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Abstract. In this paper we present the implementation of Genetic Algorithms (GA) for job scheduling on computational
grids that optimizes the makespan and the total flowtime. Job scheduling on computational grids is a key problem in
large scale grid-based applications for solving complex problems. The aim is to obtain an efficient scheduler able to
allocate a large number of jobs originated from large scale applications to  grid resources. Several variations for GA
operators are examined in order to identify which works best for the problem. To this end we have developed a grid
simulator package to generate large and very large size instances of the problem and have used them to study the
performance of GA implementation. Through extensive experimenting and fine tuning of parameters we have identified
the configuration of operators and parameters that outperforms the existing implementations in the literature for static
instances of the problem. The experimental results show the robustness of the implementation, improved performance
of static instances compared to reported results in the literature and, finally, a fast reduction of the makespan making
thus the scheduler of practical interest for grid environments.
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1.  Introduction

The emerging paradigm of grid computing and the con-
struction of computational grids [1] are making the develop-
ment of large scale applications possible from optimization
and other fields. The development or adaptation of applica-
tions for grid environments is being challenged by the need
of scheduling a large number of jobs to resources efficiently.
Moreover, the computing resources may vary in regard to
their objectives, scope, structure as well as to their resource
management policies such as access and cost.

Job scheduling on computational grids is gaining impor-
tance due to the large scale applications of the grid, e.g. op-
timization [2–4], collaborative/eScience computing [5, 6],
data-intensive computing [7, 8]  that need efficient schedulers.
This scheduling task is much more complex than its version
in traditional computing environments. Indeed, the grid en-
vironment is dynamic and, also the number of resources to
manage and the number of jobs to be scheduled are usually

very large making thus the problem a complex large scale
optimization problem. This problem is multiobjective in its
general definition, as several optimization criteria such as
makespan, flowtime and resource utilization are to be
matched.

Due to its theoretical and practical relevance, the evolu-
tionary computing research community has started to ex-
amine this problem [9–13]. However, the existing ap-
proaches in the literature show several limitations: in some
works [9, 10, 13] just the uniobjective case is considered
and usually either concrete grid environments [9] or the static
version of the problem are considered [12, 13]. Moreover,
the performace of resulting schedulers has been studied for
small size instances; dynamic aspects of this problem have
not been addressed so far to grid environments.

In this work we present the implementation of Genetic
Algorithms for job scheduling on computational grids that
optimizes the makespan and the flowtime.  We consider two



12 J. Carretero, F. Xhafa  / ŪKIO TECHNOLOGINIS IR EKONOMINIS VYSTYMAS � 2006, Vol XII, No 1, 11�17

versions: the first one is a hierarchic structure of objectives
first (optimizes the makespan and next optimizes the
flowtime); the second one, both objectives are optimized
simultaneously.

We provide several variations for each GA’s operator in
order to identify which works best for the problem. We have
done extensive experimenting and fine tuning of parameters
and have thus identified the configuration of operators and
parameters that outperforms existing implementations [13]
for static instances of the problem. Moreover, in order to
deal with realistic large scale instances of the problem, we
have developed a grid simulator that simulates realistic grid
environments by generating resources and jobs with their
own characteristics. We used the simulator to generate large
and very large size instances of the problem and have used
them to study the performance of GA implementation.

The experimental results show that GA converges to
good solutions even though the initial populations are gen-
erated by LJFR-SJFR (Longest Job to Fastest Resource –
Smallest Job to Fastest Resource) which performs worse
than other ad hoc heuristics such as Min-Min. Finally, the
resulting scheduler from GA implementation shows a fast
reduction on the makespan making thus the scheduler of
practical interest for grid environments.

The paper is organized as follows. We present the defi-
nition of the problem in Section 2. In Section 3 GA for the
problem is presented. The fine tuning of parameters is given
in Section 4. In Section 5 we give the results of the perfor-
mance of the algorithm for static instances as well as for
large and very large size instances (both static and dynamic
settings). We end up in Section 6 with some conclusions
and point out further directions of this research.

2. Problem definition

Job Scheduling in computational grids is a multi-objec-
tive optimization problem. In this work we are concerned
with 2-objective case. More precisely, we consider the prob-
lem formulation in which an instance of the problem con-
sists of the following.
- A number of independent (user/application) tasks that

must be planned/scheduled. Any task has to be processed
entirely in unique resource.

- A number of heterogenuous machines candidates to
participate in the planning.

