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Abstract. In this paper the flexural strength analysis of reinforced and prestressed concrete members with symmetrical
cross-sections loaded in the plane of symmetry is performed. A new practical method for determining the height of the
compression zone is proposed. The method is valid for normal and high-strength concretes and for different distributions of
bars along the section. It is based on the assumptions, simplifications and material properties of Eurocode 2. Design equa-
tions have been developed for the rectangular stress distribution in the concrete compression zone and for the steel stress-
strain diagrams with a horizontal and inclined top branch. A numerical example is presented to show the method usage.
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1. Introduction

The flexural strength analysis of reinforced and pre-
stressed concrete members is based on conditions of static
equilibrium, strain compatibility and material properties.
The unknown members in the corresponding equations can
be expressed in simple or complicated way depending on
the applied stress-strain curves for materials.

This paper observes symmetrical cross-sections loaded
in the plane of symmetry. A detailed section analysis based
on complete stress-strain relations can be carried out. In
this case, the compression force in the concrete is calcu-
lated by the integration of stresses over the concrete area
and the force equilibrium at the section is achieved by an
iterative procedure. The integration methods and the itera-
tive procedure are laborious to perform manually, there-
fore computers are used [1-3]. In spite of general use of
computers the practical methods of calculation have not
lost their importance in certain cases. These methods en-
able simpler calculations, control of computer results and
overview of the performed computations. The practical
methods are either graphical or analytical. The graphical
interaction diagrams are usually available for simple sec-
tions (rectangle, circle), normal-strength concrete and more
commonly used steel locations [4—6]. For high-strength

concrete and uncommon arrangement of steel these dia-
grams cannot be applied. In the absence of specific interac-
tion diagram, an alternative to construct the diagram is to
use the analytical expressions. The complexity of expres-
sions depends on the used idealisations for stress-strain
curves and the geometry of section. It is very usual to apply
the rectangular stress block assumption for concrete and
the elastic—perfectly plastic approximation for reinforcing
and prestressing steel. More commonly used cross-sections,
for which at these idealisations the analytical expressions
exist, are rectangular and flanged sections with a distribu-
tion of reinforcement along the sides parallel to the axis of
bending. As the prestressing steel does not exhibit a well-
defined yield plateau than in Eurocode 2 [7], the design is
allowed to base on the actual curve, if this is known or in
some other codes the analytical expressions for the shape
of actual curve are accepted. In these cases, the correspond-
ing flexural strength analysis leads to an iterative proce-
dure [8], which for practical calculations can be tedious.
Several other approximate procedures for the prestressing
steel in the flexural strength analysis have been presented
[9, 10].

The objective of the current paper is to present a prac-
tical method of calculation by which a symmetrical cross-
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section of beams and columns with arbitrary arrangement
of bars can be analysed. The method can be applied to both
normal and high-strength concretes and various stress-strain
relationships for reinforcing and prestressing steel accord-
ing to Eurocode 2.

2. Strain distribution in a cross-section

The strain distribution of cross-section will be found
by using “plane sections remain plane” assumption and in
Standard EN1992-1-1:2004 [7] given stress-strain relation-
ships for materials. Two strains are needed to determine
the strain distribution for members carrying load in the plane
of symmetry. One of them can be the strain at neutral axis
and the other one of the following limiting strains (Fig 1):
— reinforcing or prestressing steel tension strain limit
gyg (point A);

— concrete compression strain limit €go or €g,3
depending on the stress-strain diagram used
(point B);

— concrete pure compression strain limit €. or €¢3
(point C).

