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Abstract. In this paper, we present the intuitionistic fuzzy generalized probabilistic ordered weighted 
averaging (IFGPOWA) operator. It is a new aggregation operator that uses generalized means in 
a unified model between the probability and the OWA operator. The main advantage of this new 
operator is that it is able to deal with probabilities (objective information) and ordered weighted 
averages (subjective information) in the same formulation. Moreover, it is also able to deal with 
uncertain environments that can be assessed with intuitionistic fuzzy numbers. Furthermore, it uses 
generalized means providing a very general formulation that includes a wide range of situations. 
We study some of its main properties and particular cases such as the generalized intuitionistic 
fuzzy ordered weighted averaging (GIFOWA) operator and intuitionistic fuzzy probabilistic ordered 
weighted averaging (IFPOWA) operator. We end the paper by applying the new operator to a group 
decision making problem concerning the selection of investments.
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Introduction

Different types of aggregation operators are found in the literature for aggregating the in-
formation (Beliakov et al. 2007; Calvo et al. 2002; Xu, Da 2003). One of the most popular 
aggregation method is probabilistic aggregation (Gil-Lafuente, Merigó 2010; Merigó 2012a, 
2012b). The use of probabilities permits an objective modelization of the decision making 
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problem and its uncertainties under analysis. Another interesting type of aggregation operators 
is the ordered weighted averaging (OWA) operator (Yager 1988). It provides a parameterized 
family of aggregation operators that include as special cases the maximum, the minimum and 
the average. The OWA operator is very useful for representing the attitudinal character of the 
decision-maker in decision making. Since its appearance, the OWA operator has been used 
in a wide range of applications (Chen, Zhou 2011; Cheng et al. 2009; Liu 2008, 2011; Liu, Jin 
2012a, 2012b, 2012c; Liu et al. 2012; Liu, Su 2010; Merigó 2010, 2012b; Merigó, Casanovas 
2010, 2011a, 2011b; Merigó, Gil-Lafuente 2010; Wei 2010a; Xu, Wang 2011, 2012; Xu 2005, 
2007a; Xu, Chen 2008; Xu, Xia 2010; Xu, Yager 2006; Yager 2007; Zarghami, Szidarovszky 
2009; Zeng, Su 2011, 2012; Zeng et al. 2012; Zhou, Chen 2010, 2011).

Recently, Merigó (2011a, 2012b) has suggested a new model called the probabilistic 
OWA (POWA) operator, which unifies the OWA operator and the probability in the same 
formulation. The POWA operator provides a parameterized family of aggregation operators 
between the minimum and maximum that includes the probability in the aggregation pro-
cess. Its main advantage is that it can represent the degree of importance of the probability 
and the OWA in the aggregation. Thus, we can use the attitudinal character of the decision 
maker and the probabilistic information of the specific problem considered. Note that by 
using probabilities, we assume that we have some kind of information that permits us to 
forecast the future results. Especially, we focus on the concept of objective probabilities 
where we assume that the probabilities are formed by some type of neutral experiment. 
The POWA operator has received much attention from researchers. For example, Merigó 
et al. (2012) have further generalized the POWA operator by using generalized means, 
obtaining the generalized probabilistic OWA (GPOWA) operator, which includes a wide 
range of particular cases including the generalized OWA (GOWA) operator (Yager 2004) 
and the POWA. It has also been developed to accommodate interval numbers (Merigó, 
Wei 2011; Merigó 2011b), fuzzy numbers (2011a), intuitionistic fuzzy set (Wei, Merigó 
2012) and distance measures (Zeng et al. 2013).

