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Abstract.  Many real-life optimization problems are of the multiobjective type and highdimensional. Possibilities for
solving large scale optimization problems on a computer network or multiprocessor computer using a multi-level ap-
proach are studied. The paper treats numerical methods in which procedural and rounding errors are unavoidable, for
example, those arising in mathematical modelling and simulation. For the solution of involving decomposition-coordi-
nation problems some rapidly convergent interative methods are developed based on the classical cubically convergent
method of tangent hyperbolas (Chebyshev-Halley method) and the method of tangent parabolas (Euler-Chebyshev
method). A family of iterative methods having the convergence order equal to four is also considered. Convergence
properties and computational aspects of the methods under consideration are examined. The problems of their global
implementation and polyalgorithmic strategy are discussed as well.
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1. Introduction
A number of problems in economics, engineering and

scientific computation (e.g. production planning, process
control, image restoration, parameter identification, neural
networks, inverse problems) lead frequently to a large math-
ematical programming problem

{ }Qxxf ∈:)(min , (1)

where Q  is a closed subset of nℜ . It also contains the prob-
lem of finding fixed points of nonlinear mapping F, i.e.

0)( =xF  (2)

with

2
)(

2

1
)( xFxf =   and  nQ ℜ= , (3)

where F is acting between spaces nℜ  and mℜ∈ . On the

other hand, the problem of finding an extremum for con-

strained optimization problems is frequently reduced by
means of Lagrange multipliers or penalty functions to seek-
ing stationary points of certain unconstrained functionals.
Thus problems (1) and (2) are closely related.

One of the potential ways to reduce the total time needed
for computing the solution of a large scale problem is to use
parallel computations. The idea of hierarhical decision mak-
ing is to reduce the overall complex problem into smaller
and simpler approximate problems which can then be dis-
tributed over a larger number of processors and treated in-
dependently. One way to break a large problem into smaller
subproblems is the use of decomposition-coordination
schemes, i.e. by designating the processors (computers) as
the master and slaves. Decomposability is a kind of orga-
nized sparseness. The problem variables can be divided into
groups so that most variables interact only with members of
their own group. It should then be possible to solve the prob-
lem hierarchically: on the top level, setting values for a small
number of variables common to the groups, and on the lower
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level, solving independently within each group for those
variables that interact only with others in the same group.

The computation of proper values for coordination pa-
rameters in convex programming leads often to solving an
auxiliary optimization problem or a system of nonlinear
equations

                         ( ( ), ) 0H y β β = ,  (4)

where 1( , ..., )T
mH H H=  and 1( ,..., )T

mβ = β β  while the

components of vector 1( , ..., )T
my y y=  are to be determined

as solution of  nonlinear problems

( , β) min, (β)i i i iF y y→ ∈Γ (5)

depending on parameter  vector β  and where iF  is the
performance index of i-th subproblem and in

i ℜ⊂Γ )(β  is
its feasible region.

In order to develop many optimum plans and to treat
with large scale problems a multi-level approach may be
useful.

Arguably, many socio-ecological and industrial optimi-
zation problems are of a multiobjective type. If different
decision makers stand behind different objective functions

)(...,,)(1 xFxF k , then the two-level strategy based on the
weighting method can be used. In the weighting method the
idea is to associate each objective function with a weight-
ing factor and to minimize the weighted sum of objectives.
In this way the multiple objective functions are transformed
into a single objective function:

minimize 
1

( )
k

i i
i

w f x
=
∑ ,

subject to x Q∈ ,

where 0iw ≥ for all 1,...,i k=  and

1
1.

k
i

i
w

=
=∑

Therefore, the weighting method can be considered as a
two-level optimization procedure: on the first level we find

proper weights iw and after that we minimize 
1

( )
k

i i
i

w f x
=
∑ .

Assuming that the problems (5) have the solutions
)( *βii yy = , we shall study the problem for determining

coordination vector mℜ∈*β  from the equation (4).
Further on, we shall reformulate the problem (4) into

the form (2) more habitual for mathematics, where
),()( xHxF ⋅≡  and x will stand for the argument.