For cases where there is a compression over all the

section of limiting strain €5 or g3 occurs in the fibre

located at X, from the extreme compression edge:

X =(1— :CZ )7 or X =(1—8L3}. (1)
cu2 €cu3

When the rotations in bending are small, the strains
are proportional to the angle change over a unit length of

beam V¥ and vary linearly with distance y from the neutral
axis:
£=wy. )

315

From the geometry in the figure (using limiting strains
€co and gqyp )

faw2 jf x<h,
X
8C2 .
={—==_ if x>h,
v X— % 3)
fud g xgfou2 g
—X €ud T€cu2

where X is the height of compression zone, d — the dis-
tance from the extreme compression fibre to the centroid
of the tension steel and &q,0, €c2, €49 are the above-
mentioned strains. The strains €q,5, €co, €9 have been
taken as positive.

The Eq (2) can be modified for calculating steel strains:

the strain in the reinforcing steel e4:

y(dg —x), if strainsin steel arenot limited
& =
® w(dg—x)< gq,if strainsin steel arelimited;

the strain in the prestressing steel €p with the prestrain

Spm;
& pm+vldp —x) if strainsin steel
arenot limited,
€p= . o (5)
Spm+\y(dp—X)S8ud, if strainsin steel
arelimited,

where dg and d, are the distances from the extreme com-
pression fibre to the centroids of the reinforcing and
prestressing steels respectively.

(1-€c2/can)h B
or —~— e
—~—
(1 — €3 /Scu?a)b //>(
C
o
85 8p 8ud O €c2 €2 &

Fig 1. Possible strain distributions in the ultimate limit state [7]
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3. Stress distribution of cross-section

For the concrete in compression a rectangular stress
distribution is used. For the steel the stress-strain diagram
with a horizontal or an inclined top branch is used [7]. To
these diagrams (Fig 2) are added formulars to find stresses
in region of strain hardening (inclined top branch). Taking
into account Eqs (4) and (5), the stresses become:

diagram a, the stress in the reinforcing steel o4:

[y(ds - X)Eg ,if |ss|s|syd|, lower branch

fyd Jif [eg| 2|syd|, horizontal
top branch ©

S

E, =
fyd[l_E_S}" y(ds — X)Es, if |8yd| <leg| <lewd]:

inclined top branch;

diagram b, the stress in the prestressing steel Op with the
prestress O pm:

'Gpm+\u(dp—x)Ep, ifep<efpq,

lower branch

fpd! ifSpZSfpd,
horizontal top branch (7)

E _
f pd _(fpd _Gpm)E_E"'\l’(dp_x)Ep’

if &fpg S€p <gyq ,inclinedtopbranch,
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_ fpak-1) _ ,
Ep, =———— respectively, Eg and Ep are the moduli
Euk — € fpd

of elasticity for reinforcing and prestressing steel. For the
slope equations the following characteristic values are used:
fyd and fod — design strength of reinforcing and

prestressing steel,

€yd and € fpg — strains according to the design strength of

reinforcing and prestressing steel,

€yk — characteristic strain of steel at maximum force.

4. Height of compression zone

4.1. Steel stress-strain diagram with horizontal
top branch

We consider a symmetrical cross-section reinforced
by a number of layers of steel and subjected to a design
bending moment Mgy and a design axial force Npgy
(Fig 3).

Summing axial forces gives the following equation of
equilibrium:

n m
MfedAc—2.0§A = 2, 0p Ay ~Ngg =0, (8
i=1 j=1
where fq is the design compressive strength of concrete,
N — a factor depending on the strength class for concrete,
Ac — the effective area of concrete in compression, Ag
and Apj — the areas of reinforcing and prestressing steel
respectively. Summations in Eq (8) are to be performed from
i=1tonand j=1 tom,wherenand m are the numbers of

reinforcing and prestressing steel layers respectively. The
area A. can be written as the sum of two parts:

where the slopes of top branch of diagram for reinforcing b ex+ if ex<h
_ fuk-1) A= bh+AAtAc, it ex=h ©
and prestressing steel are Eq=—————  and ' -
€uk —€yd
a b
c c |
ks Kfpa| vdr)E,
O G, [~ === | -
/yd:/yk /Yb s /pd :/‘;:o,lk/ys |77 5

