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Abstract. Uncertainty and ambiguity are prevalent in daily decision-making processes. By closely 
integrating the prospect theory and the intuitionistic fuzzy sets, this paper develops a generalized 
framework of decision-making. Theoretically, we first use a four-step editing phase and a valua-
tion phase to generate two key functions: the value function and the weighting function. We then 
demonstrate how to compute the intuitionistic fuzzy prospect values as the reference for decision-
making. Empirically, experiments are conducted to examine how well the patterns of subjects’ 
decision-making, under an intuitionistic fuzzy environment, comfort to the framework proposed 
in this paper. The experiments reveal that the ways that subjects choose to deal with information 
are consistent with what are implied by the fuzzy logic of our framework in various scenarios. The 
experimental results show that (i) the shapes of the value function and the weighting function in 
our framework are in line with those of prospect theory, (ii) people are less risk averse when mak-
ing decisions under an intuitionistic fuzzy environment than under uncertainty, and (iii) with the 
presence of ambiguity, people systemically underweight the probabilities of the outcomes with gains 
as well as those of the outcomes with losses. This paper illustrates that our methodology can elicit 
prospects not only under uncertainty but also under ambiguity, and the decision-making patterns 
can be fully captured by parameters in the value function and the weighting function.  As our ap-
proach generalizes to the case of ambiguity, the prospect theory can therefore be viewed as a special 
case in our framework. 
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Introduction

Von Neumann and Morgenstern (1953) develop the expected utility theory (Henceforth 
EUT), a classic model of rational choice, to illustrate how individuals make decisions under 
uncertainty. Nonetheless, the Allais paradox, a choice problem designed in Allais  (1953), 
shows an inconsistency of actual observed choices with the predictions of EUT. EUT cannot 
fully explain how individuals make decisions in certain risky situations, especially when there 
is fuzzy information, nor can it predict what decisions will be made in such circumstances. 
Furthermore, EUT cannot explain how framing effect affects individual decisions, or why 
individuals show risk-seeking or risk-averse behaviors in different circumstances. 

To address the above issues, Kahneman and Tversky (1979) develop the prospect theory 
(Henceforth PT) as an alternative method to explain the choices of people under risk. Kahne-
man and Tversky points out that the choices made by individuals in risky situations show 
several characteristics that are inconsistent with EUT, such as certainty effect, isolation effect 
and reflection effect. These three effects are the main results in PT. Certainty effect means 
that individuals usually underweight uncertain outcomes in comparison with outcomes that 
are certain, which leads to risk-aversion in choices involving certain gains and risk-seeking 
in choices involving certain losses. Isolation effect implies that when facing choices with dif-
ferent prospects, individuals usually disregard components that are common to all prospects 
under consideration. This effect will cause the framing of a prospect to change the choice that 
the individual decision-maker makes. Reflection effect means that the choices with negative 
prospects are mirror images of those ones with positive prospects. Based on the value func-
tion and the weight function, we can explain why there exists a framing effect in decision-
making. As a descriptive model, PT is an important advance in the study of decision-making 
under risk. It has some significant advantages over the normative EUT model, especially in 
the study of bounded rationality (Newman, 1980; Payne, Laughhunn & Crum, 1984; Tversky 
& Kahneman, 1986; Edwards, 1996). The main conclusions of PT have been verified in a 
lot of literature, including Leclerc, Schmitt, and Dube (1995), Sebora and Cornwall (1995), 
Mayer (1995), and Rieger, Wang, and Hens (2015).

Many researchers reexamine or extend PT in different ways. For example, Tversky and 
Fox (1995) discuss the relationship between probability judgments and decision weights, and 
distinguish relative sensitivity from ambiguity aversion. González and Wu (1999) analyze two 
characteristics of weighting function, discriminability and attractiveness, and construct a new 
form of the weighting function. M. Levy and H. Levy (2002) develop an improved form of 
the value function using the PT and prospect stochastic dominance. 

Accurate information, however, is often unavailable due to missing data or the lack of 
preciseness when collecting data. Outliers or inaccurate numbers may induce people to make 
bad decisions. It turns out that information quality accounts for the evaluation of our behav-
ior. When it is hard to guarantee the information accuracy, it is wise to interpret and turn 
information with uncertainties and ambiguities into available data. For example, we can use 
fuzzy information to instruct our decision-making process.

Zadeh (1965) introduces fuzzy sets and fuzzy logic and defines a fuzzy set as a set of 
membership function, which assigns a grade of membership ranging between zero and one 
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to each object. His framework has been widely applied in decision-making under a fuzzy 
environment. Atanassov (1986) extends the fuzzy set to the membership function of the 
intuitionistic fuzzy set (IFS), which is characterized by a membership function, a non-mem-
bership function and a hesitancy function. Atanassov and Gargov (1989) develop the concept 
of interval-valued intuitionistic fuzzy set (IVIFS) based on IFS. IFS and IVIFS can describe 
the fuzzy characteristics of events more comprehensively and they are more effective in deal-
ing with vagueness and uncertainty. Liu and Wang (2007) propose new methods for solving 
multi-criteria decision-making problems under a fuzzy environment. Xu and Xia (2011) 
define a series of operators of intuitionistic fuzzy values, which aggregate the intuitionistic 
fuzzy information and simplify the results of information analysis. 