Decomposition-coordination problems have some spe-
cific features:
• the user has at his/her disposal only functional values;
• the evaluation of functional values includes, basically,

the solution of certain subproblems and therefore it can
cause a great computational effort;

• the functions involved are not necessarily differentiable,
they may belong to a set of almost differentiable func-
tions.
Besides the problem (4) may be ill-conditioned or even

ill-posed, i.e. we cannot assume the existence of 1´ )( −F  or
its boundedeness.

Therefore, when using multi-level approach for prob-
lem solving sophisticated algorithms are needed which try
to find trade-off between robustness, stability and efficiency.
Methods with the high order of convergence making full
use of local information (e.g. functional values, gradient
and Hessian) permit sometimes to win in speed and
accuvacy.

Computational effort is often one of the basic problems
in the solution of real-world problems. The total cost of an
iterative method is determined by the number of iterations
needed to achieve the required accuracy and the cost of
each iteration. The implementation of methods with the high
order of convergence requires computing the solution with
the prescribed accuracy, as a rule, less iterations than the
methods with a lower convergence order and therefore
likely less total arithmetic.

As for stability which is another important aspect of
computation the use of methods with the high order of con-
vergence may relieve the stability problem as well because
they are based at least on a quadratic model. As shown in
[1, 2] even very rough approximation to the operator of the
second derivatives in the methods with the convergence
order 3=p  may provide their numerical stability.

But the functions involving in decomposition-coordina-
tion schemes may be nonsmooth therefore in recent years
nonsmooth Newton and smoothing methods for solving
semismooth and piecewise smooth equations have received
much attention [3, 4]. One possibility to handle equations
with nonsmooth functions is to approximate the locally
Lipschitzian function with a smooth one and to use the de-
rivative of the smooth function in the algorithm whenever a
derivative is needed (e.g. in an extension of the Levenberg-
Marquardt method as suggested in [4]). Certainly, in the
regions where operator F is nonsmooth the use of methods
with a lower convergence order (e.g. secant type methods
[5]) may be more effective.

2. Methods

For finding solutions of (4) we consider approximate
variants of high order methods of the type

),,(1 =−=+ kAxQxx kkkk 0, 1, ..., (6)

where ),( kAxQ  is a sufficiently many times Frechet-dif-
ferentiable operator from Banach X space into itself. It is
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assumed that there exists an exact method which is known
to be convergent with the convergence order 2≥p and has
a similar form. The study of methods with approximate op-
erators gives a more relevant impression of the methods
under discussion. Frequently the use of finite-difference
approximations to the derivatives gives rise to an inexact
method. An approximate variant of the method can also be
obtained as a result of strategy used for solving linear prob-
lems at each iteration, i.e. the associated linear equations
are solved approximately by taking finitely many steps of
an iterative procedure or the inverse operators are approxi-
mated by a recurrence formula.

       If )(),( kkkk xFAAxQ = and [ ] 1´ )(
−

=Γ≈ kkk xFA

one gets a Newton-like method. Let I denote the identity
mapping.

If

1
´́1

( , ) ( ) ( ) ( )
2k k k k k k k kQ x A I A F x A F x A F x

− = −  
, (7)

´́ 21
( ), ) ( ) ( )( ( ))

2k k k k k k k kQ x A A F x A F x A F x= + . (8)

Approximate variants of the cubically convergent
method of tangent hyperbolas (Chebyshev-Halley method)
and the cubically convergent method of tangent parabolas
(Euler-Chebyshev) method are obtained respectively. If in
(7) instead of ( ) ( )k k kF x A F x′′−  we use the approxima-
tions

´ ´1
2 ( ( )) ( ) , 0,

2k k k kF x A F x F xβ β
β

 
− − ≠ 

 

then we obtain

1kx + =

1
´ ´ 1

(1 ) ( ) ( ( )) ( )
2k k k k k kx F x F x A F x F xβ β
β

−
 

= − − + − 
 

(9)

which coincides with the midpoint method

1kx + =

1
´ 1
( ( )) ( )