E
(/lpd _Gpm) ﬁ

===-

Gpm

€ pm Sfpd ep Euk €

Fig 2. Design stress-strain diagrams for reinforcing steel (a) and prestressing steel (b)
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a b
L
U
d: o e W :b A.m’ Apm e Gsn‘Am 9GpmApm
503* P r@ Védt )
] li e - O's,-Aﬂ- 90ijpj
it -
On A, , GplApl
Fig 3. Cross-section (a); stresses and forces (b)
where p* is the section width at the effective height of o |0,if x<a
. . . Fo(¥)=(x-a) =4"" (11)
compression zone ¢x, ¢ is a factor depending on the 1,if x>a

strength class for concrete. The area AA; is obtained by

summing the “positive areas” and the “negative areas”
(Fig 3) and can have various values depending on the shape
of cross-section and the position of neutral axis.

Flexural strength calculations in the case ¢x>h can
usually be carried out without determining the height of
compression zone. Here we consider the case ¢x< h .

Substituting Eq (6) and (7) into Eq (8) we get:

n n
Nfed b*éX+nfchAc _Z‘V(dsi - X)EsAsj _2 fyaAs —
i=1 i=1

m m
Z[Gpjm“"(dpj _X)Ep]Apj ~ . fpaAp —Ngg =0,(10)
j=1 j=1

where members containing steel stresses define the sum of
forces in steel layers:

n
> w(dg —x)EsAy , if |Gs|<|fyd|,
i=1
n
> fyaAs s if |Gs|:|fyd|,
i=1

m
jz:,l[cpjer‘l’(dpj _X)Ep]Apj , if 6p< fod>

m
2. fpaApj - I 0p=Tpg-
J:

Next we multiply Eq (10) with distances between neu-
tral axis and fibres with strains €g,o, €.p and consider
Eq (3). To represent the result by one equation we use
Macaulay function:

Arranging the members in the equilibrium equation
according to the power of height x, we get:

n n
nfogb*ex? —{—chc,uAsi +> fyaAy +
i=1

i=1

m m 0
_21(‘5 pim ~ O pcu )Apj + _ZlfpdApi (h=x)" -~
j= j=

T]deAAC + NEd +r|fcdb*exc<x— h>0] X—

|:chc,uAs'ds' _Z fydAsch<X_h>0+
i=1

i=1
m

2(0 peudp =6 pimXe (X~ h>0 )Apj +

J:

(nfaa e - Neg b (x-h)° | =0, (12)

where the reinforcing and prestressing steel conditional
stresses Ogy and Opcu corresponding to the limiting
compressive strains in concrete £q,» and gqp are:

_{scquS,if x<h, {scqup Jif x<h,
Oscu = Opcu =

€coEg ,if x>, - ecoEp ,if X>h

Eq (12) is a quadratic equation of the form:

Ax? -Bx-C=0, (13)

and the height of compression zone is given by the positive

‘e B++/B?+4AC

2A

root:

) (14)
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where the coefficients 4, B and C are:

A=nfegb A, (15)
B__zcscuAs"'zfydAs"'
-1
m
Z( pim G|ocu)ApJ*‘prd'°‘|01<h X> -
j=1 j=1
nfeaA + Neg +1fegb A (x=h)0 . (16)

m

C= chcuAsd zfydAsXc<X h>0+2( S peudp —
=1

i=1

c pjmxc<x_ h>0 )Apj +(nfegAA. — Ngg )XC<X— h>0. (17)

The members

m
z],-GSCUAS ZGSCUASdSl ’ Z(Gpjm_cpc,u)Apj ’
= ia
m

Z( peud pj =6 pimXc(X—h) ) pj will be found accord-
J_
ing to steel layers, where the stresses are less than the yield

stress and the members 2 fyaAs | Z fyaAs Xe(X— h>
=1

Z fpd Apj <h—x>0 according to steel layers, where the
j=1 .
stresses are equal to the yield stress.

