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Abstract. In this paper we consider the application of order statistics to establish the optimality in stochastic and heuris-
tic optimization algorithms. We suggest a method for the estimation of confidence intervals of minimum using order
statistics which is implemented for optimality testing and stopping in stochastic approximation and Simulated Annealing
algorithms. The efficiency of this approach is discussed using the results of application to continuous optimization and

Bin-packing problem.
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1. Introduction

The stopping problem is topical in stochastic and heuris-
tic optimization algorithms. In this paper we consider the
application of order statistics to establish the optimality in
stochastic and heuristic optimization algorithms and to stop
the algorithm when the confidence interval of minimum be-
comes less than admissible value. Statistical inferences on
the maximal (minimal) value of a function are described by
Zilinskas and Zhigliavsky [1], and the application of the ex-
treme order statistics in the estimation of the location of the
maximum of a regression function can be found in Chen [2].

2. Method for testing the optimality by order statistics
The optimization problem is (minimization)

S(&) ~ min, (1

where f:0" - [is a function bounded from below,

minf(x):f(x )

.
ot =A4>-0 ‘X*‘ <o Let this problem be
Xl

solved by the Markov type algorithm providing a sample

H={n...n, )

which elements are function values 1, = f(x; ). We sug-
gest a method for the estimation of confidence intervals of
minimum according to order statistics when the number of
iterations is finite. To estimate confidence intervals for mini-

mum A of the objective function it suffices to choose from

sample H only k+/ order statistic: N ->1N)» where
2

k =k(N), % - 0, N - +oo [1]. Then the linear estima-

tors for 4 can be as follows:

AN,k -

= Z aingy, 3)

i=0
where k is much smaller than N, a,..., a, are some coeffi-
cients satisfying the condition

k

z a; =1. Let us consider simple sets of coefficients

i=1
proposed by Hall [3]:
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where A =(1,1,...,1)", Ais the symmetric matrix which
elements are as follows:
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I'(i+1) , a 1is the

parameter of distribution of extreme values. We examine a

where b:(bo, by, .. bk), b, =

choice of this parameter for continuous optimization

a=l
5 @

B is the parameter of homogeneity of the function f (x) in
the neighbourhood of the point of minimum:

‘f(x)— :OH‘X —x*“ﬁﬁ [1, 4].

Then two-side confidence interval of the minimum of
the objective function is as follows

[ Ay i

_ ) a' N0O
"oy —% -

The one-side confidence interval of the minimum of the
objective function is as follows:

(M) ~ Ty [@7(@ "7(0)), N1, (6)

_g’AN,k +g]9 (5)

1
where € = k9 E(n(k)

confidence level.

The experimental research is a way of exploring the
behaviour of stochastic and heuristic algorithms [5] and,
thus, we investigate the implementation of the approach
developed for several algorithms by computer modeling.

3. Optimality testing in stochastic approximation

Let us consider the application of this approach to Si-
multaneous Perturbation Stochastic Approximation
(SPSA). Assume that function f (x) satisfies Lipshitz condi-

tion, Of ( ) is its generalized gradient, g(x,& ) is a stochas-

tic gradient, Eg(x,&)=0f(x), E||g(x EX| o [6].
The smoothing is a standard way for the optimization of
Lipshitz functions [6, 7]. We consider a smoothed function

A(r,0)= 27 (r+0E), &~ (1),

where smoothing density p is Lipshitz function as well,
o >0 is the perturbation parameter. Functions smoothed
by this operator are twice continuously differentiable [6].
The gradient of the smoothed function may be expressed as

follows:
x 0 EE(f al +0§

and the stochastic gradient introduced:

slr.0.)= Ll at) 10)OGE)

o)

C

Let us introduce an optimising sequence:

.I/+1 - /1/ - pl. @7/’

where g’ is the value of the stochastic gradient at point ',
P, is a scalar multiplier, 0, is the value of the perturbation
parameter in iteration Z, x” is the initial point. This sequence
used in the construction of sample (2) converges a.s. to the
solution of the optimization problem under convergence
conditions typical for Stochastic Approximation algorithms

[6].