Usually, when using the POWA and the GPOWA operators, it is assumed that the 
available information is clearly known and can be assessed with exact numbers. How-
ever, in the real-life world, due to the increasing complexity of the socioeconomic envi-
ronment and the lack of knowledge or data about the problem domain, exact numbers 
are sometimes unavailable. Thus, the input arguments may be vague or fuzzy in nature. 
Atanassov (1986) defined the notion of an intuitionistic fuzzy set (IFS), whose basic ele-
ments are intuitionistic fuzzy numbers (IFNs) (Xu, Yager 2006; Xu 2007a), each of which 
are composed of a membership degree and a nonmembership degree. In many practical 
situations, particularly in the process of group decision making under uncertainty, the 
experts may come from different research areas and thus have different backgrounds and 
levels of knowledge, skills, experience, and personality. The experts may not have enough 
expertise or possess a sufficient level of knowledge to precisely express their preferences 
over the objects, and then, they usually have some uncertainty in providing their pref-
erences, which makes the results of cognitive performance exhibit the characteristics of 
affirmation, negation, and hesitation. In such cases, the data or preferences given by the 
experts may be appropriately expressed in IFNs. For example, in multi-criteria decision 
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making problems, such as personnel evaluations, medical diagnosis, project investment 
analysis, etc., each IFN provided by the expert can be used to express both the degree for 
an alternative satisfying a criterion and the degree for the alternative not satisfying the 
criterion. The IFN is highly useful in depicting uncertainty and vagueness of an object, 
and thus can be used as a powerful tool to express data information under various dif-
ferent fuzzy environments which has attracted great attentions (Atanassov, Gargov 1989; 
Atanassov et al. 2005; Boran et al. 2009; Li 2008; Liu 2007; Szmidt, Kacprzyk 2003; Tan, 
Chen 2010; Wei 2008, 2010b; Xu, Wang 2012; Xu 2007a, 2007b, 2007c, 2010a, 2010b, 2011; 
Xu, Cai 2009, 2010; Xu, Xia 2010; Xu, Yager 2006; Ye 2009, 2010; Zeng 2013). 

Despite the importance of the POWA operator and the IFS in the decision making, we 
haven’t seen any study on the aggregation intuitionistic fuzzy information with the POWA 
operator. So, in this paper, we shall generalize the POWA operator to the intuitionistic 
fuzzy setting and present the intuitionistic fuzzy generalized probabilistic ordered weighted 
averaging (IFGPOWA) operator. The IFGPOWA unifies the probability and the OWA in 
the same formulation. Thus, we are able to consider objective information (probabilistic) 
and the attitudinal character of the decision maker in the same formulation. Moreover, it 
is also able to deal with an uncertain environment that can be assessed with intuitionistic 
fuzzy numbers. Furthermore, it uses generalized means providing a more robust formu-
lation of the model. With this generalization, we obtain a wide range of intuitionistic 
fuzzy aggregation operators such as the maximum, the minimum, the GIFOWA operator 
(Zhao et al. 2010), the intuitionistic fuzzy arithmetic probabilistic aggregation (IFA-PA), 
the intuitionistic fuzzy arithmetic OWA (IFA-OWA), the intuitionistic fuzzy probabilistic 
OWA (IFPOWA) and the intuitionistic fuzzy geometric probabilistic ordered weighted 
geometric averaging (IFG-POWGA) operator. 

The applicability of IFGPOWA is very broad. In this paper, we apply it to a decision 
making problem regarding the selection of investments, so that the decision-maker knows 
these different results could happen and thus selects the one in accordance with his/her 
interests. Thus, we show that depending on the particular case used, results may lead to 
different decisions. The main problem that we identify is that we do not have one model 
that yields the best decision, because we are dealing with uncertainty. Obviously, given 
these types of problems, the best way to assess information is through a general model 
that includes different methods in the same formulation, although it cannot identify one 
method with the best decision. Therefore, this general model (IFGPOWA) at least pro-
vides potential results that may occur in the decision problem, so that the decision-maker 
knows these different results could happen and thus selects the one in accordance with 
his/her interests.

This paper is organized as follows. In Section 1, we briefly review some basic concepts 
about IFS, the OWA, the POWA and the GPOWA operator. In Section 2 we introduce 
the IFGPOWA operator, and different families of IFGPOWA operators are analyzed in 
Section 3. In Section 4 we develop an approach to group decision making based on the 
IFGPOWA operator and present a numerical example in Section 5. The last Section sum-
marizes the main conclusions of the paper.
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1. Preliminaries

In this Section, we briefly review some basic concepts about intuitionistic fuzzy set, the OWA, 
the POWA and the GPOWA operator.

1.1. Intuitionistic fuzzy set

Let X be a universe of discourse, then a fuzzy set:

 { , ( ) | }AA x x x X= < µ > ∈ ,  (1)

defined by Zadeh (1965) is characterized by a membership function : [0,1]A Xµ → , where 
( )A xµ  denotes the degree of membership of the element x  to the set A .
Atanassov (1986) introduced a generalized fuzzy set called intuitionistic fuzzy set (IFS), 

shown as follows:
An IFS in X is given by:

 { , ( ), ( ) | }A AA x x v x x X= < µ > ∈ ,  (2)

which is characterized by a membership function : [0,1]A Xµ → and a non-membership 
function : [0,1]Av X → , with the condition:

 0 ( ) ( ) 1A Ax v x≤ µ + ≤ , x X∀ ∈ ,  (3)

where the numbers ( )A xµ  and ( )Av x  represent, respectively, the degree of membership and 
the degree of non-membership of the element x to the set A.

