
Virginica). The known structure of the data is well visible
in all pictures. However, the contiguous clusters are best
separated in case Euclidean metric is used to measure
distances in original space, and city block metric is used in
embedding space.

The images of simplexes and hyper-cubes visualized
using multidimensional scaling are shown in Fig 2 and Fig 3.
Four columns show the comparison of different metrics.
The first column represents visualization when both original
and embedding spaces are with city block metric, the
secon – with city block original space and Euclidean
embedding space, the third – with Euclidean original and
city block embedding spaces, and the fourth – with both
Euclidean spaces.

The vertexes of the objects are visualized and are shown
as circles. To make representations more visual, adjacent
vertices are joined by lines. Darker lines show joins adjacent
to the “zero” vertex in the case of simplex and adjacent to
two opposite vertexes in the case of hyper-cube.
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Visualized three-dimensional to twenty-dimensional
simplexes are shown in Fig 2. When city block metric is
used in both spaces, three- and four-dimensional simplexes
can be visualized fitting multidimensional distances exactly.
This is the case for city block metrics only. The “zero”
vertex is always visualized in the center of the structure.
Other vertexes of multidimensional simplexes tend to form
a rhomb or diamond shaped structure when city block metric
is used in the embedding space. Let us note that points on
the rhomb are of the same distance to the center when city
block metric is used. In the case of Euclidean embedding
space, other vertexes of multidimensional simplexes tend
to form a circle, however, when the dimensionality of
simplex and the number of vertexes are increased, a part of
the vertexes starts to form a smaller circle. In this case “non-
zero” vertexes are not shown alike.

Fig 1. Images of Iris data

Visualized three-dimensional to eight-dimensional
hyper-cubes are shown in Fig 3. Perspective is usually used
by artists and designers to visualize the cube on the plain.
It would be possible to imagine the cube visualized by MDS
with city block metrics, if positive perspective is used in
one coordinate direction and negative in the other. Similarly
to simplexes, vertexes of multidimensional hyper-cubes
tend to form a diamond shaped structure when city block
metric is used in the embedding space. However, in the
case of hyper-cubes, visualized vertexes form clusters. In
the case of Euclidean embedding space, vertexes of hyper-
cube tend to form clusters and fill a circle. In this case
vertexes are not shown alike again.

Diamond shaped structures in visualization with city
block embedding space suggest to use modified city block
metric rotated by 45 degrees which can be called diagonal
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Fig 2. Images of simplexes
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Fig 3. Images of hyper-cubes
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city block metric, serpentine metric or staircase metric.
Multidimensional simplexes and hyper-cubes visualized
with such metric would form structures similar to squares.

The images of soft drinks visualized using
multidimensional scaling are shown in Fig 4. Visualization
with city block embedding space is shown on the left and
with Euclidean embedding space – on the right. Objects
tend to form a diamond shaped structure when city block
metric is used and an ellipse shaped structure when
Euclidean metric is used. However, both pictures are similar
and can be interpreted similarly; therefore it is difficult to
assess the advantages of metrics.

4. Conclusions

Visualization results depend on metric of the embed-
ding space stronger than on metric of the space of originals.

Visualization of geometric data better highlights the
properties of the originals when distances in embedding
space are measured according to city block metric than ac-
cording to Euclidean metric.

For the data without strictly defined structure visualiza-
tion the use of both investigated metrics gives similar pic-
tures; in this case it is difficult to assess the advantages of
visualization methods.
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DAUGIAMAČIŲ SKALIŲ SU EUKLIDO IR MANHETENO METRIKOMIS SUDARYMO METODAI

A. �ilinskas, J. �ilinskas

San t rauka

Eksperimentiniai mokslai kaupia didelius duomenų kiekius. Sukurta daug metodų informacijai i� duomenų i�gauti. Da�nai
statistiniai metodai yra derinami su euristine analize pagrįsta tyrinėtojų intuicija. Tačiau euristiniai �monių sugebėjimai gerai tinka
analizuoti duomenis, kurių matavimų skaičius nevir�ija 3. Daugiamačių skalių metodas skirtas vaizduoti objektams ma�o matavimų
skaičiaus erdvėje, kai objektai apibrė�ti pana�umais/nepana�umais, o atstumai vaizdų erdvėje vaizduoja nepana�umus. Daugiamačių
skalių metodai sudaromi kaip vaizdavimo tikslumo kriterijaus, paprastai vadinamo stresu, minimizavimo procedūros. Kadangi
optimizavimo u�daviniai daugiaekstremalūs, jiems spręsti reikia globalios optimizacijos metodų. �iame darbe pasiūlytas algoritmas,
jungiantis metaeuristinę globalią paie�ką ir lokalios minimizacijos metodą. Eksperimentais i�tirta metrikos vaizdų erdvėje įtaka
vaizdavimo tikslumui ir algoritmo efektyvumui. Eksperimentuose naudotos duomenų aibės su �inoma ir ne�inoma struktūra; opti-
mizacijos u�davinio kintamųjų yra iki 512.

Pagrindiniai �od�iai: daugiadimensės skalės, globalioji optimizacija, metaeuristiniai metodai, Manheteno metrika, daugiamačių
duomenų vizualizacija.
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