/=12, .., (7N

4. Experimental results for stochastic approximation

The proposed method was tested with functions:
Za ‘ ‘ + A , where a; and b; are sets of
real numbers B =1. The coefficients of sequence (7) were

chosen according to the convergence conditions [6]:

. l _ n+2)\n+3 . E
P —mmg).l, ig’ g; O.IR/%SDan, ) @T
$=0.75.

The estimate of minimum A4, one-side and two-side con-
fidence intervals of minimum A of the objective function,
when coeficients a in (3) are computed according to all the
cases described above, are given in Tables 1 and 2.

The upper and lower bounds of the confidence interval
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Table 1. Experimental results of the one-side confidence interval
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Estimate of . .
_ Confidence interval Probability of hitting 4 to
y =0.95 A=0 the confidence interval
Lower bound | Upper bound
n=2n =500 0.000014 -0.000036 0.0000275 0.954
n=4,n =500 0.000289 -0.000569 0.0005355 0.946
n=6,n =500 0.001027 -0.001879 0.001819 0.942
n = 10, n = 500 0.004488 -0.005359 0.0070606 0.946
Table 2. Experimental results of the two-side confidence interval
n=2N=500, y=0.95 I case II case III case
Estimate of A4=0 0.00001516| 0.0000034 | 0.0000011
Confidence interval: lower bound | -0.0000709 | -0.0000692 | -0.0000719
upper bound | 0.00010118 | 0.00007596 | 0.00007743
Probability of hitting A to the confidence interval 0.974 0.974 0.976
Confidence interval of the hitting probability: lower bound | 0.9739746 | 0.9738111 0.975944
upper bound | 0.9927592 | 0.9927239 0.993871
of the objective function minimum value are given in Fig 1. —= :::ng;::;?ﬂihmw 095
These bounds were estimated by Monte-Carlo method with 1, ——
the number of trials N=500, when the confidence level was [:-09; T—— s o
y =0.95 and the coeficients in (3) were calculated accord- p g5 ;"
ing to Case I. From the results of Tables 1 and 2 and Fig1 0& !
we can see that formulas (5) and (6) approximate the confi- D;: !,
dence interval of minimum value rather well and that the g5 ,.’
length of the confidence interval decreases when the num- 08— 2
ber of iterations increases. 0.55—=

Thus, using formulas (5) and (6), we can introduce the
stopping rule for the algorithm, namely, the algorithm stops
when the length of the confidence interval becomes less
than admissible value £ >0. We can see the asymptotic
behaviour of the stopping rule in Fig 2 (e =0.5, 0.2, 0.1,
0.05, 0.02, 0.01, 0.005, 0.002, 0.001, 0.0005, 0.0002,
0.0001, 0.00005, 0.00002, 0.00001).

‘ — Uppar bound of the minimum

—— Lower bound of tha minimum
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Fig 1. Confidence bounds of minimum (4 = 0)

Y =0.95,n=2, N =500
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Fig 2. Asymptotic behavior of the stopping rule according to
Casel, d =0.95,n=2,N =500

5. Description of a simulated annealing algorithm

Let us consider the application of this approach to con-
tinuous global optimization by a simulated annealing algo-
rithm (SA).

The procedure of SA algorithm for solving problem (1)
is described as follows [8].

Step 1. Choose initial point x° 0D 0 0" | initial tem-
perature value 7, >0, a kind of temperature-dependent
generation prob-ability density function, a corresponding
temperature updat-ing function, and a sequence {p;;i = 0}
of monotonically decreasing positive numbers. Calculate
f(x%).Seti=0.

Step 2. Generate random vector z' by using the gen-
eration prob-ability density function. If there exists
1< j<n such that TZ’]‘ < p;, where Zj- is j-th component
of vector z', repeat Step 2. Otherwise, generate new trial
point y' by adding random vector z' to current iteration
point x',
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yi :xi +Zi- (8)

If y' 0D, repeat Step 2; otherwise, calculate f(y').

