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Abstract. Visualization of large-scale data inherently requires dimensionality reduction to 1D, 2D, or 3D space.
Autoassociative neural networks with a bottleneck layer are commonly used as a nonlinear dimensionality reduction
technique. However, many real-world problems suffer from incomplete data sets, i.e. some values can be missing.
Common methods dealing with missing data include the deletion of all cases with missing values from the data set or
replacement with mean or �normal� values for specific variables. Such methods are appropriate when just a few values
are missing. But in the case when a substantial portion of data is missing, these methods can significantly bias the results
of modeling. To overcome this difficulty, we propose a modified learning procedure for the autoassociative neural
network that directly takes the missing values into account. The outputs of the trained network may be used for substi-
tution of the missing values in the original data set.

Keywords: data visualization, dimensionality reduction, autoassociative neural network, network training, missing
values, incomplete data set.

1. Introduction

When a scientist or an engineer faces a new problem,
the first steps towards its solution are to understand what is
given and which aspects are the most important. Since hu-
mans perceive most of the information in the course of their
life in a visual form, it is preferable to present this new
problem also in some kind of a visual form: directly or
through some analogy, i.e. to visualize it. It is quite easy to
visualize structures or logical relationships by means of flow
charts and block diagrams. But when we come to data sets
describing quantitative characteristics of objects or their
relationships, the problems of dealing with high dimension-
ality arises.

People inherently are able to think only in 1D, 2D, and
3D spaces. On the other hand, most real-world scientific
and engineering problems deal with tens to thousands of
dimensions. Thus, presenting (visualizing) high-dimensional
data in low-dimensional space requires dimensionality re-
duction. It is a technique intended to cut the number of di-
mensions while preserving maximum useful information in
the data set.

Some of the well-known dimensionality reduction meth-
ods are the following:

- principal component analysis (PCA) [1, 2];
- principal curves [3, 4];
- multidimensional scaling [5, 6];
- autoassociative (bottleneck) artificial neural networks

(AANN) [7, 8].
These and many other methods work seamlessly on com-

plete data sets, when all numerical values are present, but
most of them cannot be applied to data sets with missing
values. The essence of the problem lies in mathematics: for
the formulas to be computed all included variables must
take some exact numerical values. When the value is miss-
ing, the formula cannot be computed at all, or it must be
modified to omit this value. When missing values are posi-
tioned randomly in the data set, formulas cannot be modi-
fied to handle all possible situations, thus a way is sought to
fill the missing values with some numerical values.

There are several simple methods to fill missing values:
1. When the number of samples with missing measure-

ments is very small, discard these whole samples.
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2. Replace missing values with mean or some “normal”
(tolerable) value for this parameter.

3. If it is appropriate for the problem at hand, interpo-
late the value from the neighboring cells.

These methods have common drawbacks:
1. Missing data replacement (imputation) leads to bi-

ased estimates.
2. When the “restored” data set is presented to a dimen-

sionality reduction algorithm, it does not “know” which
values are true and which are replaced, and thus they have
the same ranking in terms of their information load. On the
other hand, dimensionality reduction implies information
loss, so it is preferable to keep as much as possible informa-
tion from the true data and completely ignore all missing
data.

Thus, it is desirable to develop an algorithm that would
explicitly handle missing data, eliminating the
abovementioned drawbacks. For PCA such an algorithm
exists, it is a well-known expectation maximization (EM)
algorithm [9]. However, PCA provides only linear projec-
tion, and more efficient results can be obtained by employ-
ing nonlinear dimensionality reduction techniques.

Autoassociative (bottleneck) neural networks can be seen
as the generalization of PCA to the nonlinear case. It is
proven [10, 11] that if only linear activation functions are
used and the network is optimally trained, it performs ex-
actly the same projection as PCA. In this paper we propose
modifications to standard learning procedures for AANN,
which allow direct handling of the missing data, extract most
information from the present data and estimate the missing
values from the low-dimensional representation of the data
set.

The paper is organized as follows: section 2 gives a short
overview of standard AANN architecture and learning al-
gorithms; in section 3 the proposed modifications are pre-
sented; section 4 supports theoretical findings with experi-
mental evidence; and finally, conclusions are made on the
basis of the obtained results.