- The workload of each task.
- The computing capacity of each machine (in mips).
- The expected time to compute, ETC, a matrix of size

number_tasks ´ number_machines, where ETC[i][j]
indicates the expected execution time of task i in ma-
chine j. This matrix is either computed from the infor-
mation on workload and mips or can be explicitely pro-
vided.

We aim to minimize the completion time (makespan and
flowtime) and utilize the resources effectively. Note that the
makespan and flowtime are the most important parameters
of the scheduling problem.

3. GA algorithm for job scheduling

Population, solution, fitness

These key components of GA are described below.
• Initial Population: Three methods are considered for

generating initial populations, the first, Longest Job to
Fastest Resource - Shortest Job to Fastest Resource
(LJFR-SJRF) described in [10], the second, Minimum
Completion Time (MCT) given in [13] and, the third
one, Random.

Solution

Feasible solutions are encoded in a vector, called sched-
ule, of size number_tasks, where schedule[i] indicates the
machine where task i is assigned by the schedule.  Thus, the
values of this vector are natural numbers included in the
range [0, number_tasks-1].  Moreover, the completion time
information, the makespan, flowtime and resource utiliza-
tion defined next are associated with a solution.

The permutation-based representation is also applicable
to the problem. In order to transform the combination-based
representation into a permutation-based one the following
steps are applied: first, starting from the vector of task-ma-
chine allocations, we transform it into bidimensional repre-
sentation which first dimension represents candidate ma-
chines and the other one represents, for any machine, the
set of jobs assigned to that machine. Then, we concatenate
the sequences of tasks of each machine. The information on
how many tasks a machine is assigned to is kept separately
as a vector of size number_machines.
• Solution Properties:  A feasible solution of the problem

is associated with the following information:
- completion is a vector of size number_machines, where

completion[m] indicates the time in which machine m
will finalize the processing of the previous assigned tasks
as well as of those already planned for the machine.  The
value of completion[m] is calculated as follows:

     completion[m] = ready_times[m] +
                                        Σ{j∈Tasks|schedule[j]=m} ETC[j][m]

where ETC[j][m] is the value from the expected time to com-
pute.
- local-makespan denotes the makespan among the ma-

chines included in the schedule:
        local_makespan =
                     max {completion[i]|∀ i∈ Machines}

- flowtime denotes the flowtime of the schedule computed
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by increasingly sorting the tasks assigned to each ma-
chine regarding their ETC. By letting Ft the time in which
the task t finalizes, flowtime is then:

flowtime=Σ{j∈ Tasks} Fj

- local_avg_utilization is a parameter used to indicate the
quality of a solution with respect to the utilization of
resources involved in the schedule.

• Representing Fitness: The concept of fitness for job
scheduling on computational grids has to consider many
optimization criteria. One can adapt either a hierarchic
or a simultaneous approach.  In the former the criteria
are sorted by their importance.  In the latter approach
optimal planning is such in which any improvement with
respect to a criterion, causes deterioration in respect to
another criterion. In this work both approaches are con-
sidered. In the hierarchic approach the objective is to
find a schedule of the minimum flowtime given the op-
timized value of makespan.  Two forms of this approach
are considered: (a) the criterion with more priority is
local_makespan/local_avg_utilization and the second
criterion is flowtime;  (b) the criterion with more prior-
ity is local_makespan, and the second criterion is
flowtime. In the simultaneous approach both criteria are
optimized simultaneously.

GA Operators

We will briefly give here the operators and their ver-
sions we have implemented.

Selection operators: The following selection operators
were investigated.

- Select Random: this chooses the individuals for the
pool of pairs to cross uniformly at random.

- Select Best: this chooses only individuals with bet-
ter fitness.

- Linear Ranking Selection: Each individual will be
chosen with probability linearly proportional to its rank as
in [14].

- Binary and N-Tournament Selection.
Crossover Operators (Vector representation): The cross-

over operators [15] used for vector representation were:
- One-point crossover
- Two-point crossover
- Uniform crossover
- Fitness-based crossover
The last of these considers the value of the fitness func-

tion of each father while generating the crossing mask (the
genes of individual with larger difference in their fitness are
more probable to be interchanged).

Crossover Operators  (Permutation representation):
Permutation-based crossover operators [11] can be applied
to this problem. The crossover operators described above
for the vector representation are not valid since they often

lead to illegal representations. We considered  the opera-
tors below:

- Partially Matched Crossover (PMX)
- Cycle Crossover (CX)
- Order Crossover (OX-1)
Mutation operators: We have considered the following

operators applied to vector representation.
- Move: This operator moves a task from a resource to

another one, so that the new machine that is assigned is dif-
ferent.