Step 3. Use the Metropolis acceptance criterion to de-
termine the new iteration point x'*' [8]. Specifically, gen-
erate random number K with the uniform distribution over
(0,1), and then calculate probability P( ol T;) of accep-
ting trial point y’ as new itteration point x'*!, given x'
and T,

P(y', X', T)) = min{lexp{[f(x") = f(3)]/ T} } .

If k< P(y',x',T),set X" =y  and f(x™*) = £(1');
otherwise, set x'*' =x’ and f(x™!) = f(x').

Step 4. If the prescribed termination condition is satis-
fied, then stop; otherwise, update the value of the tempera-
ture by means of the temperature updating function, and
then go back to Step 2.

The sequence {p,;/2 0} of positive numbers specified
in Step 1 of the above SA algorithm is used to impose a
lower bound on the random vector generated at each itera-
tion for obtaining the random trial point. This lower bound
should be small enough and monotonically decreasing as
the annealing proceeds. Since the temperature-dependent
generation probability density function is used to generate
random trial points, and since only one trial point is gener-
ated at each temperature value, SA algorithm considered is
characterized by a nonhomogeneous continuous-state
Markov chain. By applying the generation mechanism and
the Metropolis acceptance criterion, SA algorithm produces
three sequences of random variables. These are sequence
{ /; 7=>0} of random vectors generated by the generation
probability density function, sequence { )/'; 720} of trial
points generated by (8), and sequence { ,1/'; 7= 0} of itera-
tion points deter-mined by applying the Metropolis accep-
tance criterion as described in Step 3. These three sequences
{7};720} of random variables are all dependent on tem-
perature sequence determined by the temperature updating
function.

The next conditions yield the global convergence pro-
perty of the objective value sequence induced by SA algo-
rithm as described above for solving problem (1) (see Theo-
rem 1 in [8]).

For w>0, A>0,and ; >0, let

n,= {ma‘f(xx St}

%A,I'Z{IDD‘/M)S AR frw+1/)

Let p(lY denote Lebesgue measureon 007, and A[)7))
denote the temperature-dependent generation probability
density function used to generate random vectors. Assume
that, for every w >0, H(Z,,) >0 holds and there exist

constants A>0 and A>0 such that

H(# ) < R/, forall 7>0.

Then, for any initial state +“0/2, sequence
{f(x");i =0} of objective values converges in probability
to the global minimum /* if temperature sequence
{T;;i 2 0} determined by the temperature updating function

tends to zero, as / —, o and satisfies the following condi-
tions:

S exp(-1/7 7)) <o,
=1

max

x,
‘)//—I/'Zp,',IS/'SIZ

I’min =727
‘)//— /"Zp,-,ls/s”

Ay-67T)<M 5, 0 N,

0z 0,

where />0 isaninteger, 44 >0 and 44, >0 are con-
stants, and 0 < 1<1 satisfies T+A>1.

These conditions indicate that under suitable conditions
an appropriate choice of the temperature updating function
ensures the convergence of SA algorithm to the global mini-
mum of the objective function over the domain of interest.

The temperature updating functions are given below
corresponding to different kinds of generation probability
density functions to guarantee the global convergence of
SA algorithm.

Temperature updating 1. Suppose that the assumptions
described above hold. Let »0", with components
T :maxx,yDD|xj _J’j|, Isjs<n. Let 0<A<l/n,
0<py<miny_;c,r;, and p, =p,/i"*" for all i=1,
where {p;;i =20} is the sequence used to impose lower
bounds on the random vectors generated in SA algorithm.
Let the temperature-dependent generation probability den-

sity function p(L)T;) be given by
V4
AZT) =[N +77), 27
el

Then, for any initial point x, D, sequence
{f(x");i = 0} of objective values converges in probability
to global minimum /", if temperature sequence {7;;i > 0}
determined by temperature updating function satisfies the
following condition:

]l-t:]d/ll/ﬂﬁ /': 1727"-7

where T >0 is the initial temperature value.