For each IFS A in X, if:

 ( ) 1 ( ) ( )A A Ax x v xπ = −µ − , x X∀ ∈ , (4)

then ( )A xπ  is called the indeterminacy degree or hesitation degree of x  to A . Especially, if 

 ( ) 1 ( ) ( ) 0A A Ax x v xπ = −µ − = , x X∀ ∈ , (5)

then, the intuitionistic fuzzy set A  is reduced to a common fuzzy set.
For convenience, we called ( , )vα αα = µ  an intuitionistic fuzzy number (IFN) (Xu, Yager 

2006; Xu 2007a), where αµ ∈ [0,1] , [0,1]vα ∈ , and 1vα αµ + ≤ . Additionally ( )S vα αα = µ −  
and ( )H vα αα = µ +  are called the score and accuracy degree of α , respectively.

For any three intuitionistic fuzzy numbers (IFNs) ( ) ( )1 11, , ,v vα α α αα = µ α = µ  and 

( )2 22 ,vα αα = µ , the following operational laws are valid (Xu, Yager 2006; Xu 2007a).

(1) ( )1 2 1 2 1 21 2 ,v vα α α α α αα ⊕α = µ +µ −µ ⋅µ ⋅ ;

(2) ( )1 (1 ) ,vλ λ
α αλα = − −µ ;

(3) ( ),1 (1 )vλ λ λ
α αα = µ − − .

To compare two IFNs 1α  and 2α , Xu and Yager (2006) introduced an order relation in 
the following:

 – If ( ) ( )1 2S Sα < α , then 1 2α < α ;
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 – If ( ) ( )1 2S Sα = α , then

(1) If ( ) ( )1 2H Hα < α , then 1 2α < α ;

(2) If ( ) ( )1 2H Hα = α , then 1 2α = α .

1.2. The OWA Operator

The OWA operator (Yager 1988) is an aggregation operator that provides a parameterized 
family of aggregation operators between the minimum and the maximum. It can be defined 
as follows:

Definition 1. An OWA operator of dimension n is a mapping OWA: nR R→  that has 

an associated weighting W with [0,1]jw ∈
 
and

1
1

n

j
j

w
=

=∑ , such that: 

 
1 2

1
( , ..., )

n

n j j
j

OWA a a a w b
=

=∑ , (6)

where jb  is the jth largest of the ia .
The OWA operator aggregates the information according to the attitudinal character 

(or degree of orness) of the decision maker (Merigó, Gil-Lafuente 2010; Yager 1988). The 
attitudinal character is represented according to the following formula:

 
( )

1 1

n

j
j

n jW w
n=

− 
α =  − 

∑ . (7)

Note that ( ) [0,1]Wα ∈ . The more weight W is located close to the top, the closer α  is 
to 1. In decision making problems, the degree of orness is useful for representing the attitu-
dinal character of the decision-maker by using it as the degree of optimism or pessimism.

1.3. The POWA operator

The POWA operator is an aggregation operator that provides a parameterized family of ag-
gregation operators between the maximum and the minimum that unifies probabilities and 
OWA in the same formulation (Merigó 2011a, 2012b). Its main advantage is that it is able 
to include both concepts considering the degree of importance of each case in the problem. 
It is defined as follows.

Definition 2. A POWA operator of dimension n is a mapping POWA: nR R→  that has 

an associated weighting vector W with [0,1]jw ∈ and 
1

1
n

j
j

w
=

=∑ , according to the following 
formula:

 
1 2

1

ˆ( , ..., )
n

n j j
j

POWA a a a p b
=

=∑ ,  (8)

where jb  is the jth largest of the ia , each argument ia  has an associated probability ip  with 

1
1

n

i
i

p
=

=∑  and [0,1]ip ∈ , ˆ (1 )j j jp w p= γ + − γ  with [0,1]γ∈ and jp is the probability ip  or-

dered according to jb , that is, according to the j th largest of the ia .

Technological and Economic Development of Economy, 2016, 22(2): 177–193 181



Note that it is also possible to formulate the POWA operator separating the part that 
strictly affects the OWA operator and the part that affects the probabilities. This representation 
is useful to see both models in the same formulation but it does not seem to be as a unique 
equation unifying both models.

