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Abstract. This paper investigates an approach for multiple attribute decision making (MADM) 
problems with interval-valued intuitionistic fuzzy numbers (IVIFNs). To do that, the nonlinear score, 
accuracy and hesitation functions of IVIFNs are developed based on the normal distribution. The 
novelty of these nonlinear functions is that they have an additional variance value, which can have 
more information to rank IVIFNs than Xu and Chen’s score function and Ye’s accuracy function. 
Based on these nonlinear functions, a ranking method for IVIFNs is proposed. Furthermore, a 
nonlinearly optimized model is proposed to obtain attribute weights by integrating these nonlinear 
functions. Then, we develop an approach for interval-valued intuitionistic fuzzy MADM programs in 
which two cases are considered: the attribute weight information is known and particularly known. 
In the end, we apply the proposed approach to select green supplier.  

Keywords: multi-attribute decision-making, interval-valued intuitionistic fuzzy set, score function, 
accuracy function, hesitation function, normal distribution.
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Introduction

The theory of fuzzy sets (FSs) proposed by Zadeh (1965) is a powerful tool to deal with vague-
ness, whose basic component is only a membership function. Atanassov (1986) introduced 
the concept of intuitionistic fuzzy set (IFS) characterized by a membership function and a 
non-membership function, which is an extension of Zadeh’s fuzzy sets. Later, Atanassov and 
Gargov (1989) introduced the concept of interval-valued intuitionistic fuzzy sets (IVIFSs) as 
a further generalization of that of IFSs. The intuitionistic and interval-valued intuitionistic 
fuzzy set theory has been applied to many different fields, such as multiplicative criteria 
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decision making with complete weight information of attribute (Zhang, Liu 2010; Jiang et al. 
2011; Park et al. 2011; Wei 2011; Yang, Chiclana 2009, 2012), multiplicative attribute decision 
making with incomplete weight information of attribute (Wang et al. 2009a, 2011a, 2011b; 
Pei, Zheng 2012; Yue 2011a; Zhao et al. 2012), multiplicative attribute decision making with 
intuitionistic or interval-valued intuitionistic fuzzy preference relations (Gong et al. 2009, 
2011; Wu, Chiclana 2012; Xu 2013), group decision making (Li 2007; Li et al. 2010; Chen, 
Yang 2011; Su et al. 2011; Yue 2011b; Wei et al. 2012; Xu 2012; Zeng 2013; Xia, Xu 2013), 
aggregating operators (Wei 2009, 2010; Li 2011; Liu 2011; Merigó 2011; Merigó, Gil-Lafuente 
2011;Wu, Cao 2013; Wu 2015), supplier selection (Boran et  al. 2009), virtual enterprise 
partner selection (Ye 2010), strategy selection (Wei, Merigó 2012). In the decision making 
with intuitionistic or interval-valued intuitionistic fuzzy numbers, one key issue that needs 
to be addressed is to rank IFNs and IVFNs. Xu and Chen (2007) defined the score function 
and accuracy function to IVIFNs environments, and then developed an approach to rank 
IVFNs. However, in some cases, these functions do not allow the proper discrimination 
between different IVFNs. To resolve this problem, this article aims to develop the nonlinear 
score, accuracy and hesitation functions of IVIFNs based on the normal distribution, and 
then investigate a novel ranking approach. 

The ranking problem has been extensively studied for the case of fuzzy numbers (FNs). 
A widely used approach to rank FNs is to convert them into a representative crisp value, 
and perform the comparison on them (Yager 2004), which is also the common one used 
to rank IFNs and IVIFNs. Representative crisp values developed for IFNs and IVIFNs are 
known with the names of score degree and accuracy degree. By the membership and non-
membership functions, Chen and Tan (1994) developed a score function for IFSs, which was 
later improved by Hong and Choi (2000) with the addition of an accuracy function. Other 
score and accuracy functions had been proposed in (Li et al. 2007; Wang et al. 2009b). Xu 
and Chen (2007) extended the score function and accuracy function to IVIFNs environ-
ments. Later, Ye (2009) proposed a different accuracy function that he claimed solved some 
drawbacks associated to the accuracy function developed by Xu and Chen (2007). However, 
both accuracy functions were proved to be equivalent when ordering IVIFNs (Wang 2011), 
and therefore the drawbacks highlighted by Ye (2009) were not properly addressed. Wu and 
Chiclana (2014) investigated a risk attitudinal score and accuracy expected functions to rank 
IVIFNs. Recently, Lakshmana Gomathi Nayagam and Sivaraman (2012) claimed that a novel 
accuracy function is proposed to compare IVIFNs. However, this accuracy function can be 
proved to be a score function more than an accuracy function. Indeed, in some cases, these 
proposals do not allow the proper discrimination between different IVIFNs. One key reason 
is that there is no research on the rationality of these functions, which may lead to misuse 
them in the process of raking IVIFNs. Another key reason is that they are straight forward 
extensions of their respective proposals for the case of IFNs. However, IVIFNs are more 
complicate than IFNs because that their membership and non-membership functions are 
interval numbers, which are nonlinear functions and can not be compared directly. Therefore 
they are not rich enough to capture all the information contained in IVIFNs. 

To resolve these problems, we firstly build some judgment criterions to study the ration-
ality of score and accuracy functions. Secondly, we develop the nonlinear score, accuracy 
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and hesitation functions of IVIFNs based on the normal distribution. Our nonlinear func-
tions extends: (i) Xu and Chen’s score function for IVIFNs.; and (ii) Ye’s accuracy function 
for IVIFNs. Then, we give an order relation between IVIFNs. This method guarantees that 
it can give sufficient information about interval-valued intuitionistic fuzzy numbers based 
on the score values, variance values and accuracy values. Finally, an approach for MADM 
programs with IVIFNs is proposed in which two cases are considered: the attribute weight 
information is known and particularly known.

The rest of this paper is organized as follows. In Section 1, we introduce some basic con-
cepts related to IVIFSs. Some propositions are proposed to study the rationality of score and 
accuracy functions. Section 2 proposes the normal distribution based score accuracy and 
hesitation functions. In Section 3, an optimization model is developed to determine the at-
tribute weights based on the nonlinear functions. Section 4 proposes an approach for MADM 
programs with IVIFNs in which two cases are considered: the attribute weight information 
is known and particularly known. Section 5 gives an illustrative numerical example to verify 
the developed approach. Finally, in the last Section we draw our conclusions.

1. Preliminaries 

We start this section by introducing some basic concepts related to interval-valued intuition-
istic fuzzy sets, which will be used throughout this paper.

Atanassov and Gargov (1989) introduced the notion of interval-valued intuitionistic 
fuzzy set (IVIFS), which is characterized by a membership function and a non-membership 
function, whose values are intervals rather than exact numbers.

Definition 1 (IVIFS of Atanassov and Gargov (1989)). Let [0,1]D ∈  be the set of all closed 
subintervals of the interval and X  be a universe of discourse. An interval-valued intuitionistic 
fuzzy set in A  over X  is an object having the form:

 
{ , ( ), ( ) }A AA x x x x X= < µ ν > ∈

where 
  [0,1]A Dµ → ∈ ,  ( ) [0,1]A x Dν → ∈  

with the condition 0 sup ( ) sup ( ) 1, .A Ax x x X≤ µ + ν ≤ ∀ ∈

The intervals ( )A xµ  and ( )A xν  denote, respectively, the membership function and the 
non-membership function of the element x  to the set A . Thus for each x X∈ , ( )A xµ  and 

( )A xν  are closed intervals and their lower and upper end points are, respectively, denoted 
by ( )AL xµ , ( )AU xµ , ( )AL xν  and ( )AU xν . We can denote by

 
{ ,[ ( ), ( )],[ ( ), ( )] }AL AU AL AUA x x x x x x X= < µ µ ν ν > ∈   ,

where

 0 ( ) , ( ) 1AU AUx x≤ µ + ν ≤ , ( ) 0, ( ) 0AL ALx xµ ≥ ν ≥ .
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For each element x, we can compute the unknown degree (hesitancy degree) of an interval-
valued intuitionistic fuzzy interval of x X∈  in A  defined as follows:

 

( ) 1 ( ) ( )
              [1 ( ) ( )],[1 ( ) ( )]

A x A A

AU AU AL AL

x x
x x x x

π = − µ − ν =

− µ − ν − µ − ν
 



   .