The following notation is adopted:
X – N×D matrix containing the data set, where
N – number of samples,
D – original (high) dimensionality of the data;

( )x k – k-th row of X, i.e. one sample;

( )y k – low-dimensional representation of ( )x k ;

( )x̂ k – reconstruction of ( )x k , obtained from ( )y k .

2. Autoassociative neural networks

AANN is a kind of feedforward neural network with
multiple hidden layers. Depending on the architecture and
activation functions used, AANN can perform linear or non-
linear mapping.

General AANN architecture [7, 8] is presented in Fig 1.
It consists of input and output layers (with linear activation
functions) with the number of neurons equal to the original
dimensionality of the data. The first and the third hidden
layers (with nonlinear activation functions) contain equal
number of neurons which is chosen according to the prob-
lem at hand. The second hidden layer (with linear activa-
tion functions) is the “bottleneck” layer which number of
neurons is equal to the target low dimensionality. The out-
puts of the network are extracted from this layer. Such a
network can be considered as two parts: input and the first
two hidden layers form a multilayer perceptron (MLP1) with
one hidden layer that performs nonlinear mapping

( ) ( )x k y k⇒ ; the second and the third hidden layers with
the output layer form the second multilayer perceptron
(MLP2) that solves the reverse problem of reconstructing
the original data ( ) ( )ˆ⇒y k x k . The idea is to “squeeze”
high-dimensional data through a low-dimensional “bottle-
neck” (the second hidden layer) so that the reconstruction

( )x̂ k  is as close to the original data ( )x k  as possible, i.e.
maximum of information is retained. Thus the network in-
puts are also used as learning targets.

Fig 1. General AANN architecture

( )y k

( )x k ( )x̂ k
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To achieve this goal, the network is trained in the super-
vised mode with respect to the following criterion

( ) ( ) 2

1

ˆ
N

k

E x k x k
=

= −∑ . (1)

If only linear mapping is required, the first and the third
hidden layers (with nonlinear activation functions) are unnec-
essary and the general architecture can be simplified (Fig 2).

AANN can be trained with any learning algorithm suit-
able for feedforward neural network. Most of them are based
on the backpropagation procedure to calculate error gradi-
ents for hidden layers. Since for our further consideration,
the choice of a particular learning algorithm does not mat-
ter, we will not focus on this issue.

3. Modified learning procedure

Now consider the case of missing values. The goal is to
eliminate their influence on the network output and weights
update.

The network outputs are formed by feeding forward the
inputs through the network layers. The only layer that di-
rectly receives the inputs ( )x k  is the first hidden layer. The
weighted inputs are accumulated to form the neurons acti-
vations as follows:

,
D

j ji i
i 1

a w x
=

= ∑ (2)

where ia – activation of j-th neuron, ix – i-th input, jiw –
the corresponding synaptic weight.

If the input is missing, it is natural to exclude the corre-
sponding term from summation, which is equivalent to set-
ting the corresponding ix  to zero. In this way, missing value
does not influence the sum (the neuron activation), hence,
the neuron output, hence, the network output.

The network learning is basically an optimization pro-
cedure performed with respect to criterion (1). Ideally, the

Fig 2. Simplified AANN architecture for linear mapping

absolute value of E can drop to 0, if the network perfectly
reconstructs its inputs. In reality it is always above 0 and
the goal of learning is to minimize it by adjusting the synap-
tic weights of the network. Obviously, higher errors at par-
ticular network outputs lead to bigger adjustment of weights.
On the contrary, zero errors lead to no adjustment. Thus, to
eliminate the influence of missing values on the network
learning, it is necessary to zero out errors at those outputs,
where the target values are missing.

Such a modification to weight update scheme has a very
important advantage: it is equivalent to weighting output er-
rors with 1 (when the target is present) and 0 (when the target
is missing), thus shifting the learning “attention” only to real
data and completely discarding missing values. Hence, maxi-
mum retention of useful information from the data set is
achieved in the course of dimensionality reduction.

When the learning procedure converges, the outputs of
the network may be used to replace the corresponding miss-
ing values in the data set. If the task of missing value resto-
ration is the primary one, the outputs of the network, where
the target values are missing, may be fed back to the corre-
sponding inputs. This will lead to an iterative process of
missing value reconstruction.

Thus, the proposed modifications can be summarized in
the following two rules:

1. Replace missing inputs with zeros.
2. Replace learning errors with zeros where targets are

missing.