Definition 3. A POWA operator of dimension n is a mapping POWA: nR R→  that has 

an associated weighting vector W with [0,1]jw ∈ and 
1

1
n

j
j

w
=

=∑  and a probabilistic vector P, 

with [0,1]ip ∈  and 
1

1
n

i
i

p
=

=∑ , such that:

 1 2 1
1 1

( , ..., ) (1 )
n n

n j j i
j i

POWA a a a w b p a
= =

= γ + − γ∑ ∑ , (9)

where jb  is the jth largest of the argument ia  and [0,1]γ∈ .

1.4. The GPOWA operator

The generalized probabilistic OWA (GPOWA) operator (Merigó et al. 2012) uses generalized 
means providing a more complete representation that includes a wide range of particular 
cases. It can be defined as follows.

Definition 4. A GPOWA operator of dimension n is a mapping GPOWA: nR R→  that 

has an associated weighting vector W with [0,1]jw ∈  and 
1

1
n

j
j

w
=

=∑ , according to the fol-

lowing formula:

 
( )

1 1

1 2
1 1

( , ..., ) 1
j i

n n

n j i
j i

GPOWA a a a w b p a
λ δ

λ δ

= =

   
 = γ + − γ       
∑ ∑ , (10)

where jb  is the jth largest of the argument ia , [0,1]γ∈ , λ and δ are parameters such that 
( ) { }, , 0λ δ∈ −∞ +∞ − .

By choosing a different manifestation in the weighting vector, we are able to obtain a 
wide range of particular types of GPOWA operators. Especially, when 0γ = , we get the 
probabilistic aggregation (Merigó 2012a), and if 1γ = , we get the generalized OWA (GOWA) 
operator. When 1λ = δ = , we get the POWA operator (Merigó 2012b). However, the POWA 
and the GPOWA are mainly used to aggregate the data taking the form of exact numerical, 
in what follows, we shall extend them to accommodate the situation in which the input data 
is provided with IFNs.

2. The intuitionistic fuzzy generalized probabilistic OWA operator

In some decision making processes, the decision maker cannot assess the information of 
attributes with crisp numbers because of the vague or imprecise knowledge. At present 
several useful tools have been introduced to depict uncertain information such as fuzzy set 
(Zadeh 1965), intuitionistic fuzzy set (IFS) (Atanassov 1986), linguistic information (Herrera, 
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Herrera-Viedma 2000). Among all the tools, IFS is used more extensively since each element 
in the IFS being characterized by a membership degree and a non-membership degree and 
this leads to IFS is more appropriate to deal with the uncertainty and vagueness. So, in this 
Section, we shall investigate the POWA operator under intuitionistic fuzzy environments 
and introduce the intuitionistic fuzzy generalized probabilistic OWA (IFGPOWA) operator. 

Let Ω  be the set of all IFNs, we give the definition of the IFGPOWA as follows:
Definition 5. Let ( , )( 1,2,..., )i i iv i nα = µ =  be a collection of IFNs, an IFGPOWA operator 

of dimension n is a mapping IFGPOWA: nΩ →Ω  that has an associated weighting vector 

W with [0,1]jw ∈ and
1

1
n

j
j

w
=

=∑  and a probabilistic vector P, with [0,1]ip ∈ and 
1

1
n

i
i

p
=

=∑ ,  

such that:

 
( )

1 1

1 2
1 1

( , ..., ) 1
j i

n n

n j i
j i

IFGPOWA w p
λ δ

λ δ

= =

   
 α α α = γ β + − γ α      
∑ ∑ ,   (11)

where jβ  is the j th largest of the argument iα , [0,1]β∈ , λ and δ are parameters such that 
( ) { }, , 0λ δ∈ −∞ +∞ − .

In the following, we are going to give a simple example of how to aggregate with the 
IFGPOWA operator.

Example 1. Assume the following arguments in an aggregation process: ((0.5, 0.3), (0.4, 
0.5), (0.8, 0.1), (0.6, 0.3)). Assume the following weighting vector W = (0.2, 0.2, 0.3, 0.3) and 
the following probabilistic weighting vector P = (0.3, 0.2, 0.4, 0.1). Note that the probabilistic 
information has a degree of importance of 70% while the weighting vector W a degree of 
30%, and without loss of generality, suppose 2λ = δ = , then

  

( )
( )

1 22 2 2 2

1 22 2 2 2

0.3 0.2 (0.8.0.1) 0.2 (0.6,0.3) 0.3 (0.5,0.3) 0.3 (0.4,0.5)

0.7 0.2 (0.5,0.3) 0.2 (0.4,0.5) 0.3 (0.8.0.1) 0.3 (0.6,0.3) (0.63,0.34).