 We will denote the set of all the IVIFSs in X by IVIFS(X). For convenience, let 
( ) [ , ]A x a bµ = , ( ) [ , ]A x c dν = , so ( )[ , ],[ , ]A a b c d= .
Xu and Chen (2007) proposed the following score and accuracy functions associated to 

an IVIFN:
Definition 2 (Score function of Xu and Chen (2007)). Let ( )[ , ],[ , ]A a b c d=  be an inter-

val-valued intuitionistic fuzzy number, a score function S of an interval-valued intuitionistic 
fuzzy value can be represented as follows:

 
( )

2
a b c dS A + − −

= , ( ) [ 1,1]S A ∈ − ,    (1)

to evaluate the degree of score of the interval-valued intuitionistic fuzzy value ( )[ , ],[ , ]A a b c d= , 
where ( ) [ 1,1]S A ∈ − . The larger the value of ( )S A , the more the degree of score of the inter-
val-valued intuitionistic fuzzy value A. 

Definition 3 (Accuracy function of Xu and Chen (2007)). Let ( )[ , ],[ , ]A a b c d=  be an 
interval-valued intuitionistic fuzzy number, an accuracy function H of an interval-valued 
intuitionistic fuzzy value can be represented as follows:

 
( )

2
a b c dH A + + +

= , ( ) [0,1]H A ∈ ,  (2)

to evaluate the degree of accuracy of the interval-valued intuitionistic fuzzy value 
( )[ , ],[ , ]A a b c d= , where ( ) [0,1]H A ∈ . The larger the value of ( )H A , the more the degree of 

accuracy of the interval-valued intuitionistic fuzzy value A. 
Ye (2009) proposed a different expression for the accuracy degree of an IVIFN that has 

the same range of values [ 1, 1]− , than the score degree defined above:
Definition 4 (Accuracy function of Ye (2009)). Let ( )[ , ],[ , ]A a b c d=  be an interval-valued 

intuitionistic fuzzy number, a novel accuracy function M of an interval-valued intuitionistic 
fuzzy value can be represented as follows:

 
( ) 1  

2
c dM A a b +

= + − + ,     (3)

where ( ) [ 1,1]M A ∈ − . The larger the value of ( )M A , the more the degree of accuracy of the 
interval-valued intuitionistic fuzzy value A.

Lakshmana Gomathi Nayagam and Sivaraman (2012) developed a new accuracy function 
of IVIFSs as follows: 
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Definition 5 (Accuracy function of Lakshmana Gomathi Nayagam and Sivaraman (2012)). 
Let ( )[ , ],[ , ]A a b c d=  be an interval-valued intuitionistic fuzzy number, a novel accuracy 
function L of an interval-valued intuitionistic fuzzy value can be represented as follows:

 

(1 ) (1 )( )
2

a b d b c aL A + − − − −
= .    (4)

The larger the value of ( )L A , the more the degree of accuracy of the interval-valued 
intuitionistic fuzzy value A. 

These functions have been universally used in decision making problems with IVIFNs. 
However, in some cases, these proposals do not allow the proper discrimination between 
different IVIFNs. 

Example 1. If interval-valued intuitionistic fuzzy values for two alternatives are 
1 ([0.05,0.35],[0.2,0.5])α =  and 2 ([0.1,0.3],[0.3,0.4])α = , then the desirable alternative is 

selected in accordance with accuracy function.  
By applying Definition 2 and Definition 3, we can obtain 1 2( ) ( ) 0.15S a S a= = −   and 

1 2( ) ( ) 0.55H a H a= =  , respectively. In this case we do not know which alternative is better. 
By applying Definition 4, we have 1( ) 0.25M a = −  and 2( ) 0.25M a = − . In both the cases we 
do not know which alternative is better. But, according to Definition 5, we get 1( ) 0.015L a =  
and 2( ) 0.08L a = − , and hence 1a  is better than 2a .

Example 2. If interval-valued intuitionistic fuzzy values for two alternatives are 
1 ([0.2,0.2],[0.3,0.5])α =  and 2 ([0.2,0.2],[0.1,0.7])α = , then the desirable alternative is 

selected in accordance with accuracy function. 
According to Definition 2 and Definition 3, we can obtain 1 2( ) ( ) 0.2S a S a= = −   and 

1 2( ) ( ) 0.6H a H a= =  , respectively. In this case we do not know which alternative is better. Ac-
cording to Definition 4, we have 1 2( ) ( ) 0.2M a M a= = −  . By Definition 5, we get 1( ) 0.12L a = −  
and 2( ) 0.12L a = − . In these three cases, we do not know which alternative is better. 

The above examples demonstrate the limitation of these functions. However, the reasons 
for this limitation have not been discovered and discussed. To study the properties of score 
function and accuracy function, we propose the following propositions.

Proposition 1 (Monotonicity of score function). Let ( )[ , ],[ , ]A a b c d=  be an interval-valued 
intuitionistic fuzzy number, the score function ( ) ( )/2S A a b c d= + − −  is a monotone increas-
ing function with a and b, and a monotone decreasing function with c and d.

Proof. Omited.
Proposition 2  (Symmetry of score function) .  Let ( )1 1 1 1 1[ , ],[ , ]A a b c d=  and 

( )2 2 2 2 2[ , ],[ , ]A a b c d=  be two IVIFNs, ( )1 1 1 1 1[ , ],[ , ]A c d a b=  and ( )2 2 2 2 2[ , ],[ , ]A c d a b=  
be their associated inverse functions, receptively, then we have the following conclusion

1 2 1 2( ) ( ) ( ) ( )S A S A S A S A≤ ⇔ ≥ .
Proof. (Sufficiency) From Definition 2, we obtain:

 
1 1 1 1

1( )
2

a b c d
S A

+ − −
=  and 2 2 2 2

2( )
2

a b c d
S A

+ − −
= .
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Since 1 2( ) ( )S A S A≤ , then

 1 1 1 1 2 2 2 2a b c d a b c d+ − − ≤ + − − .

That is:

 1 1 1 1 2 2 2 2c d a b c d a b+ − − ≤ + − − .

Thus, we have:

 
1 1 1 1 2 2 2 2

1 2( ) ( )
2 2

c d a b c d a b
S A S A

+ − − + − −
= ≤ = .

We also can get the proof of necessity. The proof of Proposition 2 is completed.
Proposition 3 (Monotonicity of accuracy function). Let ( )[ , ],[ , ]A a b c d= be an interval- 

valued intuitionistic fuzzy number, the accuracy functions ( )H A , ( )M A and ( )L A are the 
monotone increasing functions with a , b , c and d .

Proof. Omited.
Proposition 4 (Symmetry of accuracy function). Let ( )1 1 1 1 1[ , ],[ , ]A a b c d= be an IVIFN and 

1A = ( )1 1 1 1[ , ],[ , ]c d a b  be its associated inverse function, then we have the following conclu-
sions 1) 1 1( )= ( )H A H A , 2) 1 1( ) ( )M A M A≠ , and 3) 1 1( ) ( )L A L A≠ .