If the steel stresses are equal to the yield stress, then

Eq (8) gives a linear equation in x:

T]f db eX+nf dAAb z fydAS z fpdApj _NEd =0.
i=1

(18)
4.2. Steel stress-strain diagram with an inclined
top branch

Using the stress-strain diagrams with a horizontal and
an inclined top branch for compression and tension zone
respectively, Eq (8) becomes:

n
nfcdb*éx+nfchA(2 _Z\V(ds _X)ESASi -

i=1

zfydAﬂ Z[ yd{l—E—Jﬂv( X)E, ]Aé_

—x)Ep ) A

m
Z[G pim +‘V(d ¢
=1
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NEd =0, (19)

where the members containing steel stresses express the
sum of forces in steel layers:

X)EsAy » if o< fyq

é‘l’(dsi -

i=1 S

Z[fyd{l—%}r\y(dg —x)ES] Ay ,if

fyd SCSSkfyd,

m
_2“1[6'0]-,“+\y(o|pJ ~X)Ep Ay if o< g
j=
m E -
zl[fpd _(fpd _Gpjm)EE‘HV(dpj _X>ED:| A -
J:
if fpd SGpSkfpd.

Let us see the case, where the strain diagram in Fig 1

goes through the point B, then y=¢gg,/X and

€cu2
€ud TEcu2 ) i ) )
thought, we obtain the coefficients of quadratic equation as

follows:

d < x<h. Using the represented train of

A=nfgb*é (15)

n n
B=—YoxuAs +2, fyaAg +
i=1 i=1

Zlfyd(l_EJ Ew,u] As + Z(Gpjm_cpc,u)Apj +

i=1 S j=1
m E
p —
Z![fpd ‘(fpd ‘Gpjm)E_p“’pc,uwApj -
J:
NfegAA; + Ngg (20)
n n B
C=chc,uAsidsi +chc,uAsidsi +
i=1 i=1
m
Z"pcu Api dp +2"pcu Apidp | 1)

j=1

where

{ScquS ,if x<h
Oscu =

3 gau2Ep ,if x<h
o =
€coEs ,if x>,

ee2Ep Lif x>h.
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Coefficients of equation Ax?—Bx-C=0
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)

Reinforcing steel

B B C
E Steel stress in 4 Part 1: Part 2: Part 1: Part 2:
Y layer Dependence on steel stresses Dependence on Dependence on steel Dependence on
E concrete strength and stresses concrete strength and
axial force axial force

1 2 3 4 5 6 7

|Gs| < | fyd| —OscuPs O sc,uAsds

0
o] =] fyal fyaAs — fyaAxe(x—h)

Es) _ _
fyd Sog= kfyd [fyd(l_E_s]_ Gsc,u:|As O, uAsds
S
nfegb’ A ( ) ~NfegAAc + Neg ;r 6 peudp - (fea A — N(I)Ed)'
6p < fpd O pm ~ O p,u JA fogb éxe(x—h X({x—h
3 (Y pm ~ 9 pcu/Fp Nfoab”exc( ) cpmxc<x—h>0)Ap (x=h)
N
2| °p= Thd Toa Ap(h—x)° -
=
i - 5
£ fod = (fod =0 pm) =2 - -
Al fod Sop <K pg { pd ( pd c;pm)Ep S peuPpdp
O_'pc,u]Ap

D reinforcing steel in tension zone

2) prestressing steel in tension zone

The height of compression zone is obtained from Eq
(14).

The determination of coefficients 4, B and C can also
be carried out for both stress-strain diagrams by the Table
given below. Coefficients B and C consist of 2 parts:

— part | represents the dependence on steel stresses
and is calculable by summing up the members for
each steel layer according to their stresses;

— part 2 is calculable depending on concrete strength
and axial force.