There has been a large literature integrating PT and fuzzy theory into their decision-
making approaches. Using the trapezoidal fuzzy numbers, Wang and Zhang (2009) propose 
a PT-based multi-attribute fuzzy decision-making method, which enables people to make 
decisions by ranking the score values of the trapezoidal fuzzy numbers. It is implied that 
the choice of 2a  is a promising one. Liu, Jin, Zhang, Su, and Wang (2011) introduce a PT-
based decision-making framework to deal with interval probability and uncertain linguistic 
variables expressed as triangular fuzzy numbers. Wang and Nie (2012) integrate the value 
function in PT into the score function of IFS to increase the flexibility of decision-making 
method. Li, Liu, and Zhu (2012) develop a dynamic stochastic decision-making method 
and  an intuitionistic fuzzy stochastic multi-attribute decision-making method based on PT. 
Krohling and Souza (2012) apply trapezoidal fuzzy number in multi-criteria decision making 
problems. Li (2013) develops an intuitionistic trapezoidal fuzzy multi-attribute decision-
making method based on the cumulative PT and the Choquet integral. Li and Chen (2014) 
extend the TOPSIS (technique for order preference by similarity to an ideal solution) meth-
od, based on PT and the trapezoidal intuitionistic fuzzy numbers for group decision-making. 
Andrade, González, Fernández, and Gutiérrez (2014) revisit an experiment examining PT 
using the concept of Compensatory Fuzzy Logic. Meng, Tan, and Chen (2015) introduce a 
method for multi-attribute decision-making with Atanassov᾽s interval-valued intuitionistic 
fuzzy information based on PT. Recently, Gao and Liu (2016) introduce a new prospect pro-
jection method for interval-valued intuitionistic fuzzy numbers to deal with multi-criteria 
decision-making problems. Li, Yang, and Wei (2017) construct a new score function for 
intuitionistic fuzzy numbers, and aggregate the decision-making information in different 
natural states according to PT. 

In summary, the main contributions, of the existing works that integrate PT and fuzzy 
theory into their decision-making approaches, mainly lie in the following three aspects: a) 
providing alternative explanations to the Allais paradox; b) extending the application of value 
functions to the analysis of decision-making under a fuzzy environment; c) enriching the 
frameworks for decision-making under a fuzzy environment. One of the major limitations of 
the existing frameworks is that each of them only focuses on certain specific fuzzy attributes 
or operators of decision-making, such as the intuitionistic trapezoidal fuzzy multi-attribute 
(Krohling & Souza, 2012; Li, 2013). To the best of our knowledge, there is no literature 
that provides a generalized decision-making framework based on PT under an intuitionis-
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tic fuzzy environment, and also establishes a quantitative measurement of decision making 
procedure. Moreover, there is a lack of literature introducing a unified framework to explain 
the differences between the decision-making without fuzzy information and that with fuzzy 
information. 

To address the above problem, we firstly develop a generalized decision-making frame-
work based on PT under an intuitionistic fuzzy environment, by closely integrating the PT 
and the intuitionistic fuzzy sets into our framework. We fully consider the incompleteness 
of information, which inspires the idea of intuitionistic fuzzy approach to edit incomplete 
information. It is simple but efficient to integrate fuzzy information not only into value func-
tion but also into weighting function in our decision-making procedure. If the informa-
tion is complete, by setting the indeterminacy degree in intuitionistic fuzzy sets to zero, our 
decision-making framework degenerates to a traditional PT decision-making method. Thus, 
we extend PT to a more flexible fuzzy environment setting. 

Secondly, our decision-making framework applies PT in an intuitionistic fuzzy environ-
ment and demonstrates how to compute the intuitionistic fuzzy prospect value (Henceforth 
IFPV). In our framework, the IFPV is the reference value for decision-making in an intu-
itionistic fuzzy environment, and the option with the highest IFPV is the most desirable 
choice for the decision makers. It is convenient to calculate by aggregating the weights of 
the given fuzzy information and the potential values of different choices plus a fuzzy punish 
terms. We will directly rank the desirability of available choices by calculating their corre-
sponding IFPVs. Given the validity and the applicability of our framework, we can always 
describe a decision-making event by a set of values incorporating the fuzzy information.
And then we can calculate and rank the IFPVs of available choices, then decide which is the 
most promising. The analysis of the experimental results shows that our decision-making 
framework is illuminating and effective under an intuitionistic fuzzy environment. This paper 
elaborates a four-step editing phase to process the information and a valuation phase with 
two key functions to facilitate its application under an intuitionistic fuzzy environment. Then 
we adapt the value function and the weighting function in our framework to an intuitionistic 
fuzzy environment and show that their shapes are in line with those of PT. Our framework is 
not only an extension of PT but also an application of the theory of intuitionistic fuzzy sets 
in a more general environment.

Thirdly, the experiment reveals surprisingly that people are less risk averse when making 
decisions under an intuitionistic fuzzy environment than under uncertainty. When adding 
fuzzy information for the event, people tend to be risk seeking on the fuzzy part. However, 
people tend to underestimate the events with low possibilities, which is in line with the 
predictions of PT.

The remainder of the paper is organized as follows: Section 2 discusses those theories 
closely related to our framework and presents a series of basic formulas and properties of 
these theories. Section 3 extends PT to construct a decision-making framework under an 
intuitionistic fuzzy environment and describes the qualitative attributes of the framework. 
Section 4 carries out experiments to test our framework. Section 5 makes some discussions 
and concludes the paper.
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1. Preliminaries

1.1. Prospect theory

Tversky and Kahneman (1992) develop a two-phase model for simple prospects with mon-
etary outcomes. The first is the editing phase and the second is the evaluation phase. During 
the editing phase, there are major sequential operations: coding, combination, segregation, 
and cancellation. Coding involves the setting of a reference point by the decision maker, from 
which all gains and/or losses are measured. Combination consists of aggregation of probabili-
ties associated with identical outcomes. Segregation involves separating the risk components 
of a prospect from its risk-free components. Cancellation involves discarding all the common 
components of the prospects.