Proof. 1) According the Definition 3, we have:

 1 1 1 1
1 1( )= = ( )

2
a b c d

H A H A
+ + +

. 

2) According the Definition 4, we obtain:

 1 1
1 1 1( )= 1

2
c d

M A a b
+

+ + − , 

and

 
1 1

1 1 1( )= 1
2

a b
M A c d

+
+ + − , 

then,      
 1 1( ) ( )M A M A≠ .

3) According the Definition 5, we obtain:

  
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1
(1 ) (1 )

( ) ( )
2 2 2 2

a b d b c a a b d c a c b d a c b d
L A S A

+ − − − − + − − + +
= = + = + ,

and

  
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1
(1 ) (1 )

( ) ( )
2 2 2 2

c d b d a c c d b a a c b d a c b d
L A S A

+ − − − − + − − + +
= = + = − ,

then
 1 1( ) ( )L A L A≠ .

Note 1. The accuracy functions ( )M A  of Ye (2009) and ( )L A of Lakshmana Gomathi 
Nayagam and Sivaraman (2012) do not satisfy the Symmetry property. Moreover, we can 
prove that ( )L A satisfy the Monotonicity and Symmetry properties of score function. Thus, 

( )L A  is a score function more than an accuracy function.
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2. Nonlinear functions of IVIFNs based on the normal distribution

IVIFNs are more complicate than IFNs because that the membership and non-membership 
functions of the former are interval numbers. It is an established fact that interval numbers 
are nonlinear functions and can not be compared directly (Bortolan, Degani 1985). There-
fore, the score and accuracy functions can not be the straight forward extensions of their 
respective proposals for the case of IFNs, which are linear functions. Considering that the 
numbers within the interval sometimes do not mean the same for decision makers, Ahn 
(2006) assumed that they are distributed by the normal distribution. Motivated by this idea, 
this article will propose some new score and accuracy functions for ranking IVIFNs. The 
novelty of these functions is that they are normally distributed.

Definition 6 (Normal distribution). Let x ( [ , ]x a b∈ ) be the continuous random variable, 
and then we define its probability density function as:

 2 2[( ) /2 ]1( ) ,
2

x uf x e− − σ=
πσ

 (5)

where, the mean and variance of the normal distribution can be assumed to be ( ) / 2u a b= +  
and 2 2( ) / 4b aσ = − , respectively. 

Consequently, for any interval-valued intuitionistic fuzzy number ( )[ , ],[ , ]A a b c d= , its 
membership function and non-membership function can be approximated by the normal 
distribution, where ( )2( ) ~ ( ) / 2,   ( ) / 4A x N a b b aµ + −  and ( )2( ) ~ ( ) / 2,  ( ) / 4A x N c d d cν + − , 
respectively. 

Definition 7 (Normal distribution based score function). Let ( )[ , ],[ , ]A a b c d= be an 
interval-valued intuitionistic fuzzy number, a score function S  of A  can be represented 
as follows:

 ( )2 2= ( ) ( ) ~ ( ) / 2,   [( ) ( ) ]/ 4A AS x x N a b c d b a d cµ − ν + − − − + −

 ,  (6)

where the mean and variance of S are ( ) / 2Su a b c d= + − −


 and 2 2 2[( ) ( ) ]/ 4S b a d cσ = − + −


, 
respectively. The larger the value of Su



, the more the score degree of the interval-valued 
intuitionistic fuzzy value S. 

Theorem 1. Let ( )[ , ],[ , ] ( 1,2, , )i i i i iA a b c d i m= =  be m interval-valued intuitionistic fuzzy 
numbers and ( 1,2, , )iS i m=

  be their associated score functions. Then, the addition of these 
independent interval numbers ( 1,2, , )iS i m=

 , each of which is normally distributed, is also 
normally distributed with a mean of 

iSu


 and a variance of 2
iSσ


:

 
2

1 1 2 2+ ~ ( , )m mw S w S w S N u+ + σ  

 , (7)
with

 1 21 2 1+
m i

m
m iS S S Siu w u w u w u w u== + + = ∑   

 ;  (8)

 1 2

2 2 2 2 2 2 2 2 2
1 2 1+

m i

m
m iiS S S Sw w w w=σ = σ + σ + σ = σ∑

   

 . (9)
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Proof: Since ( 1,2, , )iS i m=

  is normally distributed, we can obtain
 2~ ( , )

i i
i S SS N u σ





 ,
then 
   2 2~ ( , )

i i
i i i iS Sw S N w u w σ





 ,
thus
  2 2

1 1 2 2 1 1+ ~ ( , )
i i

m m
m m i iSi i Sw S w S w S N w u w= =+ + σ∑ ∑



  

 ,

which has completed the proof of Theorem 1.
Definition 8 (Normal distribution based accuracy function). Let ( )[ , ],[ , ]A a b c d= be an 

interval-valued intuitionistic fuzzy number, an accuracy function H of A  can be represented 
as follows:

 ( )2 2= ( )+ ( ) ~ ( ) / 2,   [( ) ( ) ]/ 4A AH x x N a b c d b a d cµ ν + + + − + −

 ,  (10)

where the mean and variance of H  are ( ) / 2Hu a b c d= + + +


 and 2 2 2[( ) ( ) ]/ 4H b a d cσ = − + −


, 
respectively. The larger the value of Hu



, the more the accuracy degree of the interval-valued 
intuitionistic fuzzy value H . 

Theorem 2. Let ( )[ , ],[ , ] ( 1,2, , )i i i i iA a b c d i m= =  be m  interval-valued intuitionistic fuzzy 
numbers and ( 1,2, , )iH i m=

  be their associated accuracy functions. Then, the addition of 
these independent interval numbers ( 1,2, , )iH i m=

 , each of which is normally distributed, 
is also normally distributed with a mean of 

iHu


 and a variance of 2
iHσ


:

 
2

1 1 2 2+ ~ ( , )m mw H w H w H N u+ + σ  

 , (11)
with

 1 21 2 1+
m i

m
m iH H H Hiu w u w u w u w u== + + = ∑   

 ; (12)

 1 2

2 2 2 2 2 2 2 2 2
1 2 1+

m i

m
m iiH H H Hw w w w=σ = σ + σ + σ = σ∑

   

 . (13)

Proof: Since ( 1,2, , )iH i m=

  is normally distributed, we can obtain:

   2~ ( , )
i i

i H HH N u σ




 ,
then 
  2 2~ ( , )

i i
i i i iH Hw H N w u w σ





 ,

thus

 
2 2

1 1 2 2 1 1+ ~ ( , )
i i

m m
m m i iHi i Hw H w H w H N w u w= =+ + σ∑ ∑



  

 ,

which has completed the proof of Theorem 2.  
Definition 9 (Normal distribution based hesitation function). Let ( )[ , ],[ , ]A a b c d= be an 

interval-valued intuitionistic fuzzy number, a hesitation function π  of A  can be represented 
as follows:

 ( )2 2=1 ( ) ( ) ~ (2 ) / 2,   [( ) ( ) ]/ 4A Ax x N a b c d b a d cπ − µ − ν − − − − − + −  ,   (14)

where the mean and variance of π  are (2 ) / 2u a b c dπ = − − − −


 and 2 2 2[( ) ( ) ]/ 4b a d cπσ = − + −


, 
respectively. The larger the value of uπ , the more the hesitation degree of the interval-valued 
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intuitionistic fuzzy value π . The larger the value of 2
πσ


, the smaller the hesitation degree of 
the interval-valued intuitionistic fuzzy value π . 