4. Experimental results

The proposed approach was applied to a real-world prob-
lem of biomedical data visualization. The data set contains
blood tests (35 parameters) for 26 patients taken before and
after treatment (total of 52 samples). Dimensionality reduc-
tion is performed from 35D to 2D. To compare different
algorithms, 20% of data is randomly discarded, so we have
both full and incomplete data sets.

The reference visualization is obtained by applying stan-
dard PCA to the full data set (Fig 3). Each line represents
one patient, the end with a solid circle corresponds to the
blood test taken before treatment, and the end with an empty
circle corresponds to the blood test taken after treatment.
The incomplete data set is visualized using three different
approaches: Fig 4 – missing data are replaced with mean
values for the corresponding parameter and then standard
PCA is applied; Fig 5 – EM algorithm is applied directly to
the incomplete data set; Fig 6 – the proposed modified
AANN method is applied directly to the incomplete data
set. Linear AANN (35-2-35 architecture) was used because
we are comparing to linear PCA methods.

Visual analysis of the obtained visualizations reveals the
following:



S. Popov  / ŪKIO TECHNOLOGINIS IR EKONOMINIS VYSTYMAS � 2006, Vol XII, No 1, 44�49 47

Fig 3. Visualization of complete data set

Fig 4. Visualization of incomplete data set with PCA (missing values are replaced by mean)
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Fig 5. Visualization of incomplete data set with PCA using EM algorithm

Fig 6. Visualization of incomplete data set with the proposed approach
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1. Replacing of missing data by mean led to a severe
distortion of the data cloud shape and interrelations between
data points. This could lead to wrong conclusions, if this
visualization was used for decision making or express diag-
nostics.

2. EM algorithm performed much better than the previ-
ous method. The overall shape is only slightly distorted, but
interrelations between data points are still wrong in many
cases and are closer to the result of the previous method
than to the reference.

3. The proposed approach yielded the best visualization
in terms of its closeness to the reference PCA visualization of
the complete data set. The shape is preserved almost pre-
cisely and data points interrelations are only slightly distorted.

5. Conclusions

In this paper we proposed modifications to AANN learn-
ing procedures that allow direct handling of data sets with
missing values. One of its most important advantages for
dimensionality reduction is the ability to preserve most of
information from the present data while completely ignor-
ing missing values that is very useful when a substantial
portion of a data set is missing. This approach can be used
for both linear and nonlinear dimensionality reduction and
does not depend on the network architecture and learning
algorithm, i.e. any supervised learning can be applied, any
type of neural network can be used that performs weighted
summation of inputs. The proposed approach can be easily
generalized to other types of feedforward neural networks
that are trained by supervised learning algorithms.

The comparison of experimental results has shown the
superiority of the proposed method over other approaches
to missing data handling, in particular, the replacement of

missing values by mean values and the expectation maxi-
mization algorithm.
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DAUGIAMATĖS ERDVĖS DUOMENŲ GRAFINIS VAIZDAVIMAS, KAI TRŪKSTA REIK�MIŲ

S. Popov

San t rauka

Vaizduojant daugiamatę informaciją, paprastai reikia ją transformuoti į vienmatę, dvimatę arba trimatę erdvę. Nelinijinei daugiamatės
erdvės transformacijai paprastai naudojami autoasociatyvieji neuroniniai tinklai. Tačiau, da�nai sprend�iant realias problemas, dalis
informacijos dingsta. Taikant tradicinius metodus, elgiamasi dvejopai: trūkstama informacija ignoruojama; trūkstamos reik�mės
pakeičiamos vidutinėmis arba tam tikromis konkrečiam kintamajam būdingomis reik�mėmis. �ie metodai tinka tada, kai trūksta tik kelių
reik�mių. Kai trūksta daugelio duomenų, minėtieji metodai gali labai i�kraipyti modeliavimo rezultatus. �iai problemai i�spręsti autoriai
pasiūlė procedūrą, kuri, naudojant autoasociatyvųjį neuroninį tinklą duomenų transformacijai, įvertina trūkstamas reik�mes. Skaičiavimo
rezultatai, tobulesniu neuroniniu tinklu gali būti naudojami trūkstamoms reik�mėms pirminėje duomenų aibėje pakeisti.

Pagrindiniai �od�iai: duomenų vaizdavimas, daugiamatės erdvės transformacija, autoasociatyvusis neuroninis tinklas, tinklo
tobulinimas, nei�samių duomenų imtis.
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