The main features of the evaluation phase of PT lie in the following aspects: 
1) People make decisions based on changes in wealth rather than on the total wealth. 
2) The value function ( )v x , a modification of expected utility function, is S-shaped. x 

denotes gains or losses. ( ) 0v x′ >  for all 0x ≠ , ( ) 0v x′′ >  for x < 0, and ( ) 0v x′′ <  for 
x > 0. Here, we take 0 as a reference point. There are gains if x > 0, and loses if x < 0. 
It is steeper for the part of losses than for the part of gains (see Figure 1(a)).

3) The weighting function ( )pp , that associates the decision weight with the probability 
p, is a subjective weight of an event. Here, probabilities do not objectively affect the 
result, but the result is subjectively influenced by the function ( )pp  defined by the 
decision maker, ( ) 0p′p > , ( ) 0p′′p > , ( )0 0.1p = , and ( )1 0.9p =  (see Figure 1(b)). 

4) The framing of alternative outcomes may strongly affect subjects’ choices (Tversky & 
Kahneman, 1986).

When it is a binary decision, the expected value is an individual’s subjective val-
ue, which is denoted by ( ) ( ) ( ) ( ) ( ), ; ,V x p y q v x p v y q= p + p , where x, y stand for gains 
or losses respectively, p, q are the corresponding probabilities. When it is a multiple-
option decision, an individual’s subjective value is the aggregation of weighted values: 

( )1 1 1 1,..., , ,..., ; ,..., , ,...,m m n nV x x p p y y q q = ( ) ( )1

m
i ii

v x p
=

p∑ + ( ) ( )1

n
j jj

v y q
=

p∑ , where 

1,..., mx x  represent the gains, 1,..., ny y  stand for the loss, 1,..., mp p  and 1,..., nq q  are their 
corresponding probabilities. 

1.2. The theory of intuitionistic fuzzy sets

In order to encode the information, we first introduce the intuitionistic fuzzy set (IFS). Let X 
be a set of consequences. Atanassov (1986) defines the IFS as: ( ) ( ){ }, ,A AA x x x x X= m s ∈

 
, 

which assigns to each consequence x a membership degree ( )A xm  and a non-mem-
bership degree ( )A xs , with the condition: ( ) ( )0 1A Ax x≤ m + s ≤ , x X∈ . In addition, 

( ) ( ) ( )1A A Ax x xp = −m −s  is called the indeterminacy degree of x to A. For for the sake 
of simplicity, we use the intuitionistic fuzzy value (IFV) (Xu & Cai, 2012) a to denote 
each component of the IFS: ( ) ( )( ),x xa aa = m s . Here, ( ) 0,1xam ∈   , ( ) 0,1xas ∈    and 

( ) ( ) 1x xa am + s ≤  . Additionally, ( ) ( ) ( )1x x xa a ap = −m −s . There is a specific meaning for 
each IFV. For example, if ( )0.5,0.3a = , then it can be interpreted as “10-members voting in 
favor of resolutions 5, 3 objections, and 2 abstentions.” 
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Here we introduce some basic operational laws of IFVs (Xu & Cai, 2012), which 
will be used when coding the information. Suppose ( ),a aa = m s , ( )1 11 ,a aa = m s  and 

( )2 22 ,a aa = m s  are three IFVs, then:

(1) ( ),a aa = m s ;

(2) ( )1 2 1 2 1 21 2 ,a a a a a aa ⊕a = m +m −m m s s ;

(3) ( )1 2 1 2 1 21 2 ,a a a a a aa ⊗a = m m s +s −s s ;

(4) ( )( )1 1 , , 0l l
a ala = − −m s l > ;

(5) ( )( ),1 1 , 0ll l
a aa = m − −s l > .

Figure 1. The value function and the weighting function: a – the value function;  
b – the weighting function
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Let ( )1 2 1 2 1 2
,pS a a a a a am m = m +m −m m  and ( )1 2 1 2

,pT a a a as s = s s , then the operational 
law (2) can be rewritten as:

 
( ) ( )( )1 2 1 21 2 , , ,p pS Ta a a aa ⊕a = m m s s .   (1)

Let ( )1 2 1 2 1 2
,pS a a a a a as s = s + s −s s and ( )1 2 1 2

,pT a a a am m = m m , then the operational 
law (3) can be rewritten as:
  ( ) ( )( )1 2 1 21 2 , , ,p pT Sa a a aa ⊗a = m m s s ,  (2) 

where ( )1 2 1 2 1 2,pS x x x x x x= + −  is a well-known t-conorm, and ( )1 2 1 2,pT y y y y=  is a well- 
known t-norm. Both satisfy the properties: boundary, monotonicity, commutativity and as-
sociativity. These operational laws are vital in our framework. The economic implications of 
these operational laws will be explained later.

In many real-world decision-making problems, the values of the membership function 
and the non-membership function in an IFS are difficult to be expressed as specific num-
bers. Instead, we can only roughly know the ranges of their values. To address this problem, 
Atanassov and Gargov (1989) extend the concept of IFS to interval-valued intuitionistic fuzzy 
set (IVIFS), and define some basic operational laws of IVIFSs. Xu (2007) defines the concept 
of interval-valued intuitionistic fuzzy value (IVIFV) and specify some basic operational laws 
of IVIFVs. He puts forward the interval-valued intuitionistic fuzzy weighted average opera-
tor and the interval-valued intuitionistic fuzzy weighted geometric operator, and defines the 
score function and the accuracy function of IVIFVs. All these aggregation techniques for 
interval-valued intuitionistic fuzzy information are the generalizations of the above intuition-
istic fuzzy aggregation techniques.

Let X  be a fixed set. Then ( ) ( ){ }, ,A AA x x x x X= m ν ∈
 



  is called an interval-valued 
intuitionistic fuzzy set (IVIFS), where ( ) 0,1A xm ⊂   

  and ( ) 0,1A xν ⊂   

 , x X∈ , with the 
condition: ( ) ( )sup sup 1,A Ax x x Xm + ν ≤ ∈

 

 . We must note that ( )A xm


  and ( )A xν


  mean the 
interval-valued membership degree and the interval-valued non-membership degree of x in 
A repectively. Clearly, if ( ) ( )inf supA Ax xm = m

 

   and ( ) ( )inf supA Ax xν = ν
 

  , then the IVIFS 
A  can be reduced to a traditional IFS.