2k k k k kx F x F x F x
− = − − Γ  

(10)

provided  1β =  and .k kA = Γ
To get a derivative free method the formula (10) can be

modified as follows:

1kx + =

[ ] 1(2 ; ( ),k k k k kx F u x x F x−= − − (11)

where ( ; )F v w  denotes the first order divided difference

with basic elements v and w, 
1

( )
2k k k ku x F x= − Β  and

[ ] 1
1(2 ; ) .k k k kF x x x −

−Β = −

Another possibility to avoid the evalution of ´´F  and
thereby to reduce computational efforts is to replace it by a
fixed bilinear operator:

1kx + =

1
( ) ( ),

2k k k k k kx I A A F x A F x = − − Φ  
(12)

where Φ is a general bounded bilinear operator. The exe-
cution of one iteration step by the formula (12) is equiva-
lent to solving two perturbed linear equations

´( ) ( ) ( ),k k k k kF x V y x F x + − = − 

´
1( ) ( )k k k kF x V x y+ + − = 

21
( ) ,

2 k ky x= − Φ −

where ).(´1
kkk xFAV −= −  Therefore (12) has the similar

computational costs as Newton method. It can be shown that
(12) with kkA Γ=  remains faster than Newton method [6].

Using in (8) the approximation

´´ 2( )( ( ))k k kF x A F x ≈

12 ( ( )) ( ) ( ( ))k k k k k k k kF x A F x F x A x A F x x− ≈ − − − − − 

we get an approximate variant of Euler-Chebyshev method

1kx + =

( ) ( ( )).k k k k k k kx A F x A F x A F x= − − − (13)

This method is remarkable in the sense that in order to
guarantee the convergence order 3=p  for (8) one has to
solve the corresponding linear problems with the accuracy

),)(( 2
kxFO  while for its variant (13) the accuracy of

approximation ))(( kxFO  is sufficient to obtain the same
convergence order.

When only functional values are available then inexact
methods based on finite-difference approximations are
greatly useful. The derivative-free variant of (13)

[ ] 1
1 1 1(2 ; ) ( )k k k k k ky x F y x x F x−

− − −= − − ,

[ ] 1
1 (2 ; ) ( )k k k k k kx y F y x x F y−

+ = − − (14)
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has the asymptotic convergence order equal to 3 provided
´´F  and its divided difference are Lipschitz continous.
If it is not difficult to evaluate the derivatives of F  then

iterative methods with more high convergence order may
be used, e.g.

1 2 ( )k k kx v AF v+ = − −

[ ]1
( ( )) ( ) ,k k k k kA F v A F v F v

−
− + ρ −

ρ

~
( ),k k k kv x A F x= − (15)

where 
−

≈ Γ
~

, ,k k k kA A A  with ´( ) 1,k k kI F x A χ− ≤ <

´ ( ) 1,k k kI F x A χ
− −

− ≤ <
~ ~

´( ) 1,k k kI F x A χ− ≤ <  and

ρ  is a nonzero parameter.
Under the assumption that ´´F  is Lipschitz-continuos it

can be shown that the iterative process (15)   has the con-

vergence order equal to 4 provided 
~

,, kkk χχχ
−

 are of or-

der ))(( kxFO  and ))((
2

kkk xFOAA =−  [7].