Theorem 3. Let ( )[ , ],[ , ] ( 1,2, , )i i i i iA a b c d i m= =  be m  interval-valued intuitionistic fuzzy 
numbers and ( 1,2, , )i i mπ =

  be their associated hesitation function. Then, the addition of 
these independent interval numbers ( 1,2, , )i i mπ =

 , each of which is normally distributed, 
is also normally distributed with a mean of u  and a variance of 2σ :

 
2

1 1 2 2+ ~ ( , )m mw w w N uπ + π + π σ  

 ,    (15)
with

 1 21 2 1+
m i

m
m iiu w u w u w u w uπ π π π== + + = ∑   

 ;     (16)

 1 2
2 2 2 2 2 2 2 2 2

1 2 1+
m i

m
m iiw w w wπ π π π=σ = σ + σ + σ = σ∑

   

 .    (17)

Proof: Since ( 1,2, , )i i mπ =

  is normally distributed, we can obtain:

  2~ ( , )
i ii N uπ ππ σ




 ,
then 
  2 2~ ( , )

i ii i i iw N w u wπ ππ σ




 ,

thus
  2 2

1 1 2 2 1 1+ ~ ( , )
ii i

m m
m m i ii iw w w N w u wπ π= =π + π + π σ∑ ∑



  

 ,

which has completed the proof of Theorem 3.
Based on these three types of values for IVIFNs: the score function S , the accuracy func-

tion H and hesitation function π , we shall present a method for the comparison between 
any two IVIFNs as follows: 

Definition 10 (Order relation of IVIFNs). Let ( )1 1 1 1 1[ , ],[ , ]a a b c d=  and ( )2 2 2 2 2[ , ],[ , ]a a b c d=  

be two interval-valued intuitionistic fuzzy values, 1( ) ~S a  N((a1 + b1 – c1 – d1)/2, [(b1 – a1)2 + 

(d1 – c1)2]/4 and 2( ) ~S a   N((a2 + b2 – c2 – d2)/2, [(b2 – a2)2 + (d2 – c2)2]/4 be their associate score 

functions, respectively, and let 1( ) ~H a 1 1 1 1(( ) / 2,  N a b c d+ + + 2 2
1 1 1 1 [( ) ( ) ]/ 4)b a d c− + −

 
and ( )2 2

2 2 2 2 2 2 2 2 2( ) ~ ( ) / 2,   [( ) ( ) ]/ 4H a N a b c d b a d c+ + + − + − be their associate accuracy 
functions, respectively, and let ( )2 2

1 1 1 1 1 1 1 1 1( ) ~ (1 ) / 2,   [( ) ( ) ]/ 4a N a b c d b a d cπ − − − − − + −

and  ( )2 2
2 2 2 2 2 2 2 2 2( ) ~ (1 ) / 2,   [( ) ( ) ]/ 4a N a b c d b a d cπ − − − − − + −  be their associate hesita-

tion functions, respectively, then:  
(1) If 

1 2( ) ( )S a S au u<
 

, then 1a  is smaller than 2a , denoted by 1 2a a<  ; 
(2) If 

1 2( ) ( )S a S au u=
 

, and, then if 
1 2( ) ( )H a H au u<
 

, 1a  is smaller than 2a , denoted by 1 2a a<  ;
(3) If 

1 2( ) ( )S a S au u=
 

, and 
1 2( ) ( )H a H au u=
 

, then if 
1 2

2 2
( ) ( )a aπ πσ < σ
 

, 1a  is smaller than 2a , 
denoted by 1 2a a<  ;

(4) If 
1 2( ) ( )S a S au u=
 

, 
1 2( ) ( )H a H au u=
 

, and 
1 2

2 2
( ) ( )=a aπ πσ σ
 

, then 1a  and 2a  represent the 
same information, denoted 1 2a a=  . 
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In the following, we use the above approach to compare two IVIFMS 1a  and 2a  in Exam-
ple 1 and Example 2, which shows that our functions are more reasonable than the functions 
proposed in (Xu, Chen 2007; Ye 2009; Lakshmana Gomathi Nayagam, Sivaraman 2012).

Example 3. (Example 1 continuation) 
By Dentitions 7 and 8, we can obtain that 

1 2( ) ( ) 0.15S a S au u= = −
 

 and 
1 2( ) ( ) 0.55H a H au u= =

 

 

, 
respectively. Therefore, we can not use these values to compare 1a  and 2a . However, accord-
ing to Defintion 9, we calculate the variance values of hesitation inedx 

1
2

( ) 0.045aπσ =


 and 

2
2

( ) 0.0125aπσ =


, respectively. According to Eq. (3) in Definition 10, we can get that 1a  is 
better than 2a . 

Note 2: All of Definitions 2, 3 and 4 fail to rank interval-valued intuitionistic fuzzy values 
for two alternatives in this example. However, our approach is applicable.

Example 4. (Example 2 continuation) 
According to Dentitions 7 and 8, we get that

1 2( ) ( ) 0.2S a S au u= = −
 

 and 
1 2( ) ( ) 0.6H a H au u= =
 

. 
There is no difference in 1a  and 2a  based on these two functions. However, by Dentition 9, 
we obtain the variance value of hesitation index 

1
2

( ) 0.01aπσ =


 and 
2

2
( ) 0.09aπσ =


, respectively. 
According to Eq. (3) in Definition10, we can get that 2a  is better than 1a . 

Note 3: All of Definitions 2, 3 and 4 fail to rank interval-valued intuitionistic fuzzy values 
for two alternatives in this example. However, our approach is still applicable.

In the above two examples, our approach can rank these interval-valued intuitionistic fuzzy 
sets correctly. The advantage of our approach is the use of the variance value of hesitation 
index, which can provide more information for interval-valued intuitionistic fuzzy numbers. 

3. An optimization model for attribute weight based on  
nonlinear functions 

In some decision making problems, due to the increasing complexity of many practical deci-
sion situations, the DM may not be confident in providing exact values for attribute weights. 
Instead, the decision maker (DM) may only possess partial knowledge about attribute weights. 
The types of Q provided by group members are linearly unequal constraints, which can be 
constructed by the following forms (Kim, Ahn 1999):

(1) A weak ranking: { }i jw w≥ ;
(2) A strict ranking: { }i j iw w a− ≥ ;
(3) A ranking with multiples: { }i i jw a w≥ ;
(4) An interval form: { }i i i ia w a≤ ≤ + ε ;
(5) A ranking of differences: { },i j k lw w w w− ≥ − for j k l≠ ≠ , 

where iα  and iε are nonnegative constants. 
From Eq.  (8), we know that the score of alternative ix  is based on the value of 

=1= n
i i ijiS w S∑ 

 
. Obviously, the greater the value iS , the better the alternative ix . Therefore, 

we can build the following three optimization models to drive attribute weight:
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=1
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∑



      (18)

and

 

=1

=1

Max  =

    . . =1

0

n

i i ij
i

n

i
i

i

H w H

W Q

s t w

w

∈




 ≤

∑

∑



       (19)

and

 

2 2 2

=1 =1

=1

Max =

          . . =1

0

i ij

n m

iS S
i j

n

i
i

i

w

W Q

s t w

w

σ σ

∈




 ≤

∑∑

∑

 

.   (20)

Since all of the alternatives in the MADM problems are competitive, the above multi-ob-
jective programming models could be further aggregated into a single objective programming 
as follows:

 

=1 =1

=1

Max =

        . . =1

0

ij

n m

i S
i j

n

i
i

i

S w u

W Q

s t w

w

∈




 ≤

∑∑

∑



   (21)

and

 

=1 =1

=1

Max =

        . . =1

0

ij

n m

i H
i j

n

i
i

i

H w u

W Q

s t w

w

∈




 ≤

∑∑

∑





      (22)
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and

 

2 2 2

=1 =1

=1

Max  =

           . . =1

0

n m

iS S
i j

n

i
i

i

w

W Q

s t w

w

σ σ

∈




 ≤

∑∑

∑

 

.    (23)

Because expressions (21), (22) and (23) are there maximization problems with the same 
constraints, they can be combined to formulate the following optimization program:

 

2 2

=1 =1

=1

Max  = + +

         . . =1

0

ijij ij

n m

i i iHS H
i j

n

i
i

i

Z w u w u w

W Q

s t w

w

σ

∈




 ≤

∑∑

∑

 



.     (24)

By resolving the above optimization program, we can obtain an optimal weight vector TW .