For convenience, an IVIFV is generally simplified as (Xu, 2007): ( ), , ,a b c da =        , where 
, 0,1a b ⊂       , , 0,1c d ⊂       , 1b d+ ≤ . Obviously, ( )1,1 , 0,0+a =         is the largest IVIFV, 

and ( )0,0 , 1,1−a =         is the smallest IVIFV. In particular, if ( )1 1 1 1 1, , ,a b c da =         and 

( )2 2 2 2 2, , ,a b c da =         are IVIFVs, then 1 2a = a   if and only if 1 2a a= , 1 2b b= , 1 2c c=  and 
1 2d d= .

Based on the definition of IVIFV, it is easy to derive the following basic operational rules 
of IVIFVs:

(1) ( ), , ,c d a ba =        ;

(2) ( )1 2 1 2 1 2 1 2 1 2 1 2 1 2, , ,a a a a b b b b c c d da ⊕a = + − + −        ;

(3) ( )1 2 1 2 1 2 1 2 1 2 1 2 1 2, , ,a a b b c c c c d d d da ⊗a = + − + −        ;

(4) ( ) ( )1 1 ,1 1 , , , 0a b c dl l l l    la = − − − − l >     
 ;

(5) ( ), , 1 (1 ) ,1 (1 ) , 0a b c dl l l l l   a = − − − − l >    .
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2. Constructing the intuitionistic fuzzy decision-making  
framework based on Prospect Theory

Many existing works focus on the events without ambiguous information. For instance, a 
question related to PT is: 

Which of the following do you prefer? 
A) 50% chance to win $1000. 50% chance to win nothing; B) $450 for sure. 
In reality, however, we may not be able to know the chance of winning and/or losing 

precisely, instead, we merely have fuzzy information about the probabilities. Sometimes, the 
conceived probability of an event may be just an arbitrary method to describe the uncer-
tainty. In addition, we may not be able to pinpoint the exact value of actual gains or losses. 
For example, after evaluating an asset, we find that the return could be about $1,000. Here, 
how to quantify “about” is sometimes very important in quantitative analysis. We may have a 
piece of information indicating that the return on your asset is approximately $995 to $1,005. 
This is one way to express fuzzy information. In this paper, we will present a framework to 
express fuzzy information in a proper way. In the field of intuitionistic fuzzy sets, Xu and Xia 
(2011) use intuitionistic fuzzy information to describe the uncertainty of events. 

In this paper, we aim to develop a decision-making framework that applies PT under 
an intuitionistic fuzzy environment. We use fuzzy method to encode information sets, and 
denote the intuitionistic fuzzy sets as independent variables in constructing our decision-
making framework. We modify the value function and the weighting function in PT to fit 
for the decision-making environment with fuzzy information. 

The selection analysis in our framework involves two phases: the editing phase and the 
evaluation phase. In the editing phase, we use the definitions and operators of the intuition-
istic fuzzy sets in Xu and Cai (2012) to interpret contingencies and outcomes. Then, in the 
valuation phase, the decision makers evaluate the prospect values of different choices based 
on the aggregation functions under an intuitionistic fuzzy environment.

2.1. Editing phase

In the editing phase, we organize and re-formulate the options, to simplify subsequent evalu-
ation and decision-making. The editing phase involves the following four steps: coding, com-
bination, scoring and correction. 

2.1.1. Coding 

Based on this intuitionistic fuzzy norm, we interpret fuzzy information more specifically in 
an investment event. First, we take IFVs as an example. Let Z be a finite set of natural states, 
the subsets of Z are called events. In this paper, X is a set of consequences or outcomes mea-
sured by monetary payoffs. We assume that 0 is included in X as a neutral outcome. While 
all other x X∈  are either gains or losses, expressed as positive or negative numbers respec-
tively. Then the prospect f is a binary function. For each state iz Z∈ , where m i n− ≤ ≤ , and 
an IFV ai, there is a consequence ( ),i i if z xa = . Here we arrange ix X∈  in a monotonically 
increasing order, i.e., i jx x> iff i j> . 
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Here, how do we get ai, the fuzzy degree of the event zi? We introduce a scoring system 
to represent ai, which could be based on some the evaluation of an expert. In making invest-
ment decisions, we often need to consider the information from various sources. The acquisi-
tion process of ai is described in Section 3.1.4. For the sake of simplicity, a prospect f can be 
expressed as a sequence of a pair ( ),i ix a , which means the consequence xi has characteristic 
of ai, where ( ) ( )( ) ( ), ,i i i i ix xa aa = m s = m s . Thus, the prospect ( ),i i if x= a  describes the 
situation where the outcome xi will occur at about probability of mi, and will not occur at 
about probability of ai. In addition, the outcome xi has a hesitance value of pi. It shows the 
fuzzy degree of the outcome, which means that it may occur or may not occur without any 
specific information. Here, 0 1i≤ m ≤ , 0 1i≤ s ≤ , and 0 1i i≤ m + s ≤ , ,...,i m n= − . 

2.1.2. Combination

Now we define the combinatorial principle in the case of fuzzy information. There is a series 
of fuzzy events or a series of fuzzy event attributions zi. If they have an identical consequence, 
we can combine them to simplify the decision-making. At the same time, we have the fuzzy 
numbers for all the events or attributions ai, where m i n− ≤ ≤ . Now we are keen to find out 
how to describe the aggregate consequence or attribution by IFVs. In the process of decision-
making, we only need to focus on the final consequence, while other events can be negligible. 
It is therefore necessary to incorporate relevant information. After coding all the events, some 
information can be aggregated to simplify the decision-making process. 