If 
~

kkk AAA
−

==  and  ))(( kk xFO=χ  then from (15)

we get the fourth order method

)()2)(( ´
1 kkkkkk vFAIvFAvx −+=+

)( kkkk xFAxv −= (16)

provided .0→ρ

3. Convergence theorem

Assume that the uniformly bounded inverse operator
exists as well as the constants dKM ,,, λ  and the sequence
{ }kχ  satisfying the following inequalities is:

´( ) ,F x M≤ ´́ ( ) ,F x K≤ ,kA ≤ Λ

1 ( ) ,k k kx x F x+ − ≤ λ ( , )λ Λ < ∞ (17)

´( ) ,k k kI F x A χ− ≤ 3
1( ) ( ) ,k kF x d F x+ ≤

0,1,...k = (18)

Theorem. Let ,0 Xx ∈  { }ρ≤−∈= 0: xxXxS and
let the following conditions be valid on S:

1o   operator F is twice Frechet-differentiable;
2o  the second derivative satisfies a Lipschitz-condition

;)()( 2
´´´´ yxLyFxF −≤−  ;0 2 ∞<< L

3o  there exists )(xΓ with Cx ≤Γ )( and ;∞<C

4o  .1)( 0 <= xFdδ
Then the following results are valid:
If ,)(2 kk xFC≤χ  ,2 ∞<C ,/)()3(

03 ρδλ ≤= dHr

where ,)( 3)3( ∑=
∞

=ki
k

i
H δδ  .1)( 00 <== xFdδδ

and ,2212 wCwCd ++=
then the sequence (13) converges cubically

).()/( )3(* δλ kk Hdxx ≤−

Proof. Letting 1w  and 2w be positive constants with
∞<21 , ww  we shall first show the validity of the follow-

ing inequality

2
1( ) ( )k k kF x F x+ ≤ χ +

2
1 ( )k kw F x+ χ + 3

2 ( ) .kw F x (19)

Indeed, taking xxQ =)(1  then

2 1( ) ( ) ( ) ( )Q x Q x x F x= − Γ

generates Newton method and, in general, 2p ≥

1( ) ( ) ( ) ( )p p pQ x Q x x F Q x+  = − Γ   (20)

defines an iterative method

( 1)
11 : ( ) ( ) ( ) ( )p

p k p k k p kkx Q x Q x x F Q x+
++  = = − Γ   (21)

having the convergence order equal to .1+p
Replacing kΓ  in (21) by its approximation on the basis

of Taylor expansion

( )F x x+ ∆ = ´( ) ( )F x F x x+ ∆ +

1
´´ 2

0

( ) (1 )F x t x x t dt+ + ∆ ∆ −∫
we have

(2) ´
1( ) ( ) ( )k k kkF x I F x A F x+  ≤ − + 

[ ]
1

2´´

0

( ( )) ( )k k k k kF x tA F x A F x+ −∫ (1 )t dt− ≤

      
221

( ) ( ) .
2k k kF x K F x≤ χ + Λ (22)

Note, that in the capacity of Λ and K we can take
)1( 0χ+=Λ C and ρ20

´´ )( LxFK +=  respectively. In
analogy we have

(3) (2)
1 1( ) (k kF x F x+ += − (2) (2)´

1 1( ) ( )kk kF x A F x+ + +

1
(2)´́

1
0

( )kF x ++ −∫ [ ]2(2)
1( ) ( ) (1 )k k kkA F x A F x dτ τ τ+ − ≤
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(2) (2)´
1 1( ) ( )kk kI F x A F x+ +≤ − +

2(2)
1( )kG F x +

with .∞<G  Taking )3(
11 : ++ = kk xx  and bearing in mind (21)

we get

(3)
1 1k k kkx x x x+ +− = − ≤

(2)
1( ) ( )k k k kA F x A F x +≤ + ≤

λ ( ) λ ( ) ,k k kF x F x≤ ≤

where 2
0 0

1
1 ( ) .

2
K F xλ χ = + + Λ  

 On the basis of (21)

and (22) it is not hard to obtain the inequality (19). Since

2 ( )k kC F xχ ≤  then

3
1( ) ( ) ,k kF x d F x+ ≤

where 2 1 2 2 ).d C w C w= + +
Thus

1
1

n
n k m m

m k
x x x x

−
+

=
− ≤ − ≤∑

1
2 (3) (3)( ) ( )nkd H H

−  ≤ λ δ − δ  

with ,n k≥  i.e. the sequence { }kx is fundamental and con-
sequently

* lim ,k
k

x x
→∞

=

1
2 (3)* ( ) ,k kx x d H

−
− ≤ λ δ ≤ ρ

1
2 (3)*

0 0 ( ).x x d H
−

− ≤ λ δ

Remark.  It is shown in [6] that for Euler-Chebyshev
method

1( ) ( )k k kF x F x+ ≤ χ +

2 3
1 2( ) ( )k k kw F x w F x+ χ +

and therefore the rate of approximation

2
2 ( )k kC F xχ ≤ may only quarantee the cubic conver-

gence.