4. Multi-criteria fuzzy decision-making method based on the new novel score 
function and accuracy function

In this section, we shall present an approach for Multi-criteria fuzzy decision-making prob-
lems with interval-valued intuitionistic fuzzy numbers based on the new novel score function 
and accuracy function. 

Let 1 2{ , , , }mA A A A=   be a set of alternatives and let 1 2{ , , , }mC C C C=  be a set of crite-
ria. Assume that the weight of the criterion ( 1,2, , )jC j n=  , entered by the decision-maker, 
is jw , [0,1]jw ∈  and =1 =1n

jj w∑ . In this case, the characteristic of the alternative iA  is 
represented by an IVIFS:

 
{ },[ ( ), ( )],[ ( ), ( )] |i j iL j iU j iL j iU j jA C C C v C v C C C= µ µ ∈ ,

where 0 ( ) ( ) 1, ( ) 0, ( ) 0,iU j iU j iL j iL jC v C C v C≤ µ + ≤ µ ≥ ≥ 1,2, ,j n=   and 1,2, ,i m=  . The 
IVIFS value that is the pair of intervals ( ) [ , ], ( ) [ , ]

i iA j ij ij A j ij ijC a b v C c dµ = =  for jC C∈  is 
denoted by ( )[ , ],[ , ]ij ij ij ij ija b c dα = , where [ , ]ij ija b indicates the degree that the alternative 

iA  satisfies the criterion jC
 
given by the decision maker, [ , ]ij ijc d

 
indicates the degree 

that the alternative iA  does not satisfy the criterion jC  given by the decision maker, 
[ , ] [0,1],[ , ] [0,1]ij ij ij ija b c d∈ ∈ . Therefore, we can elicit a decision matrix ( )ij m nD ×= α . The 
next four steps can summarize the procedure of applying this method.
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Case 1. The DMs have complete weight information.
Step 1.  By Eq. (5), we calculate the score matrix ( )ij m nS s ×=

 
of ( )ij m nD ×= α .

Step 2.  Calculate the score values, accuracy values and variance values of interval-valued 
intuitionistic fuzzy value ijα ( 1,2, ,i m=  , 1,2, ,j n=  ) by using Eq. (5) and 
Eq. (11).

Step 3.  Aggregate the score values, accuracy values and variance values by using Eq. (6) 
and Eq. (10), respectively.

Step 4.  Rank the alternative 1 2{ , , , }mA A A A=   and select the best one(s) according to 
Definition 9. 

Step 5.   End.
Case 2. The DMs have partial weight information. 

Step 1.  By resolve the Expression (24), we obtain an optimal weight vector TW .
Step 2.  By Eq. (5), we calculate the score matrix ( )ij m nS s ×=

 
of ( )ij m nD ×= α .

Step 3.  Calculate the score values, accuracy values and variance values of interval-valued 
intuitionistic fuzzy value ijα

 
( 1,2, , 1,2, ,i mi m= =  , 1,2, ,j n=  ) by using 

Eq.  (5) and Eq. (11).
Step 4.  Aggregate the score values, accuracy values and variance values by using Eq. (6) 

and Eq. (10), respectively.
Step 5.  Rank the alternative 1 2{ , , , }mA A A A=   and select the best one(s) according to 

Definition 9. 
Step 6.   End.

5. Illustrative example

With increasing governmental regulation and stronger public awareness in environmen-
tal protection, environmental performance evaluation has become an important issue in 
green production. An electronic company is desirable to select its green suppliers. After 
pre-evaluation, four suppliers. ( 1,2,3,4) ( 1,2,3,4)i iA i A i= =  are remained as alternatives 
for further evaluation. Four criteria are considered as: 1C : Remanufacturing activity; 2C : 
Energy consumption; 3C : Hazardous waste management; 4C : Environmental certification. 
Since most of these criteria are qualitative, there exist some fuzziness and uncertainty in this 
type of decision making problem. Therefore, the assessments by interval-valued intuitionistic 
fuzzy numbers to four alternatives are shown in Table 1. 

Table 1. Assessments of four green suppliers based on each criterion

Supp liers
Criteria

C1 C2 C3 C4

A1 ([0.40, 0.65], [0.10, 
0.30])

([0.30, 0.50], [0.10, 
0.20])

([0.50, 0.60], [0.20, 
0.40])

([0.60, 0.70], [0.20, 
0.30])

A2 ([0.50, 0.75], [0.10, 
0.20])

([0.50, 0.60], [0.20, 
0.30])

([0.45, 0.55], [0.35, 
0.45]) 

([0.20, 0.30], [0.10, 
0.20])

A3 ([0.30, 0.70], [0.10, 
0.20])

([0.40, 0.70], [0.10, 
0.20])

([0.40, 0.60], [0.15, 
0.40]) 

([0.50, 0.60], [0.30, 
0.40])

A4 ([0.40, 0.70], [0.30, 
0.30]) 

([0.60, 0.80], [0.10, 
0.20])

([0.30, 0.50], [0.10, 
0.20])

([0.20, 0.50], [0.10, 
0.40])
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From Table 1, we can get the following decision making matrix:

([0.40, 0.65],[0.1, 0.3])  ([0.3, 0.5],[0.1,0.2])   ([0.50, 0.60],[0.20,0 .40])  ([0.6, 0.7],[0.2, 0.3])
([0.50, 0.75],[0.1, 0.2])  ([0.5, 0.6],[0.2, 0.3])  ([0.45, 0.55],[0.35, 0.45])  ([0.2, 0.3],[

D =
0.1, 0.2])

([0.30, 0.70],[0.1, 0.2])  ([0.4, 0.7],[0.1, 0.2])  ([0.40, 0.60],[0.15, 0.40])  ([0.5, 0.6],[0.3, 0.4])
([0.40, 0.70],[0.3, 0.3])  ([0.6, 0.8],[0.1, 0.2])  ([0.30, 0.50],[0.10, 0.20])  ([0.2, 0.5],[0.1, 0.4])

 
 
 
 
 
  

.

5.1. The DMs have complete weight information

Assume that the weights of 1C , 2C , 3C and 4C  are 0.4, 0.3, 0.1 and 0.2, respectively. Then, 
we utilize our approach to get the most desirable alternative(s).

Step 1. According to expression (1), we calculate the associated score values of ijs  
( 1,2, ,i m=  , 1,2, ,j n=  ) in Table 2.

Table 2. The score values of ijs

Score 
values

Criteria
C1 C2 C3 C4

A1 0.325 0.250 0.250 0.400
A2 0.475 0.300 0.100 0.100
A3 0.250 0.400 0.225 0.200
A4 0.250 0.550 0.250 0.100

Using the weights vector of criteria (0.4,  0.3,  0.1,  0.2)TW = , we obtain the overall score 
values ( 1,2,3,4)iS i =  of the alternative iA as follows:

 1 0.3100S = ,  2 0.3100S = , 3 0.3225S = , 4 0.3100S = .

Then, we have that 3 4 1 2A A A A= = . Obviously, the score function of Xu and Chen 
(2007) is not able to rank the alternatives 1A , 2A and 4A . In the following, we further rank 
these there alternatives. To do that, we compute the accuracy values ijs  ( 1,2, ,i m=  , 

1,2, ,j n=  ) in Table 3.