The table can also be used to determine the height of

compression zone when ¢x > h. In that case coefficient

A =0 and contents of columns 5 and 7 will be turned into

(~nfea A + Ngg ) and (nfoq A — Neg )X respectively.

At the beginning of calculations the position of neu-
tral axis shall be assumed. The following calculations will
show, whether the assumption was right, or the calcula-
tions shall be repeated with another position of neutral axis.
For control there are steel stresses (Eq (6), (7)), what can-
not exceed the tensile strength and the stresses determined
by strain distribution of section.

There are the following possibilities to find the coeffi-
cients of Eq (13) for the assumed position of neutral axis:

— to compare the steel stresses with the yield strength
(or to compare respective strains);

— to compare the relative height of compression zone
with the respective relative height to the yield
strength.

5. Flexural strength calculation

Once the value of height of compression zone is
known, the stresses in each layer of steel can be computed.
In the reinforcing steel:

[ d

o={ 1)
dg—x

c&:’u( X XC )

fyd if Jos| | fyal,

fyd[l—%]-i-as(:’u[d—)f—l) if fyd < GCg < kfyd;

S

if [os| <|fyg| andx<h,

if [os| <|fyg| andx>h,
Og=

(22)
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in the prestressing steel:

d
cpm+cpcu[—p—1],ifopsfpdandxsh,
i
dp—x )
G pm * 9 pe,u -y yif o < fpg andx>h,
0'p= fpd! iprprd,
E, _ d
fpd (fpd Gpm) +Gpc,u —-1
if fpd SGpSkfpd
(23)

Finally the ultimate moment resistance of the section
Mpy4 can be found. For instance, taking moments about the
mid-height of the section we obtain:

M gy = nfegb ex(0,5h—0,5ex)+nfygAS; —

n m
%Gg AS| (0,5h— dSi )— 210 pj Apj (0,5h— d pj ), (24)
1= ]=

where AS; is the first moment of the area AA. about the
mid-height of the section.

6. Example

The ultimate moment resistance of the section shown
in Fig 4 is calculated by the proposed method.

Given: Concrete C35/45, fiq =1983N/mm2,
€au2 =0,0035, =1, ¢=08.

Prestressing steel St1570/1770, fpc =1770N/mm?,
f pk /y5=1770/115=1539 N/mm?
f poax =1500 N/mme,

2 Aps
i N\ 3
on 2 —
wl
S5 2
= . . N
=
Ap2
L] . [ ] . ./ [ ] . . %
150 Al 150
900

Fig 4. Boxed section
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fpd = fpo;u( /y5=1500/115=1304 N/mm?,

k= fpk/ pr,]k =1770/1500=1180, ¢, = 0,035,
Ep =195000 N/mm?2,

€fpd = fpd /Ep =1304/195 000 = 0,006 687,

E - fpd(k_ )
€uk ~ € fpd

_ 1304(1,180-1) =8290 N/mm,
0,035- 0,006 687

6 pou = EcuzEp =0,0035:-195000= 6825 N/mnv,

S pou = &cuzEp =0,0035-8290=29,01 N/mnw,

Ap =2000 mm? (102718,0),

Apz =400 mm? (22180), Agg =260 mm2 (529,3),

Gplm = szm = 0p3m =1000 N/mmz,

1) The calculations based on the stress-strain diagram

with horizontal top branch.

Assuming that the steel in the layer 1 of strands yields
and the compression zone extends into the web the coeffi-
cients of Eq (13) are:

A=nfyb*e =1-19,83-300-0,8 = 4759N/mm,

3

B= fpd Ap1+ 2(6 pim ~ O pc,u )Apj —NfegAA =

j=2
1304-2 000+ (1000 682,5)400+

(1000 682,5)260—1-19,83-90 000 =1033-10°N

3
C= Y 6 pcuApdp =6825-400-375+
j=2

682,5-260-75=115,7-10° Nmm,

where AA, = 600-150 = 90 000mm?.