- Swap: Considering of the movements of tasks between
machines effective, but often it turns out more useful to make
interchanges of the allocations of two tasks.

- Both (move&swap): The mutation by swap hides a
problem: the number of jobs assigned to any processor re-
mains inalterable by mutation. A combined operator avoids
this problem.

- Rebalancing: This operator first improves somehow
the solution (by rebalancing the machine loads) and then
mutates it.

Replacement operators: The new generation of children
P’ from the generation of parents P, is obtained by the choice
of the following replacement operators:

- Steady-state
- Generational replacement
- λ−µ replacement
- λ+µ replacement
- Replace always
- Replace if better
Above, we let µ be the size of P and λ the size of P’.

4. Fine tuning of parameters and operators

We have implemented GA in C++ by adapting the algo-
rithmic skeletons defined in [16].  Though dynamic sched-
uling is our eventual aim, using static instances we are able
to compare the quality of the schedule produced by our GA
implementation with that of known schedulers in the litera-
ture [13]. Moreover, it was very useful in finding an appro-
priate combination of operators and parameters that work
well in terms of robustness.

The input instances used in this study are generated from
the grid simulator for an environment of 16 resources, with
computation capacity follows a normal distribution N(µ =
950, σ = 75), in which a total of 512 tasks of work load that
follows a normal distribution N(µ = 250500000, σ =
2455000).

We give below the tables of values for the parameters
and for the case of mutation graphical representation is given
(similar representations were done for the rest of operators;
we omit them here).

Mutation operators: We obtained the following values
for the parameters (see Table 1 and Fig 1).
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Table 1. Values of parameters for comparing mutation operators

Fig 1 clearly indicates that the worse operator of muta-
tion is Move and the best one is Rebalancing.

Crossover operators: For crossover operators we ob-
tained the values given in Table 2.

From the comparison study operator CX offers the best
reduction and with large difference in makespan. In fact,
actually the most effective crossover operators in the litera-
ture are permutation-based and use precisely this operator
[11, 17].

Selection  and Replacement operators: For selection we
obtained the values given in Table 3 under which the tour-
nament selection works best.

Finally, in regard to the replacement operators we
obtained the values given in Table 4. The simple method
Generational provides the worst results and Elitist
Generational works best.

Fig 1. Comparison of different mutation operators (correspon-
ding curves numbered)

Table 3.  Values of parameters for comparing selection operators

Table 4. Values of parameters for comparing replacement opera-
tors

5. Computational results

We summarize here some of the computational results
obtained from our GA implementation. First, we present
the results obtained for static instances from [13] where a
comparative study of several heuristics for static planning
for heterogenous systems is presented. Then, we show the
results obtained for large and very large instances in both
static and dynamic setting. All the executions were done in
Pentium III 500Mhz, 128Mb RAM.

5.1. Small / moderate size instances

The simulation model in [13]  is based in  ETC matrix
(see Problem definition). The instances used in [13]  are
classified into 12 different types, each of them consisting of
100 instances, according to three metrics: task heterogene-
ity, machine heterogeneity and consistency. This set of in-

Table 2. Values of parameters for comparing crossover
operators



J. Carretero, F. Xhafa  / ŪKIO TECHNOLOGINIS IR EKONOMINIS VYSTYMAS � 2006, Vol XII, No 1, 11�17 15

stances is actually considered as the most difficult one for
the scheduling problem in heterogeneous environments and
it is the main reference in the literature. Note that all in-
stances consist of 521 tasks and 16 machines.

GA implementation described in this paper optimizes
makespan and flowtime while GA implementation of [13]
minimizes only the makespan, therefore we will present and
compare the results just for the makespan. Note, however,
that optimizing also the flowtime has a negative impact on
the overall excecution time of our implementation. The
population size used in [13] is 200 and their GA finalizes
when either 1000 iterations have been executed, or, when
the chromosome elite has not varied during 150 iterations.
The executions were done in Pentium III 400Mhz, 1Gb
RAM.

In order to compare the results of both GA implementa-
tions work W made by both implementations is taken as in-
dicative reference. Thus, in [13], W = (0.6 + 0.4) * 200 *
1000 = 200,000 and in our implementation W = (0.8 + 0.4) *
68 * 2500 = 204,000, assuring a comparable amount of work.