Table 3. The accuracy values of sij

Accuracy 
values

Criteria
C1 C2 C3 C4

A1 0.725 0.550 0.850 0.900
A2 0.775 0.800 0.900 0.400
A3 0.650 0.700 0.775 0.900
A4 0.850 0.850 0.550 0.600

By applying the weights vector of criteria (0.4,  0.3,  0.1,  0.2)TW = , we calculate the overall 
accuracy values ( 1,2,3,4)iH i =  of the alternative iA as follows:

 1 0.7200H = , 2 0.7200H = , 3 0.7275H = , 4 0.7700H = .
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According to Definition 10, we obtain that 3 4 1 2A A A A=  . However, the accuracy 
function of Xu and Chen (2007) is still not able to rank the alternatives 1A  and 2A . In the 
following, we compute the variance values of ijs ( 1,2, ,i m=  , 1,2, ,j n=  ) in Table 4.

Table 4. The variance values of sij

Variance 
values

Criteria

C1 C2 C3 C4

A1 0.0256 0.0125 0.0125 0.0050
A2 0.0181 0.0050 0.0050 0.0050
A3 0.0425 0.0250 0.0256 0.0050
A4 0.0225 0.0125 0.0125 0.0450

By expression (17), we calculate the overall variance values 2 ( 1,2,3,4)
iS

iσ =  of the alter-
native iA as follows:

 1

2 0.0055
S

σ = , 
2

2 0.0036
S

σ = , 
3

2 0.0095
S

σ = , 
4

2 0.0066
S

σ = .

Then, we have 1 2A A . According to Definition 10, we have the ranking order of the 
alternatives: 3 4 1 2A A A A   . Consequently, the variance value 2

iS
σ  is a useful tool when 

the score values and accuracy functions do not allow the proper discrimination between 
different interval-valued intuitionistic fuzzy numbers.

To further study the properties of the score functions, accuracy functions, and variance 
functions, we compute the accuracy values of Ye (2009) in Table 5.

Table 5. Ye’s accuracy values of sij

Mij
Criteria

C1 C2 C3 C4

A1 0.250 –0.050 0.400 0.550
A2 0.400 0.350 0.400 –0.350
A3 0.150 0.250 0.275 0.450
A4 0.400 0.550 –0.050 –0.050

By expression (3), we obtain Ye’s overall accuracy values ( 1,2,3,4)iM i =  of the alternative
iA as follows:

  1 0.2350M = , 2 0.2350M = , 3 0.2525M = , 4 0.3100M = .

Then we obtain that 4 3 1 2A A A A=  , where 1A and 2A  are not discriminated.
We also can calculate the accuracy function values of Lakshmana Gomathi Nayagam and 

Sivaraman (2012) in Table 6.
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Table 6. Nayagam’s accuracy values of ijs

LAij
Criteria

C1 C2 C3 C4

A1 0.885 0.630 0.840 1.130
A2 1.150 0.880 0.605 0.280
A3 0.870 0.980 0.750 0.790
A4 0.830 1.320 0.630 0.420

By Definition 5, we obtain Nayagam’s overall accuracy values ( 1,2,3,4)iLA i =  of the 
alternative iA as follows:

 1 0.8530LA = , 2 0.8405LA = , 3 0.8750LA = , 4 0.8750LA = ,

Then, we obtain that 3 4 1 2A A A A=   . This ranking order is similar as the one by our 
proposed approach, which demonstrates LA  is a score function more than an accuracy 
function. However, 3A and 4A  are still not discriminated in this case.

5.2. The DMs have partial weight information 

Step 1. The information about the attribute weights is partly known as follows:

  
1 2 3 4

1
 = 0.1 0.3,0.2 0.4,0.15 0.3,0.28 0.4, =1,0 1

n

n i
j

Q w w w w w w
=

  ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ 
  

∑ . 

Based on the expression (24), we build the following optimization model: 

 

2 2 2 2
1 2 3 4 1 2 3 4

=1 =1

1

2

3

4

1 2 3 4

Max Z= 4.4 +4.4 +3.9 +3.6 + 0.1 +0.06 + 0.055 +0.06

0.1 0.3
0.2 0.4
0.15 0.3

          .
0.28 0.4

+ + + =1
0 1

n m

i j

i

w w w w w w w w

w
w

w
w

w w w w
w

≤ ≤
 ≤ ≤
 ≤ ≤
 ≤ ≤



≤ ≤

∑∑

 
By resolving this model, we obtain the weight vector.
Step 2. By using Eq. (7) and Eq. (8), we can obtain weighed values of each alternative as 

follows:
Step 3. According to Definition 10, we rank all alternatives: . And then, the most desirable 

alternative is.
Step 4. End.

5.3. Analysis of the nonlinear functions

The ranking method for interval-valued intuitionistic fuzzy numbers proposed in this paper 
has the following main advantages with respect to other methods proposed in the literature:
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1. It builds some judgment criterions to study the rationality for score and accuracy func-
tions, It is worth mentioning that this issue that has not been successfully addressed. 

2. It studies some desirable properties of score and accuracy functions: Monotonicity 
and Symmetry.

3. It supports the decision making progress in which the information weights about 
attribute is partly known, i.e. it presents a nonlinearly optimized model to obtain the 
weights of attributes.

Finally, the ranking method proposed in this paper differs with respect to the existing 
models (Xu, Chen 2007; Ye 2009; Lakshmana Gomathi Nayagam, Sivaraman 2012) in the 
following aspects:

1. It allows the presence of the nonlinear score and accuracy functions, which are based 
on the normal distribution.

2. It ranks interval-valued intuitionistic fuzzy numbers by incorporating score function, 
accuracy function, and variance function. Therefore, it has more information than Xu 
and Chen’s score function and Ye’s accuracy function.

3. It proves thatof Lakshmana Gomathi Nayagam and Sivaraman (2012) is a score func-
tion more than an accuracy function.

Conclusions

This article develops the nonlinear score, accuracy and hestitation functions of IVIFNs 
based on the normal distribution. Then, we study their desirable properties: Monotonicity 
and Symmetry. Based on these nonlinear functions, an approach for ranking interval-valued 
intuitionistic fuzzy numbers is proposed. The novelty of this approach is that it contains three 
values: the score values, variance values and accuracy values. As a result, it can give more 
information than Xu and Chen’s score function and Ye’s accuracy function. By combining 
these nonlinear functions, we investigate a multi-criterion decision-making method with 
IVIFNs in which two cases are considered: the attribute weight information is known and 
particularly known. Finally, an illustrative example is provided to illustrate our proposed 
approach. Considered that, sometimes, the interval numbers may follow other distribution, 
such as  distribution. In our future work, we shall focus on the new functions of interval-
valued intuitionistic fuzzy numbers based on other distributions. 

Acknowledgements

The authors are very grateful to Editors and the anonymous referees for their valuable com-
ments and suggestions that have helped us to improve considerably the quality of this pa-
per. This work was supported by National Natural Science Foundation of China (NSFC) under 
the Grant (No. 71571166 and No. 71101131), Zhejiang Provincial Natural Science Foundation 
of China (No. LY15G010003), Zhejiang Provincial National Science Foundation for Distin-
guished Young Scholars of China (No. LR13G010001), Zhejiang Provincial Key Research 
Base of Humanistic and Social Sciences in Hangzhou Dianzi University (No. ZD01-201502), 

J. Wu et al. An approach for MADM problems with interval-valued intuitionistic fuzzy sets...352



Zhejiang Provincial Qianjiang Talent Foundation of China (No. QJC1402015) and Zhejiang 
Provincial Social Science Association Foundation of China (2015Z026).