IFGPOWA = × × + × + × + × +

× × + × + × + × =

From a generalized perspective of the reordering step, we can distinguish between the 
descending IFGPOWA (DIFGPOWA) operator and the ascending IFGPOWA (AIFGPOWA) 
operator by using *

1j n jw w − += , where jw  is the jth weight of the DIFGPOWA and *
1n jw − + 1 

the jth weight of the AIFGPOWA operator.
The IFGPOWA is monotonic, bounded and idempotent. It is monotonic because if 

i i′α ≥ α  for all i, then ( ) ( )1 2 1 2, ,..., , ,...,n nIFGPOWA IFGPOWA ′ ′ ′α α α ≥ α α α . It is bounded 
because the IFGPOWA aggregation is delimitated by the minimum and the maximum. That 
is, ( ) ( ) ( )1Min ,..., Maxi n iIFGPOWAα ≤ α α ≤ α . It is idempotent because if 1α = α  for all i, 

( )1 2, ,..., nIFGPOWA α α α = α .

3. Families of IFGPOWA operators

In the following we analyze different families of IFGPOWA operators. The main advantage 
is that we can consider a wide range of particular cases that can be used in the IFGPOWA 
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operator leading to different results. Thus, we are able to provide a more complete representa-
tion of the aggregation process.

The IFGPOWA operator provides a parameterized family of aggregation operators. Ba-
sically, we distinguish between the families found in the coefficient γ  in the parameters λ  
and δ  and in the weighting vector W. If we analyze the coefficient γ , we get the following:

 – If 1γ = , we get the GIFOWA operator.
 – If 0γ = , we get the intuitionistic fuzzy generalized probabilistic approach.

The more γ approaches to 1, the more importance we give to the GIFOWA operator, 
and vice versa. If we analyze different values of the parameter λ  and δ , we obtain another 
group of particular cases such as the IFPOWA operator, the intuitionistic fuzzy geometric 
probabilistic ordered weighted geometric averaging (IFG-POWGA) operator, the intuition-
istic fuzzy harmonic probabilistic ordered weighted harmonic averaging (IFH-POWHA) 
operator and the intuitionistic fuzzy quadratic probabilistic ordered weighted quadratic 
averaging (IFQ-POWQA) operator.

Remark 1. When 1λ = δ = , the IFGPOWA operator becomes the IFPOWA operator:

 
1 2

1 1
( , ..., ) (1 )

n n

n j j i i
j i

IFPOWA w P
= =

α α α = γ β + − γ α∑ ∑ .  (12)

Note that in this case, if 1jw n=  for all j, we get the intuitionistic fuzzy arithmetic 
probabilistic aggregation (IFA-PA). And if 1ip n=  for all i, we get the intuitionistic fuzzy 
arithmetic OWA (IFA-OWA) operator.

Remark 2. When 0λ→  and 0δ→ , the IFGPOWA operator becomes the intuitionistic 
fuzzy geometric probabilistic ordered weighted geometric averaging (IFG-POWGA) operator.

 
1 2

1 1
( , ..., ) (1 )j i

n n

n j i
j i

IFGPOWGA w Pβ α

= =
α α α = γ + − γ∏ ∏ . (13)

Note that if 1jw n=  for all j , we get the intuitionistic fuzzy geometric probabilistic ge-
ometric aggregation (IFG-PGA). Note also that if 1ip n=  for all i  we get the intuitionistic 
fuzzy the geometric probability OWGA (IFG-OWGA) operator.

Remark 3. When 1λ = δ = − , we get the intuitionistic fuzzy harmonic probabilistic ordered 
weighted harmonic averaging (IFH-POWHA) operator:

 

1 2

1 1

1 1( , ..., ) (1 )n n n
j i

j ij j

IFHPOWHA
w P

= =

α α α = γ + − γ

β α∑ ∑
.  (14)

If 1jw n=  for all j, we get the intuitionistic fuzzy harmonic probabilistic harmonic 
aggregation (IFH-PHA). Note also that if 1ip n=  for all i, we get the intuitionistic fuzzy 
harmonic probability OWHA (IFH-OWHA) operator. 

Remark 4. When 2λ = δ = , we get the intuitionistic fuzzy quadratic probabilistic ordered 
weighted quadratic averaging (IFQ-POWQA) operator:

 

1 2 1 2
2 2

1 2
1 1

( , ..., ) (1 )
j i

n n

n j i
j i

IFQPOWQA w P
= =

   
 α α α = γ β + − γ α      
∑ ∑ .  (15)
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Note that if 1jw n=  for all j, we get the intuitionistic fuzzy quadratic probabilistic quad-
ratic aggregation (IFQ-PQA). Note also that if 1ip n=  for all i, we get the intuitionistic fuzzy 
quadratic probability OWQA (IFQ-OWQA)operator.