The height of compression zone:

L B+VB+4AC _

2A

1033-10° + \/(1033103)2 +4-4759115,7-10°
2-4759 -

298 mm.

The steel stresses:

d 675
pl
= + ——-1(=1000+6829 ——-1|=
OpL=Cpim Gp"'“( X ] '298 )

1861 N/mm? > f,q =1304 N/mme,
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d 375
— p2 _ i
Op2=0pom*O pc,u[x—lJ— 1000+ 682,'5(Z98 —1J_

1175 N/mm? < fpg =1 304 N/mm?,

d 75
— p3 _ B
Gp3_cp3m+0p(;’u( X - ]—1000+682,{T%—1J_
489,0 N/mm?,

thus the steel in the layer 1 yields 6 p1 = fpq . Taking mo-

ments about the mid-height of the section, we get the ulti-
mate moment resistance of section:

M g = nfegb ex(0,5h—0,5ex)+nf g AS —
3
ZG pj Apj (0,5h—d pj )Z
j=1

1-19,83-300- 0,8- 298(375—0,5-0,8- 298)+
1-19,83-27,0-10% —1304- 2 000(375- 675)—
489,0- 260(375— 75)=1640-108 Nmm,

where the first moment of the area AA, about the mid-
height of the section:

AS, =90 000-300 = 27,0-106 mm® .

2) The calculations based on the stress-strain diagram
with inclined top branch.
The coefficients of Eq (13) are:

rn|m|
o o

B=[fpd_(fpd_0p1m) _apc,u“Apl"'

(‘5 pim ~ O pcu )Apj —NfegAA; =
j=2

8290
195 000

{1 304 (1 304—1 000) - 29,01]2000+

(1 000-682,5)400+ (1 000 - 682,5)260—
1-19,83-90 000 = 949,0-10°N ,
3
C=0pcuApdpr + j%" peuPpidp =
29,01 2 000- 675+ 682,5- 400- 375+
682,5- 260- 75 =154,8-10° Nmm.

The height of compression zone:

L 949010%+ \/(949,0-103)2 +4-4759-1548-10°
- 2:4759 -

306 mm.

The steel stresses:

E, _ d
op1=fpg _(fpd _Gplm)E_p+0pc,u[_p_1J:
p X

1 304 (1 304—1 000) 8 290 +29,0 o5 4)-
195 000 306

f
1326 N/mm? < —P< =1 539 N/mnv
Ys ’

_d 375
— p2 _ B
sz _Gp2m+6pc’u( X - J—l 000+682,5(%_1)_

1154 N/mm? < fpq =1 304 N/mm?,

d 75
p3

= + —-1[=1000+6825 — -1 |=

?p3= % pam Gpc’“( X ] (306 ]

4849 N/mmz2.
The ultimate moment resistance of section:
M rq =1-19,83-300-0,8-306(375—0,5-0,8- 306)+
1-19,83-27,0-10° —1326- 2 000(375— 675)—

484,9-260(375—75)=1660-10° Nmm .

7. Conclusions

The flexural strength analysis of reinforced and pre-
stressed concrete members is performed. A new practical
method for calculating the height of the compression zone
at ultimate moment resistance is presented. The method is
applicable to symmetrical cross-sections with any number
of the reinforcing and prestressing steel layers and is valid
for both normal and high-strength concretes. The stresses
in the concrete are derived from the rectangular stress dis-
tribution and the stresses in the steel from stress-strain dia-
grams with a horizontal or an inclined top branch. The pro-
posed method is illustrated by a numerical example.

The essential points of the present method compared
with other practical methods are:

— there is no need to concentrate reinforcement on

one level,

— prestressing steel can be with different levels of

prestressing;

— the method is valid for high-strength concrete, too.



322

References

1.