References

Ahn, B. S. 2006. The uncertain OWA aggregation with weighting functions having a constant level of 
orness, International Journal of Intelligent Systems 21: 469–483. http://dx.doi.org/10.1002/int.20144

Atanassov, K. 1986. Intuitionstic fuzzy sets, Fuzzy Sets and Systems 20: 87–96. 
 http://dx.doi.org/10.1016/S0165-0114(86)80034-3
Atanassov, K.; Gargov, G. 1989. Interval-valued intuitionistic fuzzy sets, Fuzzy Sets and Systems 31: 

343–349. http://dx.doi.org/10.1016/0165-0114(89)90205-4
Boran, F. E.; Genc, S.; Kurt, M.; Akay, D. 2009. A multi-criteria intuitionistic fuzzy group decision mak-

ing for supplier selection with TOPSIS method, Expert Systems with Applications 36: 11363–11368. 
http://dx.doi.org/10.1016/j.eswa.2009.03.039

Bortolan, G.; Degani, R. 1985. A review of some for ranking fuzzy subsets, Fuzzy sets and systems 15: 
21–31. http://dx.doi.org/10.1016/0165-0114(85)90012-0

Chen, S. M.; Tan, J. M. 1994. Handling multi-criteria fuzzy decision-making problems based on vague 
set theory, Fuzzy Sets and Systems 67(2): 163–172. http://dx.doi.org/10.1016/0165-0114(94)90084-1

Chen, Z. P.; Yang, W. 2011. A new multiple attribute group decision making method in intuitionistic fuzzy 
setting, Applied Mathematical Modelling 35: 4424–4437. http://dx.doi.org/10.1016/j.apm.2011.03.015

Gong, Z. W.; Li, L. S.; Zhou, F. X.; Yao, T. X. 2009. Goal programming approaches to obtain the priority 
vectors from the intuitionistic fuzzy preference relations, Computers and Industrial Engineering 57: 
1187–1193. http://dx.doi.org/10.1016/j.cie.2009.05.007

Gong, Z. W.; Li, L. S.; Forrest, J.; Zhao, Y. 2011. The optimal priority models of the intuitionistic fuzzy 
preference relation and their application in selecting industries with higher meteorological sensitiv-
ity, Expert Systems with Applications 38: 4394–4402. http://dx.doi.org/10.1016/j.eswa.2010.09.109

Hong, D. H.; Choi, C. H. 2000. Multicriteria fuzzy decision-making problems based on vague set theory, 
Fuzzy Sets and Systems 114: 103–113. http://dx.doi.org/10.1016/S0165-0114(98)00271-1

Jiang, Y. C.; Tang, Y.; Chen, Q. M. 2011. An adjustable approach to intuitionistic fuzzy soft sets based 
decision making, Applied Mathematical Modelling 35: 824–836. 

 http://dx.doi.org/10.1016/j.apm.2010.07.038
Kim, S.; Ahn, B. S. 1999. Interactive group decision making procedure under incomplete information, Euro-

pean Journal of Operational Research 116: 498–507. http://dx.doi.org/10.1016/S0377-2217(98)00040-X
Lakshmana Gomathi Nayagam, V.; Sivaraman, G. 2012. Ranking of interval-valued intuitionistic fuzzy 

sets, Applied Soft Computing 11: 3368–3372. http://dx.doi.org/10.1016/j.asoc.2011.01.008
Li, D. F. 2007. Compromise ratio method for fuzzy multi-attribute group decision making, Applied Soft 

Computing 7(3): 807–817. http://dx.doi.org/10.1016/j.asoc.2006.02.003
Li, D. F. 2011. The GOWA operator based approach to multiattribute decision making using intuitionistic 

fuzzy sets, Mathematical and Computer Modelling 53: 1182–1196. 
 http://dx.doi.org/10.1016/j.mcm.2010.11.088
Li, D. F.; Chen, G. H.; Hua, Z.Q. 2010. Linear programming method for multiattribute group decision 

making using IF sets, Information Sciences 180: 1591–1609. http://dx.doi.org/10.1016/j.ins.2010.01.017
Li, L.; Yuan, X. H.; Xia, Z. Y. 2007. Multicriteria fuzzy decision-making methods based on intuitionistic 

fuzzy sets, Journal of Computer and System Sciences 73: 84–88. 
 http://dx.doi.org/10.1016/j.jcss.2006.03.004

Technological and Economic Development of Economy, 2016, 22(3): 336–356 353



Liu, P. D. 2011. A weighted aggregation operators multi-attribute group decision-making method based 
on interval-valued trapezoidal fuzzy numbers, Expert Systems with Applications 38: 1053–1060. 

 http://dx.doi.org/10.1016/j.eswa.2010.07.144
Merigó, J. M. 2011. Fuzzy multi-person decision making with fuzzy probabilistic aggregation operators, 

International Journal of Fuzzy Systems 13(3): 163–174. 
Merigó, J. M.; Gil-Lafuente, A. M. 2011. Fuzzy induced generalized aggregation operators and its appli-

cation in multi-person decision making, Expert Systems with Applications 38(8): 9761–9772. 
 http://dx.doi.org/10.1016/j.eswa.2011.02.023
Park, J. H.; Park, Y.; Kwun, C. Y.; Tan, X. G. 2011. Extension of the TOPSIS method for decision making 

problems under interval-valued intuitionistic fuzzy environment, Applied Mathematical Modelling 
35: 2544–2556. http://dx.doi.org/10.1016/j.apm.2010.11.025

Pei, Z.; Zheng, L. 2012. A novel approach to multi-attribute decision making based on intuitionistic fuzzy 
sets, Expert Systems with Applications 39: 2560–2566. http://dx.doi.org/10.1016/j.eswa.2011.08.108

Su, Z. X.; Chen, M. Y.; Xia, G. P.; Li, W. 2011. An interactive method for dynamic intuitionistic fuzzy 
multi- attribute group decision making, Expert Systems with Applications 38: 15286–15295. 

 http://dx.doi.org/10.1016/j.eswa.2011.06.022
Wang, J. Q.; Meng, L. Y.; Chen, X. H. 2009a. Multi-criteria decision making method based on vague sets 

and risk attitudes of decision makers, Systems Engineering and Electronics 2: 361–365. 
Wang, W. Z. 2011. Comments on “Multicriteria fuzzy decision-making method based on a novel accuracy 

function under interval-valued intuitionistic fuzzy environment” by Jun Ye, Expert Systems with Ap-
plications 38: 13186–13187. http://dx.doi.org/10.1016/j.eswa.2011.04.130

Wang, Z. J.; Li, K. W.; Wang, W. Z. 2009b. An approach to multiattribute decision making with interval-
valued intuitionistic fuzzy assessments and incomplete weights, Information Sciences 179(17): 
3026–3040. http://dx.doi.org/10.1016/j.ins.2009.05.001

Wang, Z. J.; Li, K. W.; Xu, J. H. 2011a. A mathematical programming approach to multi-attribute deci-
sion making with interval-valued intuitionistic fuzzy assessment information, Expert Systems with 
Applications 38: 12462–12469. http://dx.doi.org/10.1016/j.eswa.2011.04.027

Wang, Z.; Xu, Z. S.; Liu, S. S; Tang, J. 2011b. A netting clustering analysis method under intuitionistic fuzzy 
environment, Applied Soft Computing 11: 5558–5564. http://dx.doi.org/10.1016/j.asoc.2011.05.004 

Wei, G. W. 2009. Some geometric aggregation functions and their application to dynamic multiple at-
tribute decision making in intuitionistic fuzzy setting, International Journal of Uncertainty, Fuzziness 
and Knowledge- Based Systems 17: 179–196. http://dx.doi.org/10.1142/S0218488509005802

Wei, G. W. 2010. Some induced geometric aggregation operators with intuitionistic fuzzy information 
and their application to group decision making, Applied Soft Computing 10: 423–431. 