In combination, the addition principle is the basic principle. For example, if we have 
a ways of doing something and b ways of doing another thing. If we cannot choose more 
than one way at the same time, then we need to choose an action from the set consist-
ing of a + b ways. According to the set theory, the size of the union sets is the sum of all 
finite sets, which are pairwise disjoint sets. For the IFS, we can apply this rule as well. If 
all the events are independent, the sum of the events ( ,...., )iz i m n= −  is represented by 

1

n

i m m n
i m

− − +
=−

a =a ⊕a ⊕ ⊕a∑  . An aggregate event or attribution is still represented by an 

IFV. It means that each of these fuzzy events will take place with the information of 
n

i
i m=−

a∑
 
. 

This is the algorithm for parallel events or attributions. 
However, if the events are correlated and sequential, then we will use the multiplication 

principle to calculate the aggregate contribution. For example, if there are a ways of doing 
something and b ways of doing another thing sequentially, then there are a b⋅  ways of do-
ing both things. Therefore, if the events ( ,..., )iz i m n= −  occur in succession, then we define 

1

n

i m m n
i m

− − +
=−

a = a ⊗a ⊗ ⊗a∏   the fuzzy characteristic as an aggregate event. This is the 

algorithm for series of sequential events or attributions. 
Based on the above addition principle, multiplication principle and scoring system, we 

can check any information of any steps at any point of time. The intuition of the above two 
principles can be illustrated in the following Figure 2.

In summary, addition principle in fuzzy theory implies that if the fuzzy events are paral-
lel, an aggregate event is represented by the sum of individual IFVs. Multiplication principle 
in fuzzy theory means that if the fuzzy events is sequential, an aggregated event is repre-

https://en.wikipedia.org/wiki/Combinatorial_principles
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sented by the product of individual IFVs. For example, there is an engineering project that 
can be accomplished by different ways. We can use the addition principle of fuzzy theory 
to figure out the total success rate of this project. As long as one method is successful, this 
project will be accomplished. Hence, the aggregated success rate is expressed as the sum of 
all fuzzy numbers that define the chance of success for each mode. Multiplication principle 
can be adopted to illustrate many events. For example, there is an investment project with 
many stages, and the success probability for each stage can be expressed as a fuzzy number. 
In this case, the probability of an success rate of an investment project is represented by the 
product of all fuzzy numbers. 

2.1.3. Scoring 

Scoring is an effective way of decision-making. First, we gather as much information as pos-
sible. For example, when considering whether to invest in the stock market, we would like 
to refer to some television programs for stock investment, which often recommend some 
securities or stocks. According to their opinion, we assign a membership score and a non-
membership score between 0 and 1 for each of the securities or stocks, indicating the pros 
and cons. we can then evaluate the information obtained from the television programs and 
assign subjective scores. These scores ai, where 1,2,3...i = , are the intuitionistic fuzzy infor-
mation. This scoring method is also suitable for multi-attribute decision-making. We first 
identify all the attributes of a plan/project to be evaluated and then provide a score for each 
of the attributes to get ai. For different situations, the scoring system works in different ways, 
but we can always obtain the fuzzy information that we need for editing. 

2.1.4. Correction

Following the scoring step, we may find that some scores are not easy to deal with. Therefore, 
we make some corrections to the scores, so that the accuracy can be guaranteed within the 
bounds of an acceptable range. For example, if the original ( )0.999,0.001a = , we can correct 
it as ( )1,0a =  to simplify the information. Moreover, if two events are very closely related, 
we treat them as an event and assign a proper fuzzy number to this event. 

In edition phase, we introduce four steps to edit the regular events or attributions, which 
cannot be calculated in the form of text description. We use numerical consequences and 
IFVs or IVIFVs ( ),i ix a  to represent the information. Before we evaluate events or attribu-

Figure 2. The addition and multiplication principle under fuzzy information:  
a – addition principle in fuzzy theory; b – multiplication principle in fuzzy theory
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tions for decision-making, we can analyze the information in our framework. This method 
can also be applied to multi-attribute decision-making. 

For example, there is a prospect f with two goals. There are three independent ways 
to achieve the first goal, and two tasks should be accomplished sequentially in order to 
achieve the second goal. We denote two goals as z1 and z2, with the consequences x1 and 
x2 respectively. We denote the three ways to achieve first goal by 11 12 13, ,z z z , with the IFVs 

11 12 13, ,a a a  respectively. Two events of the second goal are denoted by z21 and z22, with the 
IFVs a21 and a22 respectively According to the addition principle, z1 has fuzzy information 

11 12 13 1=a ⊕a ⊕a a . Then the second goal z2 has fuzzy information 21 22 2=a ⊗a a . There-
fore, the prospect is described as ( )1 1 2 2, ; ,f x x= a a . 

When people make decisions, it is essential to reveal the subjective value of ambiguity. 
Then we can figure out the actual prospect value of an option in a fuzzy environment. This 
subjective prospect value is an important basis of decision-making. In many cases, the de-
cision makers are not completely rational, or the information is incomplete or not precise 
enough. To address the above problem, we develop a decision-making framework based 
on PT under an intuitionistic fuzzy environment, which extends PT with the information 
expressed by IFVs or IVIFVs. 