Remark 5. When 3λ = δ = , we get the intuitionistic fuzzy cubic probabilistic ordered 
weighted cubic averaging (IFC-POWCA) operator.

 

1 3 1 3
3 3

1 2
1 1

( , ..., ) (1 )
j i

n n

n j i
j i

IFCPOWCA w P
= =

   
 α α α = γ β + − γ α      
∑ ∑ .   (16)

Note that if 1jw n=  for all j, we get the intuitionistic fuzzy cubic probabilistic cubic 
aggregation (IFC-PCA). And if 1ip n=  for all i, we get the intuitionistic fuzzy cubic prob-
ability OWCA (IFC-POWCA) operator.

Remark 6. When λ→∞  and δ→∞ , we get the maximum.
Remark 7. When λ→−∞  and δ→−∞ , we get the minimum.
Remark 8. Moreover, we can use different values in λ and δ . For example, if 2λ =  

and 3δ = , we form the intuitionistic fuzzy cubic probabilistic ordered weighted quadratic 
averaging (IFC-POWQA) operator:

 

1 2 1 3
2 3

1 2
1 1

( , ..., ) (1 )
j i

n n

n j i
j i

IFCPOWQA w w
= =

   
 α α α = γ β + − γ α      
∑ ∑ .   (17)

Remark 9. If we analyse the weighting vector, then, we find the following cases:
 – The intuitionistic fuzzy probabilistic maximum ( 1 1w = and 0jw = , for all 1j ≠ ).
 – The intuitionistic fuzzy probabilistic minimum ( 1nw = and 0jw = , for all j n≠ ).
 – The intuitionistic fuzzy generalized mean (IFGM) ( 1jw n=  and 1ip n= for all ,i j ).
 – The step-IFGPOWA operator ( 1kw =  and 0jw = , for all j k≠ ).
 – The centered-IFGPOWA operator (if it is symmetric, strongly decaying from the center 

to the maximum and the minimum, and inclusive).

 – The olympic-IFGPOWA operator ( 1 0nw w= =  and for all others 1 ( 2)jw n= − ).

 – The median-IFGPOWA operator (if n is odd we assign ( 1) 2 1nw + =  and 0jw =  for all 
others. If n is even, then we assign 2 ( 2) 1 0.5n nw w += = ).

Remark 10. We could develop a lot of other families of IFGPOWA weights in a similar 
way as it has been developed in a lot of studies (Merigó, Casanovas 2011a, 2011b; Merigó, 
Gil-Lafuente 2010; Merigó et al. 2012; Xu, Chen 2008; Zeng, Su 2011).

4. An approach to group decision making based on the IFGPOWA operator

The IFGPOWA operator can be applied in a wide range of disciplines because all the studies 
that use the probability or the OWA operator can be revised and extended with this new 
approach. The reason is that we can always reduce it to the classical case where we only 
use probabilities or OWA operators. Thus, all disciplines that use these types of statistical 
techniques can be revised with this new approach (Yager 1996, 2006). For example, we 
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could mention statistics, economics, engineering, business, physics, biology, chemistry and 
medicine. In this paper, we consider a group decision making application in the selection 
of investments. The process to follow in the selection of investments with the IFGPOWA 
operator in group decision making can be summarized as follows.

Step 1. Let { }1 2, ,..., mA A A A=  be a discrete set of alternatives, and { }1 2, ,..., nG G G G=

be the set of attributes. Let { }1 2, ,..., tE e e e=  be the set of decision makers (whose weight 

vector is ( )1 2, ,..., tV v v v= , 0kv ≥ , 
1

1
t

k
k

v
=

=∑ ). Each decision maker provides his own payoff 

matrix ( )( )k
ij m n×

α . 

Step 2. Use the intuitionistic fuzzy weighted averaging (IFWA) operator (Xu 2007a) to 
aggregate the information of the decision makers E by using the weighting vector V. The 
result is the fuzzy collective payoff matrix ( )ij m n×

α , where:

 (1) (2) ( )
1 2

k
ij kij ij ijv v vα = α ⊕ α ⊕ ⊕ α , 1,2,...,i m= , 1,2,...,j n= . (18)

Step 3. Calculate the weighting vector W and probabilistic vector P to be used in the 

aggregation. Note that 1 2( , ,..., )nW w w w=  such that 1 1n
jj w= =∑  and [0,1]jw ∈ and 

1 2( , ,..., )nP p p p=  such that 1 1n
ii p= =∑  and [0,1]ip ∈ .

