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Abstract. Different from traditional distances between Intuitionistic Fuzzy Sets (IFS), the spherical 
distance between two IFSs relies not only on their relative differences but also their absolute values. 
In this paper, we generalize the properties of spherical distance measures between IFSs, and inves-
tigate the applications of spherical distance measures in group decision making, pattern recognition 
and medical diagnosis. We develop an optimization spherical distance model with IFS preference 
in group decision making, and demonstrate that this model is feasible and practical with an evalu-
ation model of drought risk. By using comparative analysis method, we show that this new spheri-
cal distance can also be applied in other fields such as pattern recognition and medical diagnosis. 
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Intuitionistic fuzzy theory and its application in economy, technology and management

Introduction

Distance measure describing the degree of difference between two sets, is fundamentally 
important in many natural scientific fields and social economic fields. Usually, distance 
measure is inversely related to similarity measure, and it can also be considered as a dual 
concept of similarity measure. Since the introduction of the fuzzy theory by Zadeh (1965), 
distance measures between fuzzy sets have gained importance due to the widespread appli-
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cations in diverse fields like approximate reasoning, risk analysis, pattern recognition, deci-
sion making, machine learning and econometric estimation, etc. (Balopoulos et al. 2007; 
Chakraborty, C., Chakraborty, D. 2006; Chen, S. M., Chen, S. H. 2009; Liu 2009, 2014; Liu, 
Jin 2012; Guha, Chakraborty 2010; Hyde et al. 2005; Ullah 1996; Vigliocco et al. 2002; Xu 
2010, 2011; Xu, Yager 2008; Zhang, Liu 2010; Zwick et al. 1987). For examples, Chen, S. M. 
and Chen, S. H. (2009) presented a method for fuzzy risk analysis based on a similarity 
measure between interval-valued fuzzy numbers and new interval-valued fuzzy number 
arithmetic operators. Based on interval vague values, Liu (2009) proposed a technique for 
order preference by similarity to an ideal solution (TOPSIS) to resolve the multi-attribute 
decision making problem. Hyde et al. (2005) developed a distance-based uncertainty analy-
sis approach to multi-criteria decision analysis for water resource decision making. Ullah 
(1996) provided a unified treatment of various entropy, divergence and distance measures 
and explored their applications in the context of econometric estimation and hypothesis 
testing. Balopoulos et al. (2007) introduced a family of normalized distance measures be-
tween binary fuzzy operators, along with its dual family of similarity measures, which were 
intended for applications and may be customized according to the needs and intuition of 
the user. Bustince and Burillo (1995, 1996) introduced the concepts of correlation and 
correlation coefficient of interval-valued intuitionistic fuzzy sets, they also introduced two 
decomposition theorems of the correlation of interval valued intuitionistic fuzzy sets. 

Intuitionistic fuzzy sets (IFS) (Atanassov 1986, 1999a, 1999b) introduced by Atanass-
ov, provides a flexible mathematical framework to cope, besides the presence of vague-
ness, with the hesitancy originating from imperfect or imprecise information (Pankowska, 
Wygralak 2006). IFS, presenting not only the membership degree, non-membership degree, 
but also hesitation degree, is the generalization of the classic fuzzy sets. In recent years, 
basic research on distance measures between IFS has also been widely studied. Atanassov 
(1999b) proposed the Hamming distance and Euclidean distance which are based on 2-Di-
mensional space. Szmidt and Kacprzyk (2000, 2005a) developed these distance measures 
to 3-Dimensional space. Hung and Yang (2004, 2007) presented a method to calculate the 
distance between IFSs on the basis of the Hausdorff distance measure, and they also pro-
posed similarity measures of IFSs based on Lp metric. Li and Cheng (2002) introduced the 
new concept of the degree of similarity between IFS. Li et al. (2007) discussed the merits 
and drawbacks of different similarity measures using comparative analysis method. As dis-
cussed by Yang and Chiclana (2009), all the distances mentioned above show linear feature. 

However, these distances have a common limitation that they may not adequately in-
terpret the human perception or judgement. Let’s take fuzzy sets as an example. Suppose 
that there is a linguistic term set { 1 0 75 0 5 0 25 0}Perfect Good Fair Poor None= , = . , = . , = . , =  
in fuzzy qualitative evaluation (Herrera et al. 2000). The Euclidean distance between Perfect 
and Good is 0.25, and the Euclidean distance between Good and Fair is also 0.25. In fact, 
the distance between Perfect and Good should be greater than the distance between Good 
and Fair. In this sense, a linear measure of distance will not be adequate to measure the 
difference of qualitative evaluation. In literature (Yang, Chiclana 2009), Yang and Chiclana 
proposed a simple nonlinear spherical distance measure between IFSs, and showed that 
this distance has good property. That is, the distance between any two IFSs is always lower 
than the distance between one IFS and the extreme crisp sets (the membership or non-
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membership is 1) under the same difference of their memberships and nonmemberships. 
This property shows that the spherical distance model is more appropriate in measuring 
qualitative evaluation. In this paper, we will generalize this property. 

IFS has been applied in a variety of areas such as pattern recognition (Ioannis, George 
2007), logic programming (Li, Cheng 2002), medical diagnostics (De et al. 2001), and 
group decisionmaking (Pankowska, Wygralak 2006; Szmidt, Kacprzyk 2004, 2005a; Wang, 
Parkan 2006; Ye 2009; Zhang, Lu 2003). Group decision making is one of the active field 
of research in engineering and social economic analysis, it is usually performed in the 
presence of conflicting goals and criteria, and has to be conducted by integrating a group of 
experts’ knowledge and experiences. When dealing with inevitably imprecise or not totally 
reliable judgments, IFS is especially useful. Distance measures of IFS have been used in 
the fields of group decision making. Most of these measures are based on linear space. For 
examples, Szmidt and Kacprzyk (2000, 2005b) proposed a normalized Hamming distance 
measure for the evaluation of a degree of agreement in a group of individuals by calculat-
ing distances between intuitionistic fuzzy preference relations. Li et al. (2008) proposed a 
fractional programming methodology on the TOPSIS (Technique for Order Preference by 
Similarity to an Ideal Solution) to solve Multi-attribute group decision-making problems 
under IFS environments. There are also lots of measures that are based on nonlinear space. 
For examples, Li and Ma (2008) developed a Decision Ball model to assist a decision mak-
er in ranking alternatives and visualizing decision process. Ma (2010) also extended the 
Decision Ball to visualize preferences in group decisions. In this paper, we will develop a 
group decision making method based on IFS by constructing an optimal spherical distance 
model, and will utilize comparative analysis method to show the results derived by the 
new spherical distance are in agreement with the pattern recognition example proposed 
by Li and Cheng (2002), Mitchell (2003), Vlachos and Sergiadis (2007) and the medical 
diagnosis example by De et al. (2001), Szmidt and Kacprzyk (2001a, 2001b, 2002), Vlachos 
and Sergiadis (2007) and Wei et al. (2011), which demonstrate that this distance is useful 
and effective. 

The paper is organized as follows. Section 1 gives a brief description of the IFS and 
its distance measure research. Section 2 discusses the properties of the spherical distance 
between IFSs and between their elements, and then shows the properties using examples. 
Section 3 applies the spherical distance model to group decision making, pattern recogni-
tion, and medical diagnosis. This section first constructs an optimization model to get the 
collective opinion of group decision, and then, demonstrates that the spherical distance can 
also be applied in many fields such as pattern recognition and medical diagnosis. A short 
conclusion is given in last section. 

1. Problem description

An IFS (Atanassov 1986, 1999a) in X is an expression given by { ( )AA x u x′ = < , , ( ) }Av x x X>| ∈ ,  
where [0 1]Au X: , , [0 1]Av X: ,  with the condition 0 ( ) ( ) 1A Au x v x≤ + ≤ , for all x in 
X. The numbers ( )Au x  and ( )Av x  denote, respectively, the membership degree and the 
non-membership degree of the element x in A′. 
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For each finite intuitionistic fuzzy set in X, ( ) 1 ( ) ( )A A Ax u x v xπ = − −  is called an in-
tuitionistic fuzzy index of A′. It is a hesitation degree of whether x  belongs to A′ or not. 
It is obvious that 0 ( ) 1A x≤ π ≤  for each x A′∈ . If ( ) 0A xπ = , then ( ) ( ) 1A Au x v x+ = , 
which indicates that the intuitionistic fuzzy set A′ has degenerated to the classic fuzzy set 

{ ( ) }AA x u x x X′ = < , >| ∈  (Zadeh 1965). For simplicity, { ( ) ( ) }A AA x u x v x x X′ = < , , >| ∈  can 
be denoted as { }A x u v′ = < , , > , where u and v are the degree of membership and the degree 
of non-membership, respectively, and 1 u vπ = − − . 

Atanassov (1986) introduced the Hamming distance and Euclidean distance in 2-di-
mension linear space, and Szmidt and Kacprzyk (2005a) generalized these distances to 
3-dimension linear space. Yang and Chiclana (2009) proved that these distances have linear 
feature, that is, if we move both sets with the same changes in membership, nonmember-
ship, and hesitancy degrees, then we can obtain exactly the same distance between the two 
IFSs. Yang and Chiclana also showed by an example that these distances in linear space 
can not adequately reflect the nonlinear perception of human. So they developed a simple 
spherical distance measure that is in nonlinear space. 