4. Computational aspects

For today there are lots of methods with 2≥p , but in
practice they are relatively little exploited. This is partially
due to the fact that computational schemes of execution of

one iteration of these methods are laborous, they require
frequently the evaluation of derivatives of order greater than
one and a good initial guess since their advantages become
evident in the close vicinity of the solution. On the other
hand the total cost of an iterative method is determined by
the number of iterations needed to achieve the required ac-
curacy and the cost of each iteration. The implementation
of methods with the high order convergence requires the
solution with the prescribed accuracy for computing as a
rule less iterations than the methods with a lower conver-
gence order and therefore likely less iterations.

The property of global convergence is a criterion for
robustness. One of the popular ways to guarantee the glo-
bal convergence  or at least to expand the domain of con-
vergence is the “continuation strategy”. According to this
idea, firstly the equation 0)( =xF  must be replaced by a
one-parameter family of problems

[ ],1,0,0)( ∈= λλxG such that )1,()( xGxF = and the solu-
tion of 0)0,( =xG is known. Secondly, a series of prob-
lems must be solved, where parameter λ is slowly varied.
But all the homotopy methods suffer from the disadvan-
tage that the Jacobian may at some iteration points become
singular. One more reason for using methods with the con-
vergence order greater than that of Newton method is the
fact that methods with the convergence order 2>p do not
break down, if ´F is singular or strongly ill-conditioned
since they are based, at least, on a quadratic model and
even very rough approximation to the operator of second
derivatives may provide their numerical stability [1, 2].
Recall that continuous methods converge globally but
slowly, whereas the iterative methods with a large order of
convergence converge locally. These features of methods
can be combined in such a way that the continuation method
is used, if necessary, to help get into the domain of conver-
gence of the rapidly convergent method which then will be
turned on to improve the accuracy.

As mentioned before the functions involved in decom-
position-coordination schemes may be nonsmooth. One
possibility to handle equations with nonsmooth functions
is to approximate the locall Lipschitzian function with a
smooth one and to use the derivative of the smooth func-
tion in the algorithm whenever a derivative is needed.

 The trust region method is one of the effective ways to
compose polyalgorithmic computational schemes. In the
paper [4] a trust region method for solving nonsmooth equa-
tions subject to linear constraints is proposed.

The performance of methods if the type (6) is equiva-
lent to either solving the associated linear equations or com-
puting the inverses with an error at every iteration step. A
strategy of problem solving that instead of finding the ex-
act solution of a linear problem at every iteration solves it
intentionally inexactly is a possibility to save computational
work and is adaptive in the sense that one uses low accu-
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racy numerical solution at inner iterations when the solu-
tion is not reached yet and improves the accuracy as the
solution is approached. In many cases iterative methods
are more appropriate and economical for solving linear
problems than direct ones. Thus, the strategy to solve the
corresponding  linear problems intentionally inexactly can
be used for the purpose of economy. Besides, iterative
methods are self-corecting and hence they are not sensitive
to computational errors.

Multi-criteria analysis uses evaluations on several crite-
ria to recommend a decision. Any decision might be “bet-
ter” than other depending on the point of view. Within the
context of the “compromise” principle classical economics
asserts that market economy, through competetive equilib-
rium, ensures the most efficient allocation of resources judged
by Pareto optimality criterion that no one can be made better
off without making some one worse off. In reality markets
may fail to allocate resources in an optimum way (market
failures) and government intervention under these conditions
is justified as a means for achieving efficient allocation of
resources among societal objectives [7].