Step 4. Calculate the aggregated results using the IFGPOWA operator explained in 
Eq. (11). Note that it is possible to consider a wide range of IFGPOWA operators, such as 
those described in Sections 4.

Step 5. Adopt decisions according to the results found in the previous steps. Select the 
alternative/s that provides the best result/s. Moreover, establish an ordering or a ranking of 
the alternatives from the most to the least preferred alternative to enable consideration of 
more than one selection.

5. Illustrative example

In the following, we are going to develop a numerical example of the new approach. We 
analyze the results obtained by using different types of IFGPOWA operators and we see that 
depending on the aggregation operator used, the decision may be different.

Assume that a company wants to invest some money in another company. After analyzing 
the information, the board of directors considers six possible investments to follow:

(1) Invest in a chemical company called 1A ;
(2) Invest in a food company called 2A ;
(3) Invest in a computer company called 3A ;
(4) Invest in a car company called 4A ;
(5) Invest in a furniture company called 5A ;
(6) Invest in a pharmaceutical company called 6A .
In order to evaluate these investments, the group of experts considers that the key factor 

is the economic situation of the next year. Then, depending on the situation, the expected 
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benefits for the company will be different. The experts have considered five possible situations 
for the next year: 

(1) 1G – Negative growth rate;
(2) 2G – Growth rate near 0;
(3) 3G – Low growth rate;
(4) 4G – Medium growth rate;
(5) 5G – High growth rate.
The group of company experts is constituted by three persons, each offering their own 

opinions regarding the results obtained with each investment. As the environment is very 
uncertain, the group of experts in the company needs to assess the available information by 
using IFNs. The expected results given in the form of IFNs depending on the situation and 
the alternative are shown in Tables 1–3.

Table 1. Intuitionistic fuzzy payoff matrix – Expert 1

G1 G2 G3 G4 G5
A1 (0.5,0.4) (0.5,0.3) (0.2,0.6) (0.4,0.4) (0.5,0.4)
A2 (0.7,0.3) (0.7,0.3) (0.6,0.2) (0.6,0.2) (0.7,0.2)
A3 (0.5,0.4) (0.6,0.4) (0.6,0.2) (0.5,0.3) (0.6,0.3)
A4 (0.7,0.2) (0.7,0.2) (0.4,0.2) (0.5,0.2) (0.4,0.4)
A5 (0.4,0.3) (0.5,0.2) (0.4,0.5) (0.4,0.6) (0.3,0.4)
A6 (0.6,0.2) (0.4,0.3) (0.7,0.3) (0.6,0.3) (0.5,0.4)

Table 2. Intuitionistic fuzzy payoff matrix – Expert 2

G1 G2 G3 G4 G5
A1 (0.5,0.5) (0.8,0.2) (0.6,0.2) (0.7,0.2) (0.6,0.3)
A2 (0.4,0.5) (0.6,0.2) (0.7,0.3) (0.3,0.4) (0.7,0.1)
A3 (0.5,0.2) (0.7,0.2) (0.8,0.1) (0.7,0.1) (0.3,0.4)
A4 (0.6,0.2) (0.3,0.4) (0.5,0.5) (0.6,0.2) (0.4,0.5)
A5 (0.7,0.1) (0.5,0.1) (0.3,0.2) (0.4,0.3) (0.7,0.2)
A6 (0.7,0.3) (0.8,0.2) (0.6,0.3) (0.6,0.2) (0.5,0.3)

Table 3. Intuitionistic fuzzy payoff matrix – Expert 3

G1 G2 G3 G4 G5
A1 (0.5,0.3) (0.7,0.2) (0.5,0.3) (0.5,0.4) (0.7,0.3)
A2 (0.6,0.3) (0.6,0.2) (0.7,0.2) (0.8,0.1) (0.5,0.4)
A3 (0.7,0.3) (0.4,0.4) (0.6,0.3) (0.4,0.2) (0.6,0.3)
A4 (0.4,0.4) (0.6,0.2) (0.4,0.2) (0.7,0.2) (0.6,0.2)
A5 (0.7,0.2) (0.7,0.3) (0.6,0.1) (0.7,0.3) (0.5,0.3)
A6 (0.5,0.2) (0.5,0.3) (0.8,0.2) (0.6,0.1) (0.6,0.2)
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With this information, we can make an aggregation to make a decision. First, we aggre-
gate the information of the three experts to obtain a unified payoff matrix. We use the IFWA 
operator to obtain this matrix while assuming that. The results are shown in Table 4.