Let { }A x u v′ = < , , >  be an intuitionistic fuzzy set, satisfying 1u v+ + π = . Let 2 ux = , 
2 vy = , 2z = π , then 22 2 1yx z+ + = . By this transformation, the intuitionistic fuzzy set 

A′ can be viewed as a spherical surface 22 2{( ) 1}S x y z yx z= , , | + + = , and the distance 
between two elements of the intuitionistic fuzzy set can be defined as the spherical distance 
between their corresponding points on its spherical surface representation. 

Let A A A Ax x u v=< , , >  and B B B Bx x u v=< , , >  be two elements of A′, and let 
( )A AAA yx z, , , ( )B BBB yx z, ,  satisfying 22 2 1A AAyx z+ + = , 22 2 1B BByx z+ + =  be two points 

on the spherical surface S . It follows from the transformation above that 2
AAu x= , 2

A Av y=  , 2
AA zπ = , 2

BBu x= , 2
B Bv y=  and 2

BB zπ = . The shortest path between points A and B are 
defined as the length of the arc of the great circle passing through both points, which is 
called the spherical distance between points A and B: 

 
2 2 2( ) {1 1 2[( ) ( ) ( ) ]}A B A BA BD A B arccos y yx x z z, = − / − + − + − .  (1)

For 

 
1 1 1
2 2 2( ) (( ) ( ) ( ) )A B A B A BD A B arccos u u v v, = + + π π .  (2)

This distance can be interpreted as the spherical distance between two elements of the 
IFS. 

The spherical distance between two IFSs, { ( ) ( ) }i A i A i iA x u x v x x X′ = < , , >| ∈  and 
{ ( ) ( ) }i B i B i iB x u x v x x X′ = < , , >| ∈  of the universe of discourse 1 2{ }nX x x x= , , ,  is also 

defined as follows: 

 

2

1

2 1( ) {1 [( ( ) ( ))
2

n

A i B i
i

D A B arccos u x u x
n =

′ ′, = − −
π ∑ +

 
 (3)

                      
2 2( ( ) ( )) ( ( ) ( )) ]}A i B i A i B iv x v x x x+ − + π − π ,

where 2
π  is introduced to get distance values in the range [0 1],  instead of 2[0 ]π, . Eq. (3) 

is equivalent to 
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1 1 1
2 2 2

1

2( ) (( ( ) ( )) ( ( ) ( )) ( ( ) ( )) )
n

A i B i A i B i A i B i
i

D A B arccos u x u x v x v x x x
n =

′ ′, = + + π π
π ∑ .

 
 (4)

The spherical distance measure between IFSs has good property, which has been shown 
by Yang and Chiclana (2009). 

Property 1 (Yang, Chiclana 2009). Let { ( ) ( ) }i A i A i iA x u x v x x X′ = < , , >| ∈  and 
{ ( ) ( ) }i B i B i iB x u x v x x X′ = < , , >| ∈  and  { ( ) 1 ( ) 0 } ( ) 0 ( ) 1 }i E i E i i i E i E i iE x u x v x x X or x u x v x x X′ = < , = , = >| ∈ < , = , = >| ∈ or 

{ ( ) 1 ( ) 0 } ( ) 0 ( ) 1 }i E i E i i i E i E i iE x u x v x x X or x u x v x x X′ = < , = , = >| ∈ < , = , = >| ∈  be three intuitionistic fuzzy sets, and let 1 2{ }na a a a= , , ,  , 
1 2{ }nb b b b= , , ,  be two sets of real positive numbers satisfying 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

B i A i i B i A i i

E i A i i E i A i i

u x u x a v x v x b
u x u x a v x v x b

| − |= ,| − |= ,
| − |= ,| − |=

then the inequality ( ) ( )D A B D A E′ ′ ′ ′, < ,  holds. 
Property 1 can be explained that “the distance between two IFSs is always lower than 

the distance between any one of IFSs and the extreme crisp sets (E′) under the same dif-
ference of their memberships and nonmemberships”. If we consider the distance between 
any two elements of IFS, then Property 1 actually implies Property 2 as follows. 

Property 2. Let A A A Ax x u v=< , , > , B B B Bx x u v=< , , >  and 1 0 0 1E E E E E E E Ex x u v orx x u v=< , = , = > =< , = , = > 
or 1 0 0 1E E E E E E E Ex x u v orx x u v=< , = , = > =< , = , = > be three elements of A′. If B Au u a| − |=| |, B Av v b| − |=| |, and 

E Au u a| − |=| |, E Av v b| − |=| |, then the inequality ( ) ( )D A B D A E, < ,  holds. 
Property 2 can be explained that “the distance between two elements of IFS is always 

lower than the distance between any one element of IFS and the extreme element (xE) 
under the same difference of their memberships and nonmemberships”. 

Let us consider the linguistic term of intuitionistic fuzzy set 1{ 1 0Perfect s=< , , >;  
2 3 4 50 75 0 25 0 5 0 5 0 25 0 75 0 1 }Good s Fair s Poor s None s=< , . , . >; =< , . , . >; =< , . , . >; =< , , >  , 

which is equivalent to the linguistic term of fuzzy set { 1 0 75 0 5 0 25 0}Perfect Good Fair Poor None= , = . , = . , = . , =
{ 1 0 75 0 5 0 25 0}Perfect Good Fair Poor None= , = . , = . , = . , = . The Euclidean distances of the membership degree, nonmembership 

degree, and the spherical distances between the linguistic term of intuitionistic fuzzy set 
are shown in Table 1. 

Table 1. The spherical distances between the linguistic term of IFSs 

The Euclidean 
distances of

the membership degree

The Euclidean distances  
of the nonmembership 

degree

The spherical
distances

The relation between
the spherical distances

1 2
0 25s s′ ′| − |= .µ µ

1 2
0 25s s| − |= .′ ′ν ν 1 2( ) 0 5236D s s, = . 1 2 2 3( ) ( )D s s D s s, > ,

2 3
0 25s s′ ′| − |= .µ µ 2 3

0 25s s| − |= .′ ′ν ν 2 3( ) 0 2618D s s, = .

3 4
0 25s s′ ′| − |= .µ µ 3 4

0 25s s| − |= .′ ′ν ν 3 4( ) 0 2618D s s, = . 4 5 3 4( ) ( )D s s D s s, > ,

4 5
0 25s s′ ′| − |= .µ µ 4 5

0 25s s| − |= .′ ′ν ν 4 5( ) 0 5236D s s, = .
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According to Table 1, the Euclidean distance between Perfect and Good is equivalent to 
the Euclidean distance between Good and Fair, while the spherical distance between Per-
fect and Good is greater than the spherical distance between Good and Fair. For instance, 
it is easy for a student to improve his test score from a Fair level (For example, the sore is 
60) to a Good level (80). But he or she must put more effort to reach a Perfect level (100) 
from a Good level (80). In this sense, the spherical distance measure is more appropriate in 
measuring qualitative evaluation than the usual Euclidean distance measure. 

In fact, we can enlarge Property 2 to more general cases. For examples, let us con-
sider Table 2 and Table 3 below, where 

i ii i A AA Ax x u v=< , , >′ ′  and 
ii i BB B Bx x ′=< , , >µ ′ν  

are two elements of A′. When the Euclidean distance satisfying 0 1
i iB Au u− = − .′ ′ , 

0 2
i iB A− = .′ ′ν ν , the inequality ( ) ( )i i j jD A B D A B, > ,  (or ( ) ( )i i j jD A B D A B, < , ) hold for 

all {1 2 3 4}i j i j, = , , , , < . 

Table 2. An numerical example of the spherical distances based on equal Euclidean distances 

iA′µ
iA′ν

iB′µ
iB′ν a b ( )i iD A B,

i = 1 0.1 0.2 0.0 0.4 –0.1 0.2 0.3739
i = 2 0.2 0.2 0.1 0.4 –0.1 0.2 0.2373
i = 3 0.3 0.2 0.2 0.4 –0.1 0.2 0.2241
i = 4 0.4 0.2 0.3 0.4 –0.1 0.2 0.2211

Table 3. Another numerical example of the spherical distances based on equal Euclidean distances 

iA′µ
iA′ν

iB′µ
iB′ν a b ( )i iD A B,

i = 1 0.5 0.2 0.4 0.4 –0.1 0.2 0.2241
i = 2 0.6 0.2 0.5 0.4 –0.1 0.2 0.2373
i = 3 0.7 0.2 0.6 0.4 –0.1 0.2 0.3739

In next section, we will show that for any two elements 
i i i iA A A Ax x u v=< , , >  and 

i i iB B B Bx x u v=< , , >  of A′, if 
i iB Au u a| − |=| | , 

i iB Av v b| − |=| | , then the inequality 
( ) ( )i i j jD A B D A B, > ,  (or ( ) ( )i i j jD A B D A B, < , ) hold, where {1 2 }i j M m i j, ∈ = , , , , < . 

Because this property is suitable for measuring qualitative evaluation, we will apply the 
spherical distance measure to group decision making in Section 3. 

2. The properties of the Spherical distance between any two elements of the IFS

Let A A A Ax x u v=< , , >  and B B B Bx x u v=< , , >  be two elements of A′, and let A, B be two 
corresponding points on the spherical surface S. If we denote B Au u a= + , B Av v b= + , and 

A Au u v v= , = , where a b R, ∈  satisfy 1u v a b+ + + ≤ . Then ( )D A B,  can be denoted as 

 ( ) ( ) arccos ( )D A B d u v f u v, = , = , ,  (5)

where 

              
1 1 1
2 2 2( ) ( ( )) ( ( )) ((1 )(1 ))f u v u u a v v b u v u v a b, = + + + + − − − − − −  .              (6)
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In the following, we will discuss the properties of ( )d u v, . We first introduce Lemma 1. 