 5. Conclusion

Although we have disscussed here the methods on the
theoretical basis, numerical experience with the methods
under consideration has also confirmed these theoretical
considerations. The performance of the combination of the
cubically convergent method (14) with Newton method was
superior both in speed  and accuracy than single Newton
method. These result can partially be found in [6]. These

promising results encourage us to carry out the investiga-
tion of properties of polyalgorithmic procedures.

6. Acknowledgement

The support of the Estonian Science Foundation under
grant Nr. 5006 is gratefully achnowledged.

References

1. Ehle, G. P.; Schwetlick, H. Discretized Euler-Chebyshev mul-
tistep method. SIAM J. Numer. Anal., Vol 13, No 3, 1976,
p. 433�443.

2. Döring, B. Iterative Lösung Gewisser Randwertprobleme und
Integralgleichungen. Applicae Matematiky, Vol 23, 1978,
p. 1�31.

3. Li Qun Qi. Trust region algorithms for solving nonsmooth
equations. SIAM J. Optim., Vol 5, No 1, 1995, p. 219�230.

4. Gabriel, A.; Jong-Shi, P. A trust region method for constrained
nonsmooth equations. In: Large Scale Optimization: State of
the Art (eds. W.W. Hagerer et al). Kluwer Academic Publish-
ers. Dordrecht, 1994, p. 155�181.

5. Amat, S.; Busquier, S.; Gutierrez, J. M. On the local conver-
gence of secant-type methods. Intern. J. Comp. Math., Vol
81, No 9, 2004, p. 1153�1161.

6. Vaarmann, O. On high order iterative methods for nonlinear
problems. In: Nonlinear Mathematical Analysis and Applica-
tions (ed. Th. M. Rassias). Palm Harbor, FL; Hadronic Press,
1998, p. 275�299.

7. Sardar, M. N. Islam Mathematical Economics of Multi-Level
Optimisation. Physica Verlag, A Springer-Verlag Company,
1997. 256 p.

DAUGIALAIPSNIAI ITERACINIAI METODAI SKAIDYMO IR JUNGIMO PROBLEMOMS SPRĘSTI

O. Vaarmann

San t rauka

Daugelis realių optimizavimo u�davinių yra daugiatiksliai ir daugiadimensiai. Straipsnyje nagrinėjamos sudėtingų optimizacijos
u�davinių sprendimų galimybės daugialaipsniu metodu, naudojant kompiuterinį tinklą arba daugiaprocesorinį kompiuterį. Ap�velgiami
tokie įprastininiai skaitiniai metodai, kaip matematinis modeliavimas, kuriame nei�vegiama paklaidų apvalinimo. Skaidymo ir jungimo
problemoms spręsti, remiantis tangentinės hiperbolės (Čeby�evo ir Halėjaus) ir tangentinės parabolės (Oilerio ir Čeby�evo) metodais,
sukurti keli greitos konvergencijos interaciniai metodai. Taip pat aptariama ketvirtojo laipsnio konvergencijos metodų �eima. Nagrinėjamos
sukurtųjų metodų konvergavimo savybės ir skaičiavimo jais aspektai. Svarstomos pasiūlytųjų metodų ir polialgoritminės strategijos
visuotinio taikymo galimybės.

Pagrindiniai �od�iai: Banacho erdvė, daugiatikslė optimizacija, hierachinis sprendimų priėmimas, skaidymo ir jungimo schemos,
tangentinės hiperbolės ir tangentinės parabolės metodai, globalinė konvergencija.

Otu VAARMANN Associate Professor, Tallinn University of Technology. Doctor of Science (1970) of the Estonian Academy of
Sciences. Additional studies: Research Associate at the Glushkov Instiute of Cybernetics (Kiew) (1964-1965); Ph.D studies at the
Institute of Cybernetics (1965-1968). Research interests: Methods for nonlinear equations and optimization problems, pseudoinversion,
ill-posed problems, hiearchical decision making.