Table 5 summarizes the computational results averaged
over twenty runs.

Table 5. Comparison of the computational results for static in-
stances

Table 5 shows that our implementation outperforms the
results of [13] for all but one instance, u_i_hilo.0. It is worth
mentioning here that our initial populations are worse than
the ones used in [13] due to the heuristics used (Min-Min
performs much better than LJFR/SJFR). In fact, we observed
that our GA spends roughly 55-70% of the total number of
iterations to reach the solution of the quality of Min-Min.
We would thus expect even better performance of our GA,
if initialisation were conducted using Min-Min. On the other
hand, our version of hierarchic optimization obtains the re-
sults similar to those of [13] but does not outperform them
(except two instances).

Notice that GA with hierarchic optimization criteria
obtains better results only for instances with consistent ETC

matrices having a high level of heterogeneity of resources.
For the rest of instances, as shown in Table 5, the deviation
with respect to [13] is 2.9 % in average  (5.91 % in the
worst case).

5.2. Large and  very large size instances

Any grid scheduler should be able to allocate a large
number of tasks to resources. Indeed, the scheduler will be
planning tasks originated from many applications running
in the grid, hence it is resonable to expect large and very
large size instances over time. In order to study the perfor-
mance of our GA implemenation for this scenario, we de-
veloped a grid simulation package with the aim of testing
the implementation in a dynamic environment. At this stage
of GA we used the simulator for generating large and very
large instances in both settings and studied the performance
on these instances (detailed results for the dynamic setting
will be presented in the full version of the paper). In Fig 6
we give the parametrization used for GA.

The descriptions of instances (for completeness we in-
clude also small and average size instances) are given in Table
7 and Table 8 for static and dynamic setting, respectively.

For the dynamic setting we schedule an average of 16
tasks for each resource. The scheduler reschedules tasks that

Table 6. Configuration of GA parameters for large and very large
size instances

Table 7. Description of static instances
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Table 8. Description of dynamic instances

have not begun their execution in order to better adapt the
planifications. Task interarrival has been set so that once the
scheduler activates, there is an average of 1 new task per
resource; the scheduler activates approximately in time inter-
vals equal to the average execution time of a task, or when
resources availability changes. Finally, new machines are
added to the Grid every time an average of 2.5, 2.25, 2.00
and 1.75 tasks have finished their execution (per resource).

The results obtained for the makespan for both cases
are given in Table 9 and 10, respectively. We also show the
confidence interval.

Table 9. Computational results for static setting

Table 10. Computational results for dynamic setting

6. Conclusions and Further Work

We have presented new GA implementation coupled with
a flexible simulation system to support the job scheduling
on computational grids. The results obtained from our GA
implementation are very promising; we have identified a
setting of parameters and operators that outperform the cur-
rent best GA Job Scheduling system on a static sceduling
benchmark. We plan to extend this work as follows:
- To use other ad hoc heuristics, such as Min-Min or Strati-

fied Min-Min, for initialisation of population.
- To investigate why certain operators perform better.
- To include experimental results using the simulator over

a period of time and study their statistical significance.
- To incorporate our scheduler in real grid-based applica-

tions.
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GENETINIŲ ALGORITMŲ NAUDOJIMAS KOMPIUTERIŲ TINKLUOSE IR KALENDORINIS DARBŲ PLANAVIMAS

J. Carretero, F. Xhafa

San t rauka

Apra�oma, kaip genetinis algoritmas taikomas darbų trukmėms optimizuoti kalendoriniam darbų planavimui, naudojant kompiuterių,
sujungtų į tinklą, i�teklius. Kalendorinis darbų planavimas, naudojant kompiuterių tinklą, yra aktuali problema, sprend�iant kompleksines,
didelio masto problemas. Autorių tikslas � sukurti tokį algoritmą, kuris efektyviausiai paskirstytų teikiamų skaičiuoti darbų srautą į
kompiuterių tinklą. I�tirti keli algoritmai, i�rinktas geriausias. Sukurtas kompiuterių tinklo darbą imituojantis programinis paketas, jis
patikrintas, sprend�iant konkrečius u�davinius. Eksperimentuojant rastas geriausias operatorių ir parametrų derinys, o eksperimento
rezultatai atskleidė, jog darbų planavimo laikas sutrumpėjo.

Pagrindiniai �od�iai: genetinis algoritmas, kalendorinis darbų planavimas, kompiuterių tinklas, pavyzd�iai, darbų trukmė, laikas.
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