Lemma 1 (Hamdy 2007). Let nC R⊂  be a nonempty open convex set, and let 
nf C R R: ⊂   be twice continuously differentiable over Rn. f is concave if and only if its 

Hessian matrix 2 ( )f∇ x  is negative semi-definite at each point in C. f is strictly concave if 
its Hessian matrix 2 ( )f∇ x  is negative definite at each point in C. 

Lemma 2. 
1 1 1
2 2 2( ) ( ( )) ( ( )) ((1 )(1 ))f u v u u a v v b u v u v a b, = + + + + − − − − − −  is concave 

over 2{( ) 0 1 0 1 0 1 0 1}C u v R u v u v u v a b= , ∈ | ≤ ≤ , ≤ ≤ , ≤ + ≤ , ≤ + + + ≤ , where 0 1a b≤ , ≤ , 
and a b,  are not both equal to zero. 

Proof. Let’s consider ( )u u vf ′ , , ( )v u vf ′ , , ( )uu u vf ′′ , , ( )vv u vf ′′ ,  and ( )uv u vf ′′ , , where 

1 1
2 2

1 1( ) (2 )( ( )) (2 2 2 )((1 )(1 ))
2 2u u v u a u u a u v a b u v u v a bf − −′ , = + + + − + + + − − − − − − ;  (7)

1 1
2 2

1 1( ) (2 )( ( )) (2 2 2 )((1 )(1 ))
2 2v u v v b v v b u v a b u v u v a bf − −′ , = + + + − + + + − − − − − − ;  (8)

  2 3 2 2 3 2( ) ( ( )) 4 ( ) ((1 )(1 )) 4uu u v a u u a a b u v u v a bf − / − /′′ , = − + / − + − − − − − − / ;  (9)

  2 3 2 2 3 2( ) ( ( )) 4 ( ) ((1 )(1 )) 4vv u v b v v b a b u v u v a bf − / − /′′ , = − + / − + − − − − − − /   (10)

and 

 2 3 2( ) ( ) ((1 )(1 )) 4uv u v a b u v u v a bf − /′′ , = − + − − − − − − / .  (11)

Obviously, we have ( ) 0 ( ) 0uu vvu v u vf f′′ ′′, ≤ , , ≤  and ( ) 0uv u vf ′′ , ≤ . ( ) ( )uu vvu v u vf f′′ ′′, , ,  
and ( )uv u vf ′′ ,  are continuous. If we denote 3 2

1 ( ( )) 4y u u a − /= + / , 3 2
2 ( ( )) 4y v v b − /= + /  , 

and 3 2((1 )(1 )) 4y u v u v a b − /= − − − − − − / , then the Hessian matrix of ( )f u v,  

is 2 ( ) ( )
( )

( ) ( )
uu uv

uv vv

f u v f u v
f u v

f u v f u v
, , 

∇ , = ,  , , 
 and the determinant of 2 ( )f u v∇ ,  satisfies 

2 2 2 2 2 2
1 2 1 2( ( )) ( ) ( ) 0det f u v a b y y a b a y b y y∇ , = + + + > .  That is, 2 ( )f u v∇ ,  is negative defi-

nite for all ( )u v C, ∈ . By lemma 1, ( )f u v,  is concave.
According to Lemma 2, for any given u0, 00 1u≤ ≤ , 

1 1 1
2 2 20 0 0 0( ) ( ( )) ( ( )) ((1 )(1 ))f v u u a v v b u v u v a b= + + + + − − − − − −

1 1 1
2 2 20 0 0 0( ) ( ( )) ( ( )) ((1 )(1 ))f v u u a v v b u v u v a b= + + + + − − − − − −  is concave. For any given v0, 00 1v≤ ≤ , 

1 1 1
2 2 20 0 0 0( ) ( ( )) ( ( )) ((1 )(1 ))f u u u a v v b u v u v a b= + + + + − − − − − −
1 1 1
2 2 20 0 0 0( ) ( ( )) ( ( )) ((1 )(1 ))f u u u a v v b u v u v a b= + + + + − − − − − − is concave. 

For any given v0, 00 1v≤ ≤ , let 
1 1 1
2 2 20 0 0 0( ) ( ( )) (( ( )) ( ( )) ((1 )(1 )) )d u arccos f u arccos u u a v v b u v u v a b= = + + + + − − − − − −
1 1 1
2 2 20 0 0 0( ) ( ( )) (( ( )) ( ( )) ((1 )(1 )) )d u arccos f u arccos u u a v v b u v u v a b= = + + + + − − − − − −  , 

where 0 0{ 0 1 0 1 0 1}u u u u v u v a b∈ | ≤ ≤ , ≤ + ≤ , ≤ + + + ≤  , 0 1a b≤ , ≤  , 
and a b,  are not both equal to zero. For ( ) 0f u′′ ≤  , we can easily get that 

2 2( )(1 ( )) ( ) ( )f u f u f u f u′′ ′| − |≥| | , then the second derivative 
3
22 2 2( ) ( ( )(1 ( )) ( ) ( ))((1 ( )) ) 0d u f u f u f u f u f u −′′ ′′ ′= − − − − ≥

3
22 2 2( ) ( ( )(1 ( )) ( ) ( ))((1 ( )) ) 0d u f u f u f u f u f u −′′ ′′ ′= − − − − ≥ , which denotes that ( )d u  is convex. For any given u0, let 

1 1 1
2 2 20 0 0 0( ) ( ( )) (( ( )) ( ( )) ((1 )(1 )) )d v arccos f v arccos u u a v v b u v u v a b= = + + + + − − − − − −  , 

where 0 0{ 0 1 0 1 0 1}v v v u v u v a b∈ | ≤ ≤ , ≤ + ≤ , ≤ + + + ≤ , 0 1a b≤ , ≤ , and a b,  are not 
both equal to zero. For ( ) 0f u′′ ≤ , we can easily get that 2 2( )(1 ( )) ( ) ( )f u f u f u f u′′ ′| − |≥| | , 
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then the second derivative 
3
22 2 2( ) ( ( )(1 ( )) ( ) ( ))((1 ( )) ) 0d u f u f u f u f u f u −′′ ′′ ′= − − − − ≥  , 

which denotes that ( )d u  is convex. For any given u0, let 
1 1 1
2 2 20 0 0 0( ) ( ( )) (( ( )) ( ( )) ((1 )(1 )) )d v arccos f v arccos u u a v v b u v u v a b= = + + + + − − − − − − , 

where 0 0{ 0 1 0 1 0 1}v v v u v u v a b∈ | ≤ ≤ , ≤ + ≤ , ≤ + + + ≤ , 0 1a b≤ , ≤ , and a b,  are not both 
equal to zero. For ( ) 0f v′′ ≤ , we can easily get that 2 2( )(1 ( )) ( ) ( )f v f v f v f v′′ ′| − |≥| | , then the 
second derivative 

3
22 2 2( ) ( ( )(1 ( )) ( ) ( ))((1 ( )) ) 0d v f v f v f v f v f v −′′ ′′ ′= − − − − ≥ , which denotes 

that ( )d v  is convex. 
Let ( ) 0u u vf ′ , = , and ( ) 0v u vf ′ , = , then we have 

 ( 1) (1 ) (2 )u a v b u a a b v a b= − / , = − − − / + ;  (12)

 ( 1) (1 ) (2 )v a u b v a a b u b a= − / , = − − − / + .  (13)

Let i i i ix x u v=< , , >  and i i i ix x u v′ ′ ′ ′=< , , >  be the elements of the intuitionistic fuzzy 
sets, and their corresponding points on the spherical surface S are iA ′  and iA , respectively, 
where i iu u a′ = + , i iv v b′ = + , i i N′, ∈ . The spherical distance between iA  and iA ′  are 

1 1 1
2 2 2

( ) ( ) arccos ( )

arccos(( ( )) ( ( )) ((1 )(1 )) )

i i i i i i

i i i i i i i i

D A A d u v f u v

u u a v v b u v u v a b i i N

′, = , = , =

′+ + + + − − − − − − , , ∈

and the Euclidean distance between iA ′  and iA , i N∈ , are 
1
22 2 2( ( ) )a b a b+ + + . 

The other two properties of function ( )d u v,  are as follows. 

Property 3. The convex function 0( )d u v,  (or 0( )d u v, ) is increasing on the interval 2[ ]ξ,ξ  , 
0( )d u v,  (or 0( )d u v, ) is decreasing on the interval 1[ ]ξ ,ξ , where 1 2[ ]ξ ,ξ  is the domain  

( 1 2 0 0[ ] { 0 1 0 1 0 1}u u lequ v u v a bξ ,ξ = | ≤ ≤ , + ≤ , ≤ + + + ≤ ) of 0( )d u v,  (or 0( )d u v, ), x is the 
minimum point (That is, 0 0 1 2( ) ( ) [ ]d v d u v uξ, ≤ , , ∈ ξ ,ξ .), and v0 (or u0) is a constant. This 
denotes that, for any i j> , i j i j N′ ′, , , ∈ , if i ju u> ≥ ξ , then ( ) ( )i i j jD A A D A A′ ′, > , ; for any 
i j< , i j i j N′ ′, , , ∈ , if i ju u< ≤ ξ , then ( ) ( )i i j jD A A D A A′ ′, > , . 