Temperature updating 2. Let » 00", with components
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r; :maxx,yDD|xj —yj|,1Sjsn.Let m =1 be an integer,
c>1, 0<A<min{c,m/n}, 0<py<min,c,7;, and

o} :po/i"m”“(’””)” for all =1, where {p,;i =0} is the
sequence used to impose lower bounds on the random vec-
tors generated in SA algorithm. Let the temperature-depen-
dent generation probability density function p(LI7;) be
given by

(/72+1) ) 2

7
Aan)=[ 7" 12mi)+ 71 7", zm
/=1

Then, for any initial state x"[D, sequence
{f(X");i 2 0} of objective values converges in probability
to global minimum f* if temperature sequence {7};i > 0}
is determined by the temperature updating function:

T,=T,/i"", i=12,..,

where T, >0 is the initial temperature value.

Temperature updating 3. Let » 0", with components
rj=maxx’yDij—yj\, I<j<sn, d>1, «c¢>1,
0<A<c,0<p,<min;,7;,and p; =p,/i"' < forall
i>1,where {p;;i =0} is the sequence used to impose lower
bounds on the random vectors generated in SA algorithm.
Let the temperature-dependent generation probability den-
sity function p(U)7;) be given by

A1) = [ (@=D/27]|z)|1 7+ logl| | 77 +ey,
/=1

zm ”.

Then, for any initial point x°0D, sequence
{f(x");i 20} of objective function values converges in
probability to global minimum £, if temperature sequence
{T;;i 2 0} determined by the temperature updating function
satisfies the following condition:

T, = Tyexp(-1 Gy, i=1,2,..,

where T, >0 is the initial temperature value and [ >0 is

a given real number.

The descriptions above indicate that a different form of
the temperature updating function has to be used with
respect to a different kind of the generation probability
density function in order to ensure the global convergence
ofthe corresponding SA algorithm. Furthermore, the flatter
tail of the generation probability function implies the faster
decrement of the temperature sequence determined by the
temperature updating function.

6. Experimental results for simulated annealing
Experimental research is a way to explore the behaviour

of stochastic and heuristic algoritms (Pardalos (2000)). The

proposed method was tested with Beale functions:

-0.02 /

f(xl,x2)= (1.5 -x +x Dc2)2 + (2.25 —x +x ch)z +

+ (2.625 -x +x ch)z,
where the search domain is:
D= {-45<x,<45,-45<x,<4.5},

and global minimum point is: (x,, xz)*:(S, 0.5) and mini-
mum function value is f{(x, , x,)")=0.

The extreme value distribution parameter a was chosen
according to the homogeneity rule (4). From Figs 3 and 4
we can see the estimate of minimum 4, confidence bounds
of this minimum value, the hitting probability to the confi-
dence interval of minimum A and its confidence bounds.
The results presented in these pictures have been obtained
using temperature updating 3. Similar results were obtained
for temperature updating 1 and 2.

0.02 4 :
0.015 +—
0.01
0.0056 +—— S e upper bound
0 lower bound

q o o o =} o = =} o R
g =] (=] =) =) =} (=1 = O O = estimate
-0.005 & < o 2 —

-0.01 /
0.015

Number of iterations

Fig 3. Estimate of minimum 4

— Hitting probability

---------- Upper bound of the confidence interval of hitting probability

Lower bound of the confidence interval of hitting probability

Number of iterations

Fig 4. Confidence bounds of the hitting probability to the
confidence interval of the minimum value and confidence level

0=0.95nr=2,N=500

7. Experimental results for Bin-packing

Modification of the Simulated Annealing method de-
scribed above was applied to Bin-packing problem.
The objective function was as follows:

where  ,%,,..,», are real positive numbers,
x= xl,xz,...,xn), X; D{—l;]} . Thus, set D consists of ver-
tices of the n-dimensional cube.
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The optimality testing approach was explored by Monte-
Carlo method. The objective function was minimized by
SA method, where the numbers y; were randomly generated
with uniform distribution U(0,1) in each trial. Since in the
latter case the value of f (x) is asymptotically Gaussian,
the extreme value distribution parameter o is equal to 1.