In this problem, the experts of the company find probabilistic information given as 
follows: and. Moreover, the policy of the company is to be very pessimistic whenever the 
future results are not clear. Therefore, they decide to manipulate the probabilities by using 
the following OWA weighting vector. It is now possible to develop different methods 
based on the IFGPOWA operator for the selection of an investment. In this example, we 
consider the IFPOWA, the IFA-PA, the IFA-OWA, the IFQ-OWQA, the IFQ-PQA and 
the IFQ-POWQA operator. The results are shown in Table 5. 

As we can see, depending on the particular type of IFGPOWA operator used, the optimal 
choice is different. Therefore, it is interesting to establish an ordering of the investments for 
each particular case, then, we get the results shown in Table 6. Note that the first alternative 
in each ordering is the optimal choice.

Table 4. Collective results

G1 G2 G3 G4 G5
A1 (0.50,0.38) (0.69,0.26) (0.46,0.33) (0.55,0.32) (0.62,0.33)
A2 (0.59,0.35) (0.63,0.23) (0.67,0.23) (0.64,0.19) (0.63,0.21)
A3 (0.59,0.29) (0.59,0.32) (0.68,0.20) (0.54,0.18) (0.53,0.33)
A4 (0.57,0.26) (0.57,0.25) (0.43,0.26) (0.62,0.20) (0.49,0.32)
A5 (0.63,0.18) (0.59,0.19) (0.47,0.20) (0.49,0.24) (0.61,0.29)
A6 (0.60,0.26) (0.60,0.27) (0.72,0.26) (0.60,0.17) (0.54,0.22)

Table 5. Aggregated results

IFPOWA IFA-PA IFA-OWA IFQ-OWQA IFQ-PQA IFQ-
POWQA

A1 (0.560,0.327) (0.575,0.320) (0.558,0.328) (0.683,0.242) (0.686,0.220) (0.680,0.227)
A2 (0.627,0.253) (0.630,0.247) (0.630,0.243) (0.705,0.197) (0.707,0.191) (0.707,0.189)
A3 (0.587,0.267) (0.596,0.263) (0.580,0.260) (0.692,0.203) (0.695,0.198) (0.687,0.198)
A4 (0.533,0.261) (0.542,0.256) (0.532,0.261) (0.667,0.198) (0.670,0.193) (0.666,0.198)
A5 (0.561,0.213) (0.569,0.208) (0.554,0.222) (0.681,0.172) (0.684,0.167) (0.675,0.179)
A6 (0.610,0.242) (0.620,0.241) (0.601,0.233) (0.703,0.194) (0.705,0.189) (0.700,0.187)

Table 6. Ordering of the strategies

Ordering Ordering

IFPOWA 2 6 5 3 4 1A A A A A A     IFQ-OWQA 6 2 3 4 1 5A A A A A A    

IFA-PA 2 6 5 3 4 1A A A A A A     IFQ-PQA 5 6 2 4 1 3A A A A A A    

IFA-OWA 2 6 5 3 4 1A A A A A A     IFQ-POWQA 2 6 5 3 4 1A A A A A A    
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As we can see, depending on the aggregation operators used, the ordering of the strategies 
is different. Therefore, the decision about which investment to select may be also different. Note 
that in this specific problem, we see that seems to be the optimal choice for most of the cases. 

Conclusions

We have introduced a new model that unifies the probability and the OWA operator in the same 
formulation considering the degree of importance that each concept has in the analysis. We have 
called it the IFGPOWA operator. We have seen that it is able to deal with uncertain environments 
that can be assessed with IFNs providing a more complete representation of the decision problem. 
Furthermore, we have seen that this model uses generalized means providing a more robust 
formulation of the aggregation operator that includes a wide range of aggregation operators 
such as the IFPOWA, the IFPWA, the IFG-POWGA, the IFQ-POWQA, and a lot of other cases.

We have developed an application of the new approach in a financial decision making 
problem. We have studied an investment selection problem where a company is looking 
for its optimal investment. The main advantage of the IFGPOWA operator in this type of 
problems is that it is possible to consider a wide range of intuitionistic fuzzy aggregation 
operators. We have seen that depending on the particular type of IFGPOWA operator used, 
the results may be different.

In future research, we expect to develop further extensions to this approach by using 
more general formulations and considering other characteristics in the problem such as 
the use of order-inducing variables and distance measures. We will also consider other 
decision making applications such as human resource management, investment selection, 
and product management.
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