Property 3 denotes that: For a fixed Euclidean distance 
1
22 2 2( ( ) )a b a b+ + +  between 

iA ′  and iA , the smaller Euclidean distance between ui and left-endpoint x1 (or right-end-
point x2) of the interval 1 2[ ]ξ ,ξ  is, the greater spherical distance between iA ′  and iA , 
i i N′, ∈  is. 

Property 4. 0( )u u vd ,′  (or 0( ))v u vd ,′  is increasing on the interval 2[ ]ξ,ξ ; 0( )u u vd ,′  (or 
0( ))v u vd ,′  is decreasing on the interval 1[ ]ξ ,ξ , where x is the minimum point (That 

is, 0 0 1 2 0 0( ) ( ) [ ] { 0 1 0 1 0 1}d v d u v u i u u u v u v a bξ, ≤ , , ∈ ξ , = | ≤ ≤ , ≤ + ≤ , ≤ + + + ≤ .). This 
denotes that, for any i j l m< < < , i j l m i j l m N′ ′ ′ ′, , , , , , , ∈ , if i j l mu u u u< < < ≤ ξ , and 

0j i m lu u u u k− = − = , then ( ) ( ) ( ) ( )l l m m i i j jD A A D A A D A A D A A′ ′ ′ ′, − , < , − , ; for any 
i j l m< < < , i j l m i j l m N′ ′ ′ ′, , , , , , , ∈ , if i j l mu u u uξ < < < < , and 0j i m lu u u u k− = − = , 
then ( ) ( ) ( ) ( )i i j j l l m mD A A D A A D A A D A A′ ′ ′ ′, − , > , − , . 

Property 4 denotes that: For a fixed Euclidean distance 
1
22 2 2( ( ) )a b a b+ + +  between iA ′  

and iA , the smaller Euclidean distance between ui and left-endpoint (or right-endpoint) 
of the interval 1 2[ ]ξ ,ξ  is, the greater spherical distance difference between ( )i iD A A ′,  and 
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( )j jD A A ′, , where 0j iu u k− = , i j i j N′ ′, , , ∈ . Property 3 and Property 4 show that spherical 
distance difference is nonlinear, which can better reflect the character of human perception 
and judgement. Property 3 and Property 4 are actually the generalization of Property 2. 

The two properties can be explained by four different cases. For simplicity, we consider 
six points 1 6iA i, = , , , and we also denote 3j ju u a+ = + , 0jv v= , 3j jv v b+ = + , 1 2 3.j = , ,
The Euclidean distances between 3jA +  and Aj, 1 2 3j = , ,  are 

1
22 2 2( ( ) )a b a b+ + + . 

Case 1. 0a ≥ , 0b ≥ , and a, b are not both equal to zero (That is, if 0a = , then 0b > ; if 
0b = , then 0a > .). For a given number 0 [0 1 ]v a b∈ , − −  (We can also get the similar con-

clusion with 0 [0 1 ])u a b∈ , − − . 
– 0( )d u v,  is monotone increasing on the interval 0 0[ (1 ) (2 ) 1 ]a a b v a b a b v− − − / + , − − −  , 

that  is ,  when 0 3 2 1 01 (1 ) (2 )a b v u u u a a b v a b− − − ≥ > > ≥ − − − / +  ,  we 
have 1 4 2 5 3 6( ) ( ) ( )D A A D A A D A A, < , < , ; 0( )d u v′ ,  is monotone increas-
ing on the interval 0 0[ (1 ) (2 ) 1 ]a a b v a b a b v− − − / + , − − − , that is, when 

0 3 2 1 01 (1 ) (2 )a b v u u u a a b v a b− − − ≥ > > ≥ − − − / + , and 3 2 2 1u u u u− = − , we have 
2 5 1 4 3 6 2 5( ) ( ) ( ) ( )D A A D A A D A A D A A, − , < , − , . 

– 0( )d u v,  is monotone decreasing on the interval 0[0 (1 ) (2 )]a a b v a b, − − − / +  , 
that  i s ,  w hen 0 3 2 1(1 ) (2 ) 0a a b v a b u u u− − − / + ≥ > > > ,  we  have 

1 4 2 5 3 6( ) ( ) ( )D A A D A A D A A, > , > , ; 0( )d u v′ ,  is monotone increasing on the interval 
0[0 (1 ) (2 )]a a b v a b, − − − / + , that is, when 0 3 2 1(1 ) (2 ) 0a a b v a b u u u− − − / + ≥ > > >  , 

and 3 2 2 1u u u u− = − , we have 1 4 2 5 2 5 3 6( ) ( ) ( ) ( )D A A D A A D A A D A A, − , > , − , . 

Proof. By Eqs (12) and (13), it is clear that ( 1) 0u a v b= − / < , and ( 1) 0v a u b= − / < . 
Therefore, (1 ) (2 )u a a b v a b= − − − / +  and (1 ) (2 )v a a b u b a= − − − / +  are the solutions to 

( ) 0u u vf ′ , =  and ( ) 0v u vf ′ , = , respectively. 
Let v0, 0 [0 1 ]v a b∈ , − −  be a given number. We have 0 0( (1 ) (2 ) ) 0f a a b v a b v− − − / + , =  , 

and 0 0( (1 ) (2 ) ) 0uu a a b v a b vf ′′ − − − / + , ≤ . It follows that 0 0( (1 ) (2 ) )a a b v a b v− − − / + ,  
is the maximum point of the concave function 0( )f u v, , which also denotes that 

0 0( (1 ) (2 ) )a a b v a b v− − − / + ,  is the minimum point of the convex function 0( )d u v, . There-
fore, 0( )d u v,  is monotone increasing on the interval 0 0[ (1 ) (2 ) 1 ]a a b v a b a b v− − − / + , − − −  , 
and monotone decreasing on the interval 0[0 (1 ) (2 )]a a b v a b, − − − / + . If 

0 3 2 1 01 (1 ) (2 )a b v u u u a a b v a b− − − ≥ > > ≥ − − − / + , then 3 0 2 0 1 0( ) ( ) ( )d u v d u v d u v, > , > ,  , 
that is, 3 6 2 5 1 4( ) ( ) ( )D A A D A A D A A, > , > , ; If 0 3 2 1(1 ) (2 ) 0a a b v a b u u u− − − / + ≥ > > > , 
then 1 0 2 0 3 0( ) ( ) ( )d u v d u v d u v, > , > , , that is, 1 4 2 5 3 6( ) ( ) ( )D A A D A A D A A, > , > , . 

Suppose that 3 2 2 1u u u u− = − . For 0( )d u v,  is convex, we get 0( ) 0uu u vd , >′′  . It follows that 
0( )u u vd ,′  is monotone increasing on the interval 0 0[ (1 ) (2 ) 1 ]a a b v a b a b v− − − / + , − − −  . 

Thus we have 2 0 1 0 3 0 2 0

2 1 3 2

( ) ( ) ( ) ( )
.

d u v d u v d u v d u v
u u u u

, − , , − ,
<

− −  
For 1 0 2 0 3 0( ) ( ) ( )d u v d u v d u v, < , < , , we have 2 0 1 0( ) ( ) 0d u v d u v, − , > , and 3 0 2 0( ) ( ) 0d u v d u v, − , >

3 0 2 0( ) ( ) 0d u v d u v, − , > . Therefore, 2 0 1 0 3 0 2 0( ) ( ) ( ) ( )d u v d u v d u v d u v, − , < , − , .
That is, 2 5 1 4 3 6 2 5( ) ( ) ( ) ( )D A A D A A D A A D A A, − , < , − , . 

When 00 (1 ) (2 ))u a a b v a b≤ < − − − / + , we also have 0( )u u vd ,′  is a monotone 

increasing function. Thus we have 2 0 1 0 3 0 2 0

2 1 3 2

( ) ( ) ( ) ( )d u v d u v d u v d u v
u u u u

, − , , − ,
<

− −  
. For 
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1 0 2 0 3 0( ) ( ) ( )d u v d u v d u v, > , > , , we have 2 0 1 0( ) ( ) 0d u v d u v, − , < , and 3 0 2 0( ) ( ) 0d u v d u v, − , <  . 
Therefore, 1 0 2 0 2 0 3 0( ) ( ) ( ) ( )d u v d u v d u v d u v, − , > , − , . That is, 1 4 2 5 2 5 3 6( ) ( ) ( ) ( )D A A D A A D A A D A A, − , > , − ,

1 4 2 5 2 5 3 6( ) ( ) ( ) ( )D A A D A A D A A D A A, − , > , − , . 

Example 1. Let’s consider two elements A A A Ax x u v=< , , > , B B B Bx x u v=< , , >  of the IFS 
A′, where 0 1B Au u= + . , 0 05B Av v= + . , 0 2Av = . . We denote Au u=  and Av v= . The 
spherical distance between points A and B are 

 
1 1
2 2( 0 2) arccos(( ( 0 1) (0 2(0 2 0 05)d u u u, . = + . + . . + . + (14)

                         
1
2((1 0 2)(1 0 2 0 1 0 05) )u u+ − − . − − . − . − . ,

( 0 2)d u, .  is actually an intersecting line between the 3-D surface 
1 1 1
2 2 2( ) arccos(( ( 0 1)) ( ( 0 05)) ((1 )(1 0 1 0 05)) )d u v u u v v u v u v, = + . + + . + − − − − − . − .