BARAN, E.; SCHULTZ, A. E.; FRENCH, C. E. Analysis of
the flexural strength of prestressed concrete flanged sections.
Journal of the Prestressed Concrete Institute, Jan-Febr 2005,
Vol 50, No 1, p. 74-93.

V. Otsmaa, T. Pedak / UKIO TECHNOLOGINIS IR EKONOMINIS VYSTYMAS — 2007, Vol X111, No 4, 314-322

DIN 1045-1. Beton- und Stahlbetonbau, Febr 2003, Vol 98,
No 2, p. 59-65.

SALMONS, J. R.; MCLAUGHLIN, D. G. Design charts for
proportioning rectangular prestressed concrete columns. Jour-

nal of the Prestressed Concrete Institute, Jan-Febr 1982,
Vol 27, No 1, p. 120-143.

2. SEGUIRANT, S. J.; BRICE, R.; KHALEGHI, B. Flexural .
strength of reinforced and prestressed concrete T-beams. Jour- European Standard. EN 1.992- 1-1. Eurocode 2: Design of con-
nal of the Prestressed Concrete Institute, Jan-Febr 2005, f:rete structures. Part 1.1: General rules and rules for build-
Vol 50, No 1, p. 44-73. ings. Dec 2004. 225 p.

3. SKRINAR, M. Flexural analysis of reinforced concrete T cross E&%S(fujgirrgs.sia (iz?]irrzlteszleuctiio;lnsf Jflztizl Os}t{r;:;egtllirce)_f
sections according to EC2 standard for strains e, smaller than p . ’ :

2,0 %o. In Proc in Applied Mathematics and Mechanics, March stressed Concrete Institute, May-June 2006, Vol 51, No 3,
2002, Vol 1, No 1, p. 175-176. p. 2-17.

4. GRUNBERG, J.; KLAUS, M. Diagramme fiir die gezielte GHALLAB, A.; BEEBY, A. W. Ultimate strength of exter-
Querschnittsbemessung bei Interaktion von Langskraft und nally strengthened prestressed beams. Structures & Buildings,
Biegemoment nach DIN 1045-1. Beton- und Stahlbetonbau, Nov 2002, Vol 152, No 4, p. 395-406.

Aug 2001, Vol 96, No 8, p. 539-547. 10. NAAMAN, A. E. Unified bending strength design of con-

5. GRUNBERG, J.; KOSMAHL, M. Bemessungsdiagramme fiir crete members: AASHTO LRFD Code. Journal of Structural

die Biegetragfihigkeit von Plattenbalkenquerschnitten nach

Engineering, June 1995, Vol 121, No 6, p. 964-970.

PAPRASTU IR IS ANKSTO JTEMPTU GELZBETONINIU ELEMENTU ATSPARUMO LENKIMUI
SKAICIAVIMO METODAS

T. Pedak, V. Otsmaa

Santrauka

Straipsnyje nagrinéjamas paprasty ir is anksto jtempty gelzbetoniniy elementy atsparumas lenkimui, kai skerspjiivis vienodai apkrautas
simetrijos asies atzvilgiu. Pasiiilytas naujas gniuzdomosios zonos aukscio skai¢iavimo metodas. Jis tinka paprastiems ir didelio stiprumo
betonams, kai jtempiy pasiskirstymas skerspjiivyje ivairus. Pasiiilytasis metodas remiasi Eurocode 2 iSdéstytomis prielaidomis,
supaprastinimais ir medziagy charakteristikomis. Pasililytos skai¢iavimo formulés stac¢iakampiam jtempiy pasiskirstymui nustatyti
gniuzdomoje betono zonoje ir plieno tempimo jtempiy diagramoms braizyti. Pateiktas praktinis metodo taikymo pavyzdys.

ReikSminiai ZodZiai: skaiCiavimo metodas, atsparumas lenkimui, paprastas ir i§ anksto jtemptas gelzbetonis, betonas, simetriskas
skerspjuvis, islinkimo asis, gniuzdomosios zonos aukstis.
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