2.2. Valuation phase

In the valuation phase, we incorporate IFVs or IVIFVs into our value function. Here, we as-
sume that the value function ( )V f  is monotonically increasing and ( )0 0V = . For a pros-
pect ( ),i if x= a , m i n− ≤ ≤ , we discuss the positive and negative parts separately, denoted 
by f + and f  – respectively. f + represents all the positive outcomes in the prospect f, while 
f – represents all the negative outcomes in the prospect f. If a prospect consists of outcomes 
with both gains and losses, we can classify these outcomes into two different prospects, a 
positive prospect consisting of all outcomes with gains, and a negative prospect consisting of 
all outcomes with losses. The advantage of doing such a classification is that we can clearly 
compare the aggregate result of all the outcomes with gains with that of all the outcomes with 
losses. The IFPV subjective value is defined as follows: 

                                
( ) ( ) ( )V f V f V f+ −= + ;                                                        (3) 

                                
( ) ( ) ( ) ( )( )

0

n

i i i i
i

V f g s v x v x+ + +

=

= +b p∑ ;                                  (4)

 
( ) ( ) ( ) ( )( )

0

i i i i
i m

V f g s v x v x− − −

=−

= +b p∑ ,  (5) 

where i i is = m −s  is the score function of an IFV ai (Chen & Tan, 1994). b+ and b– are the 
parameters of the fuzzy terms in the positive prospect and the negative prospect respectively. 
Since there is no effective way to test b+ and b–, we assume that b+ or b– are random numbers 
from a normal distribution. 1i i ip = −m −s  is the indeterminacy function, and ( )g ⋅  is the 
weighting function with the independent variable si, which satisfies the condition 1 1is− ≤ ≤ . 
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( )v x  is the value function, which is usually a two-part exponential function expressed as:

 
( ) ( )

0
    0

p

q
Ax if x

v x
x if x

 ≥= 
−l − <

,  (6)

where p and q in the value function (6) are the risk attitude parameters, A and l are the gain 
coefficient and the loss aversion coefficient.

The interpretation of the equations (4) and (5) is that the subjective value of the outcome 
is multiplied by its weighting function. We adopt the score function instead of the probability 
as an independent variable of the weighting function. Here, we assume that people make 
decisions based on the net certainty level represented by i i is = m −s , rather than the sepa-
rated probabilities in the existing literature. Both weighting functions, ( )g + ⋅  and ( )g − ⋅  , are 
non-linear but strictly increasing in the intervals 1,1−   , and satisfy the following two con-
straints: ( ) ( )1 1 0g g+ −− = − =  and ( ) ( )1 1 1g g+ −= = . Moreover, we impose a penalty on each 
total subjective value, measuring the impact of the indeterminacy of the outcomes. Here, b+ 
and b– are constant numbers. Then for every outcome, the subjective value of the event zi is 
measured by either ( ) ( ) ( )i i i ig s v x v x+ ++b p  or ( ) ( )i ig s v x−  +  ( )i iv x−+b p  , and the sum of 
the subjective values of each event represents the overall value of a prospect.

To illustrate the model, let’s consider the following game with intuitionistic fuzzy infor-
mation. You pick up a ball from a large dark urn, which is filled with about 30 white balls 
and about 50 black balls, and around 20 balls, and we do not know whether they are white 
or black. The total amount of balls is 100. If you pick up a white ball, there is no reward. 
However, if you get a black ball, you will be rewarded with 100 USDs. Based on the above 
information, we can calculate the IFPV of white ball and that of black ball respectively. For 
white balls, the outcome is 0 USDs with the IFV ( )0.3,0.5whitea = . For black balls, the out-
come is 100 USDs with the IFV ( )0.5,0.3blacka = . Therefore, the prospect of picking up a 
ball can be expressed as ( ) ( )( )0, 0.3,0.5 ;100, 0.5,0.3f + = . Based on the equation (4), we have:

( ) ( ) ( ) ( ) ( ) ( ) ( )0.2 0 0.2 0 0.2 100 0.2 100V f g v v g v v+ + + + += − ⋅ +b ⋅ ⋅ + ⋅ +b ⋅ ⋅ .

This is only an example of positive prospect situation, if the game is to lose 100 USDs 
who pick up the black ball, then it is an example of negative prospect, expressed as 

( ) ( )( )0, 0.3,0.5 ; 100, 0.5,0.3 .f − = −  Now suppose that we are investing a stock, expected profit is 
x, however, the intuitionistic fuzzy information of this profit is ( )1= 0.5,0.3a  , if you don’t invest, 
expected profit is of course 0. And the prospect of this event is ( ) ( )( )+ 0, 0.3,0.5 ; , 0.5,0.3 .if x=

 
, 

and the IFPV of this prospect is calculated in the same way. 
So far, we have constructed a basic framework for decision-making under fuzzy infor-

mation. We can compute the IFPV of each choice and decide the optimal choice based on 
the ranking of their IFPVs. Figure 3 shows the decision-making process of our framework. 

We only consider the fuzzy aspects of the above framework. Nonetheless, both the value 
function and the weighting function are important in PT framework, and themselves can also 
be used for the events with fuzzy information. Here, we introduce a modified value function 
and a modified weighting function under an intuitionistic fuzzy environment.
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2.2.1. The value function

In the following part, we will apply the value function under an intuitionistic fuzzy environ-
ment. The value function is determined by the monetary payoff xi, however, xi may be an 
interval-valued number. We assume that the monetary payoff xi is determined by an IVIFV 

( ), , ,i i i i ia b c da =        , which means that the actual monetary payoff is close, but not exactly 
equal to xi. We still use the scoring system to decide ia . Therefore, the membership value 
of xi is ,i ia b  , and the non-membership value is ,i ic d   . Then the accuracy function of an 
IVIFV ia  is defined as: 

 
( ) ( )1

2i i i i ih a b c da = + + + .  (7)

The intuition of the accuracy function is with probability ( )ih a , the monetary payoff is 
xi. In other word, since ( )0 1ih≤ a ≤ , the real monetary payoff is one of the values in the 
interval defined by:

 
( )( ) ( )( ) ( ) ( )( )1 , 1 , 2i i i i i i i i i ix x h x x h h x h x   − ⋅ − a + ⋅ − a = a ⋅ − a ⋅       .  (8)

Figure 3. The decision-making framework based on PT  
under an intuitionistic fuzzy environment
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Here, we assume that the true values are evenly distributed in the interval. This means 
that the real monetary payoff can be any value in the interval ( ) ( )( ), 2i i i ih x h x a ⋅ − a ⋅    
with the same possibility. We denote this random number as ix′. The value function can be 
expressed as:

 

( ) ( )
( )

0
,

     0

p
i i

i i q
i i

A x if x
v x

x if x

 ′ ′ ≥a = 
′ ′−l − <

 ,  (9) 

where ix′  is a real value or a modification under the interval-valued intuitionistic fuzzy 
environment, which can be obtained by the method mentioned above. 