1 1 1
2 2 2( ) arccos(( ( 0 1)) ( ( 0 05)) ((1 )(1 0 1 0 05)) )d u v u u v v u v u v, = + . + + . + − − − − − . − .  and 2-D plane 0 2v = . . (As shown in 

Fig. 1 and 2). ( 0 2)d u, .  is a convex function, and its lowest point is (0 26 0 2). , . . ( 0 2)d u, .  
is decreasing on the interval [0 0 26], . , and it is increasing on the interval [0 26 0 65]. , . (As 
shown in Fig. 2). 

For any 3 2 10 65 0 26u u u. ≥ > > ≥ . , and 3 2 2 1u u u u− = − , we have 3 0 2 0 1 0( ) ( ) ( )d u v d u v d u v, > , > ,

3 0 2 0 1 0( ) ( ) ( )d u v d u v d u v, > , > , , and 2 0 1 0 3 0 2 0( ) ( ) ( ) ( )d u v d u v d u v d u v, − , < , − ,2 0 1 0 3 0 2 0( ) ( ) ( ) ( )d u v d u v d u v d u v, − , < , − , . For any 3 2 10 26 0u u u. ≥ > > > , 
and 3 2 2 1u u u u− = − , we have 1 0 2 0 3 0( ) ( ) ( )d u v d u v d u v, > , > ,1 0 2 0 3 0( ) ( ) ( )d u v d u v d u v, > , > , , and 1 0 2 0 2 0 3 0( ) ( ) ( ) ( )d u v d u v d u v d u v, − , > , − ,

1 0 2 0 2 0 3 0( ) ( ) ( ) ( )d u v d u v d u v d u v, − , > , − , . This denotes that ( 0 2)d u, .  is decreasing quickly near the left end-
point (0) of the interval [0 0 65], . , and ( 0 2)d u, .  is increasing quickly near the right endpoint 
(0.65) of the interval [0 0 65], .  (As shown in Fig. 2). 

Case 2. 0a ≤ , 0b ≤ , and a, b are not both equal to zero. Let v0, 0 [ 1 ]v b a∈ − , +  be a given num-
ber (We can also get the similar conclusion with u0, 0 [ 1 ])u a b∈ − , + . We only need to consid-
er two intervals 0 0[ (1 ) (2 ) 1 ]u a a b v a b v∈ − − − / + , −  and 0[ (1 ) (2 )]u a a a b v a b∈ − , − − − / +  , 
respectively. The conclusion is similar to Case 1. 

Case 3. 0a ≤ , 0b ≥ , and a, b are not both equal to zero. 
Subcase 3.1. a b| |≥ . Let 0 [0 1 ]v a∈ , +  be a given number (We can also get the similar 
conclusion with 0 [ 1])u a∈ − , . 

– 0( )d u v,  is monotone increasing on interval 0 0[ (1 ) (2 ) 1 ]a a b v a b v− − − / + , −  , 
that is ,  when 0 3 2 1 01 (1 ) (2 )v u u u a a b v a b− ≥ > > ≥ − − − / + ,  we have 

1 4 2 5 3 6( ) ( ) ( )D A A D A A D A A, < , < ,1 4 2 5 3 6( ) ( ) ( )D A A D A A D A A, < , < , ; 0( )d u v′ ,  is monotone increasing on the in-
terval 0 0[ (1 ) (2 ) 1 ]a a b v a b v− − − / + , − , that is, when 0 3 2 1 01 (1 ) (2 )v u u u a a b v a b− ≥ > > ≥ − − − / +

0 3 2 1 01 (1 ) (2 )v u u u a a b v a b− ≥ > > ≥ − − − / + , and 3 2 2 1u u u u− = − , we have 2 5 1 4 3 6 2 5( ) ( ) ( ) ( )D A A D A A D A A D A A, − , < , − ,

2 5 1 4 3 6 2 5( ) ( ) ( ) ( )D A A D A A D A A D A A, − , < , − , . 
– 0( )d u v,  is monotone decreasing on the interval 0[ (1 ) (2 )]a a a b v a b− , − − − / +  , 

that is, when 0 3 2 1(1 ) (2 )a a b v a b u u u a− − − / + ≥ > > ≥ − , we have 1 4 2 5 3 6( ) ( ) ( )D A A D A A D A A, > , ≥ ,

1 4 2 5 3 6( ) ( ) ( )D A A D A A D A A, > , ≥ , ; 0( )d u v′ ,  is monotone increasing on the inter-
val 0[ (1 ) (2 )]a a a b v a b− , − − − / + , that is, when 0 3 2 1(1 ) (2 )a a b v a b u u u a− − − / + ≥ > > ≥ −

0 3 2 1(1 ) (2 )a a b v a b u u u a− − − / + ≥ > > ≥ − , and 3 2 2 1u u u u− = − , we have 1 4 2 5 2 5 3 6( ) ( ) ( ) ( )D A A D A A D A A D A A, − , > , − ,1 4 2 5 2 5 3 6( ) ( ) ( ) ( )D A A D A A D A A D A A, − , > , − , . 

Subcase 3.2. a b| |< . For a given number 0 [0 1 ]v b∈ , − . (We can also get the similar con-
clusion with 0 [ 1 ])u a a b∈ − , − − . 
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– 0( )d u v,  is monotone increasing on the interval 0 0[ ( 1) 1 ]a v b v a b− / , − − − , that is, when 
0 3 2 1 01 ( 1)v a b u u u a v b− − − ≥ > > ≥ − / , we have 1 4 2 5 3 6( ) ( ) ( )D A A D A A D A A, < , < ,  ; 

0( )d u v′ ,  is monotone increasing on the interval 0 0[ ( 1) 1 ]a v b v a b− / , − − − , that is, 
when 0 3 2 1 01 ( 1)v a b u u u a v b− − − ≥ > > ≥ − / , and 3 2 2 1u u u u− = − , we have 

2 5 1 4 3 6 2 5( ) ( ) ( ) ( )D A A D A A D A A D A A, − , < , − , . 
– 0( )d u v,  is monotone decreasing on the interval 0[ ( 1) ]a a v b− , − / , that is, when 

0 3 2 1( 1)a v b u u u a− / ≥ > > ≥ − ,  we have 1 4 2 5 3 6( ) ( ) ( )D A A D A A D A A, > , > ,  ; 
0( )d u v′ ,  is monotone increasing on the interval 0[ ( 1) ]a a v b− , − / , that 

is, when 0 3 2 1( 1)a v b u u u a− / ≥ > > ≥ − , and 3 2 2 1u u u u− = − , we have 
1 4 2 5 2 5 3 6( ) ( ) ( ) ( )D A A D A A D A A D A A, − , > , − , . 

Fig. 1. The intersection between d(u, v) and v = 0.2

a u u v v u v u vcos(( ( + 1/10)) + ( ( + 1/20)) + ((1 – – ) (17/20 – – )) )1/2 1/2 1/2
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Fig. 2. Figure of function d(u, 0.2)
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Proof. Subcase 3.1. a b| |≥ . For ( 1) 1 0u a v b u v− − / < + − ≤ , we have 
(1 ) (2 )u a a b v a b= − − − / + . 

Let 0v , 0 [0 1 ]v a∈ , +  be a given number. We have 0 0( (1 ) (2 ) ) 0f a a b v a b v− − − / + , =  , 
and 0 0( (1 ) (2 ) ) 0uu a a b v a b vf ′′ − − − / + , ≤ . It follows that 0 0( (1 ) (2 ) )a a b v a b v− − − / + ,  
is the maximum point of the concave function 0( )f u v, , which also denotes that 

0 0( (1 ) (2 ) )a a b v a b v− − − / + ,  is the minimum point of the convex function 0( )d u v, . 
Therefore, 0( )d u v,  is monotone increasing on the interval 0 0[ (1 ) (2 ) 1 ]a a b v a b v− − − / + , −  , 
and 0( )d u v,  is monotone decreasing on the interval 0[ (1 ) (2 )]a a a b v a b− , − − − / + . If 

0 3 2 1 01 (1 ) (2 )v u u u a a b v a b− ≥ > > ≥ − − − / + , then 3 0 2 0 1 0( ) ( ) ( )d u v d u v d u v, > , > , . Thus 
we have 3 6 2 5 1 4( ) ( ) ( )D A A D A A D A A, > , > , . If 0 3 2 1(1 ) (2 )a a b v a b u u u a− − − / + ≥ > > ≥ −  , 
then 1 0 2 0 3 0( ) ( ) ( )d u v d u v d u v, > , > , . Thus we have 1 4 2 5 3 6( ) ( ) ( )D A A D A A D A A, > , > , . 