In Figs 5 and 6 we can see the estimate of minimum 4,
confidence bounds of this minimum value, the hitting prob-
ability to the confidence interval of minimum A4 and its con-
fidence bounds as well. The results presented in these pic-
tures have been obtained using temperature updating 1.

lower bound

estimate

0.04
0.03 +
0.02
0.01 . —

. ‘ ‘ ‘ S

-0.0114 700800 9001000

-0.02
-0.03 /J
-0.04

-0.05

Number of iterations

Fig 5. Estimate of the minimum value for Bin- packing

= hitting probability
lower bound
----------- upper bound

0.75+ T T ; T T T T

100 200 300 400 500 600 700 800 900

Number of iterations

Fig 6. Confidence bounds for the hitting probability to the
confidence interval of the minimum value and confidence level

0=095nr=15N =100

For comparison the real minimum value was established
by the full selection of vertices D.

8. Conclusions

The linear estimator for the minimum value of function
is proposed using the theory of order statistics and is stud-
ied in an experimental way. The estimators proposed are
simple and depend only on the parameter of the extreme
value distribution a. Parameter a is easily estimated using
the parameter of homogeneity of the objective function or
in a statistical way. Theoretical considerations and computer
examples have shown that the confidence interval of the
function minimum can be estimated with admissible accu-
racy when the number of iterations is increased. The stop-
ping rule using the minimum confidence interval has been
proposed and implemented in the Stochastic Approxima-
tion and Simulated Annealing.
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STOCHASTINIU IR EURISTINIU ALGORITMU OPTIMALUMO TYRIMAS

V. Bartkuté, G. Felinskas, L. Sakalauskas

Santrauka

Sudarant stochastinius ir euristinius algoritmus, daznai tenka sprgsti algoritmy optimalumo testavimo ir stabdymo problemas.
Statistines i§vadas apie minimalia (maksimalia) funkcijos reik§me galime rasti literatiiroje (V. Bartkuté, L.Sakalauskas (2004); Zilinskas A.,
Zygliavskij A. (1991)). Siame straipsnyje nagrin¢jamas poziciniy statistiku taikymas stochastiniy ir euristiniy algoritmy optimalumui
tirti. Sudarytas metodas leidzia jvertinti minimalios reik§Smés pasikliautingji intervala, naudojant pozicines statistikas, ir pritaikyti §i

iverti optimalumui testuoti bei algoritmams stabdyti. Tarkime, turime seka H = {I’]1 5 eees I’]N}

, kurios elementai yra optimizavimo metu



10 V. Bartkuté ir kt. / UKIO TECHNOLOGINIS IR EKONOMINIS VYSTYMAS — 2006, Vol XII, No 1, 4-10

gautos funkcijos reik§més. Norédami jvertinti minimalios reik§més pasikliautinaji intervala sekoje H, iSrenkame tiktai k+1 poziciniy
statistiky (V. Bartkute, L. Sakalauskas (2004)). Kompiuterinio modeliavimo biidu tiriamas tikslo funkcijos minimalios reik§més jver¢iy
taikymas stochastinés aproksimacijos ir modeliuojamojo atkaitinimo algoritmuose. Gautos teorinés i§vados ir kompiuterinio modeliavimo
rezultatai parodé, kad tikslo funkcijos ekstremalios reik§més pasikliautingji intervalg galima vertinti reikiamu tikslumu, kai iteraciju
skaicius didéja. Straipsnio pabaigoje aptariamas §io metodo taikymas riiSiavimo (bin-packing) ir tvarkaras¢iy sudarymo (schedulling)
problemoms spresti.

Pagrindiniai ZodZiai: stochastiniai ir euristiniai algoritmai, optimalumas, pasikliautinasis intervalas.
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