According to PT and other related studies, the curve of value function has the following 
three basic features: (1) defined by deviations from the reference point; (2) concave for gains 
and convex for losses; (3) steeper for losses than for gains. 

The value function in our framework is close to that in PT, but the actual scaling is 
considerably more complex than the original value function. It can increase or offset the 
curvature. How is the value function shaped in this paper? To answer this question, we will 
design and carry out experiments in the next section.

2.2.2. The weighting function

Decision weights are not equivalent to probabilities in our daily life, so do not obey the 
probability axioms. Here, we must note that the weighting function is used to reveal the 
subjective weight of an event, whereas the IVIFV in the value function is used to reveal the 
vagueness of a nominal value. Although IVIFVs and IFVs are both fuzzy information, their 
implications are rather different. We adopt the score function of IFVs as the impact factor of 
decision weight. Here, we assign weights based on the shortfall between the membership and 
the non-membership. This is because the wealth or welfare change is what we really concern, 
rather than the final states. Inspired by Gonzalez and Wu (1999), we define the weighting 
function under an intuitionistic fuzzy environment as:

 
( ) ( )

( ) ( )
1

1 1
i

i
i i

s
g s

s s

g
+

g g

h +
=
h + + −

, ( ) ( )
( ) ( )

1

1 1
i

i
i i

s
g s

s s

δ
−

δ δ

h +
=
h + + −

,  (10)

where , ,h g δ  are the constants.
The domain of the original weighting function is 0,1   . Nonetheless, in our framework, 

the domain of the weighting function is 1,1−   . Figure 4 shows the shape of the weighting 
function ( )ig s+  with approximate fuzzy information. Here, we let 0.77h =  and 0.44g =  , 
which are given by Gonzalez and Wu (1999). The weighting function is inverse-S-shaped, 
which captures the fact that people generally overestimate the low-scoring events and under-
estimate high-scoring ones. The numerical values here are based on the parameters estimated 
in PT. When the score of an event is close to −1 or 1, there is virtually no difference between 
a normal case and a case with intuitionistic fuzzy information. As shown in the following 
figure, event scores between −1 and 1 may have a more complex weight distribution. This 
feature will be examined in our experiments.
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2.3. Main properties of our framework

The followings are the main properties of our decision-making framework:
1)  Diminishing sensitivity and reflection effect. We define the reference point as 0, then v is 

concave above the reference point ( )( )i.e., 0, 0v x x′′ ≤ ≥  and convex below the refer-
ence point ( )( )i.e., 0, 0v x x′′ ≥ ≤ . It is one of the basic properties of PT. This property 
shows that people become less and less sensitive with the increase in both gains and 
losses. For example, people are less sensitive to an increase from 100 to 110 USDs than 
to an increase from 10 to 20 USDs. They are also less sensitive to a decrease from 110 
to 100 USDs than to a decrease from 20 to 10 USDs. 

2)  Loss aversion. v is steeper for losses than for gains, i.e. ( ) ( )v x v x′ ′< − , for 0x ≥ . This 
property indicates that most people are loss aversion, i.e., people tend to prefer avoid-
ing losses to acquiring the same amount of gains. 

3)  Risk seeking. The weighting functions g+ and g– are both inverse-S functions. When 
the score value s  is close to –1, the slope of the weighting function is very steep. 
Intuitively, when faced with small probability events, such as lotteries, people tend to 
be more risk-seeking.

4)  Certainty effect. This means when the score value s is closer to 1, the weighting func-
tion rises faster. The intuition is that when the certainty level of an event becomes 
sufficiently high, a decision maker’s subjective evaluation of the weight will increase 
in proportion to the increase in its level of certainty.

5)  Additivity. If two separate events result in the same outcome x* with different IFVs 
1 2,a a . We can use the IFV 1 2a ⊕a  to match this outcome as a new prospect 

( )* *
1 2,f x= a ⊕a . It is more convenient to combine two similar outcomes into one 

when we carry out framing analysis. 
6)  Multiplicativity. If two events occur sequentially with the IFVs 1 2,a a , and may give 

rise to an outcome x*. We can integrate them by using the multiplication principle.

Figure 4. The weighting function with fuzzy information
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IFVs are the expressions of information in our paper. It is worth noting that IFVs are 
not the same to the probability and improbability of an event. ma and sa in a just present 
the membership degree and the non-membership degree of an event. Therefore, they do not 
satisfy the probability axioms. 

In our frame work, we express the score functions as independent variables of the weight-
ing function. The image of the weighting function shows that our framework is consistent 
with the certainty effect of PT and the other attributes of decision-making. 

3. Experiments

In this section, we design experiments to verify our intuitionistic fuzzy PT framework. The 
first one is to fit the value function and the weighting function. The parameters in both func-
tions are obtained from the experimental results. The second experiment is to verify the ad-
dition principle and the multiplication principle, to ensure the accuracy of IFPT framework. 