Suppose that 3 2 2 1u u u u− = − . For 0( )d u v,  is concave, we get 0( ) 0uu u vd , >′′ . It follows 
that 0( )u u vd ,′  is monotone increasing on the interval 0 0[ (1 ) (2 ) 1 ]a a b v a b v− − − / + , −  , thus 

we have 2 0 1 0 3 0 2 0

2 1 3 2

( ) ( ) ( ) ( )d u v d u v d u v d u v
u u u u

, − , , − ,
<

− −  
. Then for 1 0 2 0 3 0( ) ( ) ( )d u v d u v d u v, < , < ,1 0 2 0 3 0( ) ( ) ( )d u v d u v d u v, < , < ,  , 

we have 2 0 1 0( ) ( ) 0d u v d u v, − , >  , and 3 0 2 0( ) ( ) 0d u v d u v, − , >  . Therefore, 2 0 1 0 3 0 2 0( ) ( ) ( ) ( )d u v d u v d u v d u v, − , < , − ,

2 0 1 0 3 0 2 0( ) ( ) ( ) ( )d u v d u v d u v d u v, − , < , − , . That is, 2 5 1 4 3 6 2 5( ) ( ) ( ) ( )D A A D A A D A A D A A, − , < , − ,2 5 1 4 3 6 2 5( ) ( ) ( ) ( )D A A D A A D A A D A A, − , < , − , . 
When 0(1 ) (2 )a u a a b v a b− ≤ < − − − / + , we also have 0( )u u vd ,′  is a mono-

tone decreasing function. It follows that 2 0 1 0 3 0 2 0

2 1 3 2

( ) ( ) ( ) ( )d u v d u v d u v d u v
u u u u

, − , , − ,
<

− −  
, 

then for 1 0 2 0 3 0( ) ( ) ( )d u v d u v d u v, > , > , , we have 2 0 1 0( ) ( ) 0d u v d u v, − , < , and 
3 0 2 0( ) ( ) 0d u v d u v, − , < . Therefore, 1 0 2 0 2 0 3 0( ) ( ) ( ) ( )d u v d u v d u v d u v, − , > , − , . That is, 
1 4 2 5 2 5 3 6( ) ( ) ( ) ( )D A A D A A D A A D A A, − , > , − , . 

Subcase 3.3. a b| |< . When 2a b| |< / . For (1 ) (2 ) 0u a a b v a b− − − − / + > , we have 
( 1)u a v b= − / . When 2b a b/ ≤| |< . For u a≥ − , and 1u v+ < , we have 1 1v u a< − < +  

and (1 ) (2 ) 1a a b v a b v− − − / + > − . Thus we have (1 ) (2 ) 1 0u a a b v a b u v− − − − / + < + − <  . 
Therefore, when a b| |< , we have ( 1)u a v b= − / . 

Let v0, 0 [0 1 ]v b∈ , −  be a given number. We have 0 0( ( 1) ) 0f a v b v− / , = , and 
0 0( ( 1) ) 0uu a v b vf ′′ − / , ≤ . It follows that 0 0( ( 1) )a v b v− / ,  is the maximum point of 

the concave function 0( )f u v, , which also denotes that 0 0( ( 1) )a v b v− / ,  is the min-
imum point of the convex function 0( )d u v, . Therefore, 0( )d u v,  is monotone in-
creasing on the interval 0[ ( 1) 1 ]a v b v a b− / , − − − , and 0( )d u v,  is monotone decreas-
ing on the interval [ ( 1) ]a a v b− , − /  . Let 0 3 2 11 ( 1)v a b u u u a v b− − − ≥ > > ≥ − /  , then 

3 0 2 0 1 0( ) ( ) ( )d u v d u v d u v, > , > , . Thus we have 3 6 2 5 1 4( ) ( ) ( )D A A D A A D A A, > , > , . Let 
3 2 1( 1)a v b u u u a− / ≥ > > ≥ − , then 1 0 2 0 3 0( ) ( ) ( )d u v d u v d u v, > , > , . Thus we have 

1 4 2 5 3 6( ) ( ) ( )D A A D A A D A A, > , > , . 
Suppose that 3 2 2 1u u u u− = − . For 0( )d u v,  is concave, and we get 0( ) 0uu u vd , >′′ . It fol-

lows that 0( )u u vd ,′  is monotone increasing on the interval 0[ ( 1) 1 ]a v b v a b− / , − − − . Thus, 

we have 2 0 1 0 3 0 2 0

2 1 3 2

( ) ( ) ( ) ( )d u v d u v d u v d u v
u u u u

, − , , − ,
<

− −  
. For 1 0 2 0 3 0( ) ( ) ( )d u v d u v d u v, < , < , , we 

have 2 0 1 0( ) ( ) 0d u v d u v, − , > , and 3 0 2 0( ) ( ) 0d u v d u v, − , > . Therefore, 2 0 1 0 3 0 2 0( ) ( ) ( ) ( )d u v d u v d u v d u v, − , < , − ,

2 0 1 0 3 0 2 0( ) ( ) ( ) ( )d u v d u v d u v d u v, − , < , − , . That is, 2 5 1 4 3 6 2 5( ) ( ) ( ) ( )D A A D A A D A A D A A, − , < , − , . 
When ( 1)a u a v b− ≤ < − / , we also have 0( )u u vd ,′  is a monotone increasing function.  
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It follows that 2 0 1 0 3 0 2 0

2 1 3 2

( ) ( ) ( ) ( )d u v d u v d u v d u v
u u u u

, − , , − ,
<

− −  
. For 1 0 2 0 3 0( ) ( ) ( )d u v d u v d u v, > , > ,  , 

we   have 2 0 1 0( ) ( ) 0d u v d u v, − , < , and 3 0 2 0( ) ( ) 0d u v d u v, − , <  . Therefore, 1 0 2 0 2 0 3 0( ) ( ) ( ) ( )d u v d u v d u v d u v, − , > , − ,

1 0 2 0 2 0 3 0( ) ( ) ( ) ( )d u v d u v d u v d u v, − , > , − , . That is, 1 4 2 5 2 5 3 6( ) ( ) ( ) ( )D A A D A A D A A D A A, − , > , − ,1 4 2 5 2 5 3 6( ) ( ) ( ) ( )D A A D A A D A A D A A, − , > , − , . 

Example 2. Let us consider two elements A A A Ax x u v=< , , > , B B B Bx x u v=< , , >  of the 
IFS B′, where 0 1B Au u= − . , 0 2B Av v= + . , 0 6Av = . . We denote Au u=  and Av v= . The 
spherical distance between points A and B are: 

 
1 1
2 2( 0 6) arccos(( ( 0 1) (0 6(0 6 0 2)d u u u, . = − . + . . + . +  (15)

                          
1
2((1 0 6)(1 0 6 0 1 0 2) )u u+ − − . − − . + . − . ,

( 0 6)d u, .  is actually an intersecting line between the 3-D surface 
1 1 1
2 2 2( ) arccos(( ( 0 1) ( ( 0 2) ((1 )(1 0 1 0 2) )d u v u u v v u v u v, = − . + + . + − − − − + . − .  and 2-D plane 

0 6v = . . (As shown in Fig. 3 and 4). ( 0 6)d u, .  is a convex function, and its lowest point 
is 0.2. ( 0 6)d u, .  is decreasing on the interval [0 1 0 2]. , . , and it is increasing on the interval 
[0 2 0 3]. , . (As shown in Fig. 4). 

For any 3 2 10 3 0 2u u u. ≥ > > ≥ . , and 3 2 2 1u u u u− = − , we have 3 0 2 0 1 0( ) ( ) ( )d u v d u v d u v, > , > ,

3 0 2 0 1 0( ) ( ) ( )d u v d u v d u v, > , > , , and 2 0 1 0 3 0 2 0( ) ( ) ( ) ( )d u v d u v d u v d u v, − , < , − , . For any 3 2 10 2 0 1u u u. ≥ > > > . , 
and 3 2 2 1u u u u− = − , we have 1 0 2 0 3 0( ) ( ) ( )d u v d u v d u v, > , > , , and 1 0 2 0 2 0 3 0( ) ( ) ( ) ( )d u v d u v d u v d u v, − , > , − ,

1 0 2 0 2 0 3 0( ) ( ) ( ) ( )d u v d u v d u v d u v, − , > , − , . This denotes that ( 0 6)d u, .  is decreasing quickly near the left endpoint 
(0.1) of the interval [0 1 0 3]. , . , and ( 0 6)d u, .  is increasing quickly near the right endpoint 
(0.2) of the interval [0 1 0 3]. , .  (As shown in Fig. 4). 

Fig. 3. The intersection between d(u, v) and v = 0.6

a u u v v u v u vcos(( ( + 1/10)) + ( ( + 1/5)) + ((1 – – ) (9/10 – – )) )1/2 1/2 1/2
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Case 4. 0a ≥ , 0b ≤ , and a, b are not both equal to zero. 
Subcase 4.1. a b≥| | . For a given number v0, 0 [ 1 ]v b a b∈ − , − − . (We can also get the 
similar conclusion with 0u , 0 [0 1 ])u a∈ , − . We only need to consider two intervals 

0 0[ (1 ) (2 ) 1 ]u a a b v a b v a b∈ − − − / + , − − −  and 0[0 (1 ) (2 )]u a a b v a b∈ , − − − / + , respective-
ly. The conclusion is similar to Subcase 3.1. 
Subcase 4.2. a b<| | . For a given number v0, 0 [ 1]v b∈ − , . (We can also get the similar conclu-
sion with 0u , 0 [0 1 ])u b∈ , + . We only need to consider two intervals 0 0[ ( 1) 1 ]u a v b v∈ − / , −  
and 0[0 ( 1) ]u a v b∈ , − / , respectively. The conclusion is similar to Subcase 3.2. 

Thus we complete the proof of Property 3 and Property 4. 

3. Applications for the spherical distance model of IFS

In literature (Yang, Chiclana 2012), Yang and Chiclana showed that a three dimensional 
interpretation of intuitionistic fuzzy sets could give different comparison results to the 
ones obtained with their two dimensional counterparts. They defined a three dimensional 
Hausdorff distance to show the usefulness of the three dimensional functions to model and 
provide the expression of the distance between two intuitionistic fuzzy sets. In this section, 
we will discuss how to apply the spherical distance model to group decision making, pat-
tern recognition, and medical diagnosis. 