 http://dx.doi.org/10.1016/j.asoc.2009.08.009
Wei, G. W. 2011. Grey relational analysis method for intuitionistic fuzzy multiple attribute decision mak-

ing, Expert Systems with Applications 38: 11671–11677. http://dx.doi.org/10.1016/j.eswa.2011.03.048
Wei, G. W.; Merigó, J. M. 2012. Methods for strategic decision making problems with immediate prob-

abilities in intuitionistic fuzzy setting, Scientia Iranica 19(6): 1936–1946. 
 http://dx.doi.org/10.1016/j.scient.2012.07.017
Wei, G. W.; Zhao, X. F.; Wang, H. J. 2012. An approach to multiple attribute group decision making with 

interval intuitionistic trapezoidal fuzzy information, Technological and Economic Development of 
Economy 18(2): 317–330. http://dx.doi.org/10.3846/20294913.2012.676995

Wu, J.  2015. A SD-IITFOWA operator and TOPSIS based approach for MAGDM problems with intu-
istionistic trapezoidal fuzzy numbers, Technological and Economic Development of Economy 21(1): 
28–47. http://dx.doi.org/10.3846/20294913.2014.946982

J. Wu et al. An approach for MADM problems with interval-valued intuitionistic fuzzy sets...354



Wu, J.; Cao, Q. W. 2013. Same families of geometric aggregation operators with intuitionistic trapezoidal 
fuzzy numbers, Applied Mathematical Modelling 37: 318–327. 

 http://dx.doi.org/10.1016/j.apm.2012.03.001
Wu, J.; Chiclana, F. 2012. Non-dominance and attitudinal prioritisation methods for intuitionistic 

and interval-valued intuitionistic fuzzy preference relations, Expert Systems with Applications 39: 
13049–13416. http://dx.doi.org/10.1016/j.eswa.2012.05.062

Wu, J.; Chiclana, F. 2014. A risk attitudinal ranking method for interval-valued intuitionistic fuzzy num-
bers based on novel score and accuracy expected functions, Applied Soft Computing 22: 272–286. 

 http://dx.doi.org/10.1016/j.asoc.2014.05.005
Xia, M. M.; Xu, Z. S. 2013. Group decision making based on intuitionistic multiplicative aggregation op-

erators, Applied Mathematical Modelling 37: 5120–5133. http://dx.doi.org/10.1016/j.apm.2012.10.029
Xu, Z. S. 2012. Intuitionistic fuzzy multi–attribute decision making: an interactive method, IEEE Transca-

tions on Fuzzy Systems 20(2): 514–525. 
Xu, Z. S. 2013. Priority weight intervals derived from intuitionistic multiplicative preference relations, 

IEEE Transactions on Fuzzy System 21: 642–654. http://dx.doi.org/10.1109/TFUZZ.2012.2226893
Xu, Z. S.; Chen, J. 2007. An approach to group decision making based on interval-valued intuitionistic 

judgment matrices, System Engineer-Theory and Practice 27: 126–133. 
 http://dx.doi.org/10.1016/S1874-8651(08)60026-5
Yager, R. R. 2004. OWA aggregation over a continuous interval argument with applications to decision 

making, IEEE Transactions on Systems, Man, and Cybernetics – Part B: Cybernetics 34(5): 1952–1963. 
http://dx.doi.org/10.1109/TSMCB.2004.831154

Yang, Y. J.; Chiclana, F. 2009. Intuitionistic fuzzy sets: spherical representation and distances, International 
Journal of Intelligent Systems 24(4): 399–420. http://dx.doi.org/10.1002/int.20342

Yang, Y. J.; Chiclana, F. 2012. Consistency of 2d and 3d distances of intuitionistic fuzzy sets, Expert Systems 
with Applications 39(10): 8665–8670. http://dx.doi.org/10.1016/j.eswa.2012.01.199

Ye, F. 2010. An extended TOPSIS method with interval-valued intuitionistic fuzzy numbers for virtual 
enterprise partner selection, Expert Systems with Applications 37: 7050–7055. 

 http://dx.doi.org/10.1016/j.eswa.2010.03.013
Ye, J. 2009. Multicriteria fuzzy decision-making method based on a novel accuracy function under 

interval-valued intuitionistic fuzzy environment, Expert Systems with Applications 36: 6899–6902. 
http://dx.doi.org/10.1016/j.eswa.2008.08.042

Yue, Z. L. 2011a. An approach to aggregating interval numbers into interval-valued intuitionistic fuzzy 
information for group decision making, Expert Systems with Applications 38: 6333–6338. 

 http://dx.doi.org/10.1016/j.eswa.2010.11.108
Yue, Z. L. 2011b. Developing a straightforward approach for group decision making based on determining 

weights of decision makers, Applied Mathematical Modelling 36: 4106–4117. 
 http://dx.doi.org/10.1016/j.apm.2011.11.041
Zadeh, L. A. 1965. Fuzzy sets, Information and Control 8: 338–353. 
 http://dx.doi.org/10.1016/S0019-9958(65)90241-X
Zeng, S. Z. 2013. Some intuitionistic fuzzy weighted distance measures and their application to group 

decision making, Group decision and Negotiation 22(2): 281–298. 
 http://dx.doi.org/10.1007/s10726-011-9262-6
Zhang, X.; Liu, P. D. 2010. Method for aggregating triangular fuzzy intuitionistic fuzzy information and its 

application to decision making, Technological and Economic Development of Economy 16(2): 280–290. 
http://dx.doi.org/10.3846/tede.2010.18

Zhao, H.; Xu, Z. S.; Liu, S. S.; Wang, Z. 2012. Intuitionistic fuzzy MST clustering algorithms, Computers 
and Industrial Engineering 62: 1130–1140. http://dx.doi.org/10.1016/j.cie.2012.01.007

Technological and Economic Development of Economy, 2016, 22(3): 336–356 355



Jian WU received the PhD degree in management science and engineering from Hefei University of 
Technology, Hefei, China, in 2008 and is currently an associated professor with School of Economics 
and Management, Zhejiang Normal University, China. He is an Associate Editor of the Journal of 
Intelligent and Fuzzy Systems and Guest Editor of the Journal of Applied Soft Computing. He is one 
of the FUZZ-IEEE2014 Program Committee Members and Co-chair of the special issue: Fuzzy deci-
sion-making: Consensus and Missing preferences. He has 30+ papers published in leading journals 
such as INS, CAIE, ASOC, KNOSYS, ESWA, IJIS, MCM, AMM, AMC, TEDE and ITOR. He was an 
academic research visitor in CCI, at De Montfort University.

Qingwei CAO is currently a lecture with School of Economics and Management, Zhejiang Normal Uni-
versity, China. Her current research interests include: group decision making, and aggregation operators. 
She has authored or coauthored several papers published in international journals such as CAIE, ESWA, 
MCM and APM. 

Hui LI is a professor with School of Economics and Management, Zhejiang Normal University, China. 
His current research interests include Financial Decision Aiding and Accounting Information Systems; 
Case-Based Reasoning; Business Computing and Business Forecasting. He has 50+ papers published on 
leading and reputable journals, e.g.: European Journal of Operational Research, IEEE Transactions on 
Systems, Man and Cybernetics-Part A, Information & Management, Information Sciences, International 
Journal of Systems Science, Expert Systems, Expert Systems with Applications, Journal of Forecasting, 
Knowledge-Based Systems, Applied Soft Computing, Computers & Industrial Engineering, Computers & 
Operations Research,  Technological and Economic Development of Economy, Tourism Management, 
WSEAS Transactions on Systems, etc.

J. Wu et al. An approach for MADM problems with interval-valued intuitionistic fuzzy sets...356