3.1. The spherical distance model for group decision making

Consider a group decision making situation where group members {1 2 }id i M m, ∈ = , , ,  
express their intuitionistic fuzzy opinions { }i i i iX x= < ,µ ,ν > , where mi and ni are the de-
gree of membership and the degree of non-membership of an alternative or an attribute to 

Fig. 4. Figure of function d(u, 0.6)

a u ucos(( ( 1/10)) +– 2/5 3 + ((2/5 – )((3/10 – )) )1/2 1/2 1/2
u u
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the fuzzy concept “excellence” given by id i M, ∈ , respectively, where 0 1i≤ µ ≤ , 0 1i≤ ν ≤  
and 0 1i i≤ µ + ν ≤ . The intuitionistic indices 1i i iπ = − µ − ν  is such that the larger pi the 
higher hesitation margin of the decision maker di as to the “excellence” of the alternative 
or the attribute. In intuitionistic fuzzy opinions { }i i i iX x= < ,µ ,ν > , i M∈ , we often call 
the extreme points max ii M∈

µ , min ii M∈
µ , max ii M∈

ν  and min ii M∈
ν  the maximum membership degree 

opinion, the minimum membership degree opinion, the maximum nonmembership degree 
opinion, and the minimum nonmembership degree opinion, respectively. 

In this section, we define three-tuples ( )i i i iR = µ ,ν ,π  satisfying 0 1i≤ µ ≤ , 0 1i≤ ν ≤  
and 1i i iµ + ν + π =  as intuitionistic fuzzy opinions (appraisal values) presented by decision 
maker (DM) 1 2id i m, = , , ,  with respect to the alternative or the attribute. 

Suppose there exists an ideal DM* whose intuitionistic fuzzy estimation ( )R∗ ∗ ∗ ∗= µ ,ν ,π  
is the most desirable one, and ( )R = µ,ν,π  is an arbitrary intuitionistic fuzzy estimation. 
Then, the spherical distance between the ideal estimation and each opinion in group should 
be smaller than spherical distances between any estimation and each opinions in group. 
Thus, we construct the following multi-objective nonlinear optimization model, which 
minimizes the spherical distance between the ideal opinion and each individual opinion 
in group decision making. 

Model 2: (The spherical distance model to get the ideal evaluation of the DM*) 
1 1 1
2 2 21 1 1 1 1( ) (( ) ( ) ( ) )( )mind R R arccos obj, = µ µ + ν ν + π π
1 1 1
2 2 22 2 2 2 2( ) (( ) ( ) ( ) )( )mind R R arccos obj, = µ µ + ν ν + π π



1 1 1
2 2 2( ) (( ) ( ) ( ) )( )m m m m mmind R R arccos obj, = µ µ + ν ν + π π

1
0 1 0 1 0 1.

s t
µ + ν + π =. . ≤ µ ≤ ; ≤ ν ≤ ; ≤ π ≤

                                                                       (16)

In Model 2, there are m objective functions (goals) obji, 1 2i m= , , , , and the spherical 
distance between the ideal opinion R* and the opinion Ri is smaller than the spherical 
distance between the opinion R and the opinion iR i M, ∈ . Generally, it is hard for all 
these objectives to attain the minimum value simultaneously, so the goals are ranked in 
order of importance. In general, solving a multi-objective nonlinear optimization problem 
involves solving a sequence of nonlinear programs with different objective functions, the 
most important goal is considered firstly, and the least important one is considered lastly. 
Therefore, we can only get the Pareto optimal solutions instead of the optimal solution of 
a multi-objective nonlinear optimization Model 2. 

In the light of properties of Section 3, the extreme point is vital to decision making. 
If a group prefers to the maximum membership degree opinion (or the minimum mem-
bership degree opinion), the ideal membership degree m* should have a smaller spherical 
distance with the maximum membership degree opinion (or the minimum membership 
degree opinion); if a group prefers to the maximum nonmembership degree opinion (or 
the minimum nonmembership degree opinion), the ideal nonmembership degree n* should 
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have a smaller spherical distance with the maximum nonmembership degree opinion (or 
the minimum nonmembership degree opinion). Theses mean that the objective functions 
with the extreme point (the extreme membership degree opinion or the extreme non-mem-
bership degree opinion) should have a high priority. In other words, the minimum value 
of these functions need to be firstly attained. 

Example 3. Let us consider two intuitionistic fuzzy appraisal sets 2 3 4 2 3 4{ } { 0 5 0 1 0 6 0 1 0 7 0 1 }A A A A A A A′ = , , = < , . , . >,< , . , . >,< , . , . >

2 3 4 2 3 4{ } { 0 5 0 1 0 6 0 1 0 7 0 1 }A A A A A A A′ = , , = < , . , . >,< , . , . >,< , . , . >  and 1 2 3 4 5 1{ } { 0 4 0 1A A A A A A A′′ = , , , , = < , . , . >,1 2 3 4 5 1{ } { 0 4 0 1A A A A A A A′′ = , , , , = < , . , . >,  
2 3 4 50 5 0 1 0 6 0 1 0 7 0 1 0 8 0 1 }A A A A< , . , . >,< , . , . >,< , . , . >,< , . , . >2 3 4 50 5 0 1 0 6 0 1 0 7 0 1 0 8 0 1 }A A A A< , . , . >,< , . , . >,< , . , . >,< , . , . > . The former is presented by three 

decision makers 1 2 3 4{ }E d d d= , , , the latter by five decision makers 2 1 2 3 4 5{ }E d d d d d= , , , , . 
Let us suppose that the group are invited to evaluate the risk of drought, then the extreme 
opinion 4 0 7 0 1A< , . , . >  in E1 and the extreme opinion 5 0 8 0 1A< , . , . >  in E2 should be paid 
more attention, respectively. 

According to the Property 3 of the spherical distance of IFS, the spherical distance 
satisfies 5 4 4 3 3 2 2 1( ) ( ) ( ) ( )D A A D A A D A A D A A, > , > , > , . It denotes that the membership 
degree of collective opinion of E1 and E2 should go near to the maximum membership 
degree opinions 0.7 and 0.8, respectively. 

According to the Property 4 of the spherical distance of IFS, the spherical distance 
satisfies 5 4 4 3 4 3 3 2 3 2 2 1( ) ( ) ( ) ( ) ( ) ( )D A A D A A D A A D A A D A A D A A, − , > , − , > , − , . It denotes 
that the membership degree of collective opinion of E2 should be greater than that of E1. 

Suppose that the ideal intuitionistic evaluations in E1 and E2 are 
1 1 1 1

( )E E E ER∗ ∗ ∗ ∗= µ ,ν ,π , 

2 2 2 2
( )E E E ER∗ ∗ ∗ ∗= µ ,ν ,π , respectively, then we construct the following two optimization mod-

els to get these two ideal evaluations based on Model 2: 

Model 3: (The spherical distance model to get the ideal evaluation of the E1) 
1 1 1
2 2 21 1( ) ((0 5 ) (0 1 ) (0 4 ) )( )mind A R arccos obj, = . µ + . ν + . π
1 1 1
2 2 22 2( ) ((0 6 ) (0 1 ) (0 3 ) )( )mind A R arccos obj, = . µ + . ν + . π
1 1 1
2 2 23 3( ) ((0 7 ) (0 1 ) (0 2 ) )( )mind A R arccos obj, = . µ + . ν + . π

1
0 1 0 1 0 1

s t
µ + ν + π =. . ≤ µ ≤ ; ≤ ν ≤ ; ≤ π ≤  .

                                                                      (17)

Model 4: (The spherical distance model to get the ideal evaluation of the E2) 
1 1 1
2 2 21 1( ) ((0 4 ) (0 1 ) (0 5 ) )( )mind A R arccos obj, = . µ + . ν + . π
1 1 1
2 2 22 2( ) ((0 5 ) (0 1 ) (0 4 ) )( )mind A R arccos obj, = . µ + . ν + . π
1 1 1
2 2 23 3( ) ((0 6 ) (0 1 ) (0 3 ) )( )mind A R arccos obj, = . µ + . ν + . π
1 1 1
2 2 24 4( ) ((0 7 ) (0 1 ) (0 2 ) )( )mind A R arccos obj, = . µ + . ν + . π
1 1 1
2 2 25 5( ) ((0 8 ) (0 1 ) (0 1 ) )( )mind A R arccos obj, = . µ + . ν + . π

1
0 1 0 1 0 1

s t
µ + ν + π =. . ≤ µ ≤ ; ≤ ν ≤ ; ≤ π ≤ .                                                                      (18)
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Model 3 and Model 4 can be solved by some optimization softwares, such as the MATLAB 
Genetic Algorithm Toolbox (Multi-objective Optimization using Genetic Algorithm). In Mod-
el 3, obj3 is the most important goal, and in Model 4, obj5 is the most important goal. Therefore, 
the Pareto optimal solutions to Model 3 and Model 4 are selected as 

1 1 1 1
( ) (0 6720 0 1058 0 2230)E E E ER∗ ∗ ∗ ∗= µ ,ν ,π = . , . , .

1 1 1 1
( ) (0 6720 0 1058 0 2230)E E E ER∗ ∗ ∗ ∗= µ ,ν ,π = . , . , . , and 

2 2 2 2
( ) (0 78460 09710 1193)E E E ER∗ ∗ ∗ ∗= µ ,ν ,π = . . . , respectively. 

Obviously, the membership degree in 
2ER∗  is greater than that in 

1ER∗ . And we also get 

2 1E ER R∗ ∗>  in the light of the method of the comparison between two intuitionistic fuzzy 
values (Xu 2007). 

In the following, we will show the application of the spherical distance in the evaluation 
of drought risk. 

Example 4. Disaster risk analysis is an important and basic research issues related with 
social economics, mainly including disaster prediction, disaster prevention, disaster re-
lated social economic costs, and etc. A natural disaster like drought often has long lasting 
and far-reaching social, economic and environmental impacts. A reliable risk analysis is 
essential to have a sustainable social economic development. Usually, expert consultation 
is important to determine the possibility of disaster risk. The weather bureau invites four 
experts 1 2 3 4{ }E d d d d= , , ,  to evaluate the risk of drought. The intuitionistic fuzzy appraisal 
values are as follows: 

 1 2 3 40 6 0 2 0 7 0 1 0 4 0 3 0 3 0 6r r r r< , . , . >,< , . , . >,< , . , . >,< , . , . > .

In the intuitionistic fuzzy appraisal value, the first element is the minimum degree of 
the assurance that the hazard will occur (the minimum possibility of drought risk), the 
second value is the degree of the assurance that the hazard will not occur, the third value is 
the degree of hesitation. Let’s take 1 0 6 0 2r< , . , . >  as an example. The expert d1 views that the 
possibility of drought risk is at least 60%, the maximum possibility of drought risk may be 
80%, and he or she believes that there is 20% possibility that the drought risk will not occur. 

Let r∗ ∗ ∗< ,µ ,ν >  satisfying 1∗ ∗µ + ν ≤  denote the intuitionistic fuzzy opinion of an 
ideal expert r∗ , then the spherical distances between r∗  and 1 2 3 4ir i, = , , ,  are the values 
such that the spherical distances between the intuitionistic fuzzy opinion r< ,µ,ν >  and 

1 2 3 4i i ir i< ,µ ,ν >, = , , ,  attain the minimum. Hence, we construct the following optimization 
Model 5: 

1 1 1
2 2 21 1( ) ((0 6 ) (0 2 ) (0 2 ) )( )mind r r arccos obj, = . µ + . ν + . π
1 1 1
2 2 22 2( ) ((0 7 ) (0 1 ) (0 2 ) )( )mind r r arccos obj, = . µ + . ν + . π
1 1 1
2 2 23 3( ) ((0 4 ) (0 3 ) (0 3 ) )( )mind r r arccos obj, = . µ + . ν + . π
1 1 1
2 2 24 4( ) ((0 3 ) (0 6 ) (0 1 ) )( )mind r r arccos obj, = . µ + . ν + . π

                         

1
0 1 0 1 0 1

s t ∗ ∗ ∗
∗ ∗ ∗

µ + ν + π =. . ≤ µ ≤ ; ≤ ν ≤ ; ≤ π ≤ .
                                             (19)

The opinion of expert d2 can be viewed as an extreme value, so obj2 is the most 
important objective function. We select a Pareto optimal solution to Model (5) as 
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0 6823 0 1191 0 1995∗ ∗ ∗µ = . ,ν = . ,π = . . This means that the opinion of the group is 
0 6823 0 1191r∗< , . , . > , and the possibility of drought risk is 68.23% to 88.18%. The result 

shows the drought risk is considered likely to happen, and the expert d2 plays an important 
role. 

3.2. Pattern recognition

In order to demonstrate the application of the spherical distance measures for IFSs to pat-
tern recognition, we consider the data proposed by Li and Cheng (2002), Mitchell (2003) 
and Vlachos and Sergiadis (2007). Consider three known patterns 1 2A A,  and A3 which 
have classifications 1 2C C,  and C3. The patterns are represented by the following IFSs in 

1 2 3{ }X x x x= , ,  

 

1 1 2 3

2 1 2 3

3 1 2 3

{ 1 0 0 8 0 0 7 0 1 },
{ 0 8 0 1 1 0 0 9 0 0 },
{ 0 6 0 2 0 8 0 1 0 0 }

A x x x
A x x x
A x x x

= < , , >,< , . , >,< , . , . >
= < , . , . >,< , , >,< , . , . >
= < , . , . >,< , . , >,< , . , >

respectively. Given an unknown pattern B, represented by the IFS 1 2{ 0 5 0 3 0 6B x x= < , . , . >,< , . , 
0 2. >,  3 0 8 0 1 }x< , . , . > . By using spherical distance measures, we classify B to one of the 
classes 1 2C C,  and C3 (As shown in Table 4). 

Table 4. Spherical distance measure ( )iD A B,  with {1 2 3}i ∈ , ,  

A1 A2 A3 
B 0.2962 0.2830 0.2232 

where 1( ) 0 2962D B A, = . , 2( ) 0 2830D B A, = . , 3( ) 0 2232D B A, = . . The smaller the spherical 
distance value is, the bigger similarity between two IFSs. We can observe that B is classi-
fied to C3, and this result is in agreement with the ones obtained in Li and Cheng (2002), 
Mitchell (2003), and Vlachos and Sergiadis (2007). 

3.3. Medical diagnosis

In this subsection, we utilize the new spherical distance measure to show how 
to carry out medical disgnosis. Let’s consider the same data as in (De et al. 
2001; Szmidt, Kacprzyk 2001a, 2001b, 2002; Vlachos, Sergiadis 2007; Wei et al. 
2011), consisting of a set of patient { }P Al Bob Joe Ted= , , , , a set of diagnoses 

{ }D Viralfever Malaria Typhoid Stomachproblem Chestpain= , , , , , and a set of symptoms 
{ }S Temperature Headache StomachPain Cough Chestpain= , , , , . Table 5 and Table 6 present 

the characteristic symptoms of the considered diagnosis, the symptoms of each patient, 
respectively. Each element of the tables is given in the form of a three-tuple of numbers 
corresponding the membership degree m′, nonmembership degree i′ν , and hesitation de-
gree i′π , respectively. A proper diagnosis for each patient 1 2 3 4ip i, = , , ,  needs to be found. 
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Table 5. Symptoms characteristic for the considered diagnoses 

Viral fever Malaria Typhoid Stomach problem Chest problem
Temperature (0.4,0,0.6) (0.7,0,0.3) (0.3,0.3,0.4) (0.1,0.7,0.2) (0.1,0.8,0.1)
Headache (0.3,0.5,0.2) (0.2,0.6,0.2) (0.6,0.1,0.3) (0.2,0.4,0.2) (0,0.8,0.2)
Stomach pain (0.1,0.7,0.2) (0,0.9,0.1) (0.2,0.7,0.1) (0.8,0,0.2) (0.2,0.8,0)
Cough (0.4,0.3,0.3) (0.7,0,0.3) (0.2,0.6,0.2) (0.2,0.7,0.1) (0.2,0.8,0)
Chest pain (0.1,0.7,0.2) (0.1,0.8,0.1) (0.1,0.9,0) (0.2,0.7,0.1) (0.8,0.1,0.1)

Table 6. Symptoms characteristic for the considered patients 

Temperature Headache Stomach pain Cough Chest pain
Al (0.8,0.1,0.1) (0.6,0.1,0.3) (0.2,0.8,0) (0.6,0.1,0.3) (0.1,0.6,0.3)
Bob (0,0.8,0.2) (0.4,0.4,0.2) (0.6,0.1,0.3) (0.1,0.7,0.2) (0.1,0.8,0.1)
Joe (0.8,0.1,0.1) (0.8,0.1,0.1) (0,0.6,0.4) (0.2,0.7,0.1) (0,0.5,0.5)
Ted (0.6,0.1,0.3) (0.5,0.4,0.1) (0.3,0.4,0.3) (0.7,0.2,0.1) (0.3,0.4,0.3)

Table 7. Similarities symptoms (Spherical distance) for each patient to the considered set of possible 
diagnosis 

Viral fever Malaria Typhoid Stomach problem Chest problem
Al 0.2492 0.2701 0.2566 0.4305 0.4509
Bob 0.3352 0.4675 0.2785 0.1616 0.4137
Joe 0.3049 0.3772 0.2966 0.4273 0.5361
Ted 0.2057 0.2887 0.2905 0.3511 0.4354

The results for the considered patients are given in Table 7. The proper diagnosis dk for 
the ith patient pi is obtained according to the smallest numerical value from the spherical 
distance measures. These results are in agreement with the ones obtained by Vlachos and 
Sergiadis (2007). 

Conclusions

Euclidean distance may not adequately measure the difference of the qualitative evalua-
tions, for the reason that human perception may sometimes be nonlinear. Yang and Chi-
clana proposed a simple spherical distance measure and proved that it has good properties. 
This paper generalized Yang and Chiclana’ work (Yang, Chiclana 2009). Firstly, the gener-
alized properties show that the spherical distance measure can simulate the difference of 
human perception or judgment. Secondly, the spherical distance measure is very suitable 
for group decision making. Thirdly, the extreme appraisal is also considered adequately. In 
consequence, we applied the spherical distance measure to get the collective opinion in a 
group: we first introduced an ideal intuitionistic fuzzy estimation, and then by minimizing 
the spherical distance between the ideal opinion and each individual opinion in group deci-
sion, we constructed a nonlinear optimization model. An optimization model of drought 
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risk analysis based on intuitionistic fuzzy estimation was derived to show the practicality 
of the proposed method. Additionally, we utilized the same data proposed by Li and Cheng 
(2002), Mitchell (2003), De et al. (2001), Szmidt and Kacprzyk (2001a, 2001b, 2002), Vla-
chos and Sergiadis (2007) and Wei et al. (2011) to show the new spherical distance can also 
be applied to many fields such as pattern recognition and medical diagnosis. 
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