3.1. Participants

We invite 12 students randomly, 6 graduates and 6 undergraduates, from the School of Eco-
nomics at Sichuan University. Participants are asked to fill a questionnaire. We want to find 
the certain equivalents of the participants (Henceforth CE) from the experiment to reveal 
the shape of value and weighting function.

3.2. Experiment 1

3.2.1. Experiment design

Gonzalez and Wu (1999) study the shape of value and weighting function through the experi-
ment. Based on their approach, we make some modifications to fit our IFPV framework and 
study the shape of value and weighting function under an intuitionistic fuzzy environment. 

In order to assess individuals’ value and the weighting function more accurately, we fol-
low the traditional psychophysical paradigm. The basic design consists of 8 double-outcome 
gambling with 10 levels of the score function is  associated with the maximum outcomes. The 
two outcomes of gambling are (in dollars) 25−0, 50−0, 75−0, 100−0, 150−0, 200−0, 400−0, 
800−0. Note that all gambles offer nonnegative outcomes, so we just encode all of these out-
comes as gains. To increase reliability, we fix the indeterminacy degree at 0.05. Then the 10 

is  levels are set as: −0.93(0.01, 0.94), −0.85(0.05, 0.90), −0.75(0.10, 0.85), −0.45(0.25, 0.70), 
−0.15(0.40, 0.55), 0.05(0.5, 0.45), 0.25(0.6, 0.35), 0.55(0.75, 0.20), 0.85(0.90, 0.05), 0.93(0.94, 
0.01). (What’s in the bracket are indeed the intuitionistic fuzzy numbers. Actually, the settings 
here can be extended to interval-valued intuitionistic fuzzy numbers instead. For the sim-
plicity of illustration, we only show the intuitionistic fuzzy numbers in our experiment. The 
interval-valued vision of value function shape is just to estimate separately using two sides of 
interval-valued intuitionistic numbers. Therefore, we obtain a value function band instead). 

In the questionnaire, the participants are asked to select a certainty equivalent to a gamble 
from the available options. For example, a gamble offers 50% chance to win $100, 45% chance 
to win $0 and 5% chance without any information. We then ask the participants which they 
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prefer, sure amounts of 100, 80, 60, 40, 20 and 0 dollars or the gamble? For each row in 
Table 1, the participants check whether they prefer a sure amount to the gamble. For example, 
if a participant prefers a sure amount of $60 to the gamble, but prefers the gamble to $40 or 
less. The participant will place a check mark as follows:

Table 1. Choices table for gamble experiments

Money (no gamble) Prefer sure thing Prefer gamble 

100 √
80 √
60 √
40 √
20 √
0 √

From the above response, we infer that the CE for this participant must be somewhere 
between $40 and $60. Thus, the participant needs to provide a precise threshold value when 
he/she will change the choice from prefer the sure amount to gamble. This value is the CE for 
each gamble. We can obtain all 80 CEs as IFPV, to find the value function and the weighting 
function.

3.2.2. Results and discussions

The average CE for each of the 80 double-outcome gambles is shown in Table 2. They are 
average threshold values collected on 12 samples in each combination. And the estimations 
of the value function and weighting function are organized as follows:

Table 2. Average certainty equivalent for each gamble (N = 12)

Outcomes
Score function

−0.93 −0.85 −0.75 −0.55 −0.15 0.05 0.25 0.55 0.85 0.93

25−0 6.9792 8.4792 9.2083 11.6042 13.0000 15.1250 17.0833 19.4792 20.7083 23.4583

50−0 8.7500 10.2083 12.0833 15.8333 19.5833 24.1667 27.0833 33.1250 43.7500 44.7500

75−0 13.7500 14.0000 15.9167 24.0625 28.3333 33.1250 40.0000 46.7708 56.8750 62.5417

100−0 13.3333 17.0833 17.9167 27.5000 35.7500 45.0000 52.9167 65.4167 78.1818 90.7500

150−0 22.1667 23.3333 31.2500 38.9583 50.8333 62.0833 66.6667 86.4583 100.4167 115.9167

200−0 26.8333 30.4167 36.2500 51.6667 79.1667 91.6667 99.1667 110.8333 133.3333 158.3333

400−0 45.8333 49.5833 62.5000 95.0000 120.0000 155.8333 177.5000 206.6667 285.8333 295.0000

800−0 99.1667 105.0000 137.5000 173.3333 248.3333 334.1667 363.3333 402.5000 531.6667 588.3333

Firstly, we adopt nonparametric estimate method of Gonzalez and Wu (1999) without 
adding the fuzzy terms. We assume that the value function and the weighting function are:

( )v X Xa=  and 
( 1)

( )
( 1) (1 )

i
i

i i

s
g s

s s

g

g g

h +
=
h + + −

 respectively. We are going to estimate the param-
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eters h, g and a in equation: 
1( )( 1)

( )
( 1) (1 )

i

i i

s
y

s s

g
a

g g

h +
=

h + + −
. We show the estimated results in 

Table 3, and plot Figures 5 and 6 based on the results. From these two graphs, we can see that 
the shapes of functions are similar to those in Gonzalez and Wu (1999). And the corresponding 
values of parameters controlling the shapes are very close to those in Gonzalez and Wu (1999). 
This implies that the effects of weighting function are basically the same for our experiment.  
However, we find that the value of a is much higher than that in Gonzalez and Wu (1999). 
Because this is a fuzzy information-based experiment, if we treat it like only under uncer-
tainty, not under ambiguity environment, the fuzzy contribution part will be miscalculated 
in the value function, which lead to a higher a than 0.49.

Now, we add the fuzzy term in our estimation model based the intuitionistic fuzzy PT. 
After generating the random values of b, we are going to estimate the parameters h, g and 

a in equation: 
1( )( 1)

( )
( 1) (1 )

i
i

i i

s
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s s

g
a

g g

h +
= +bp

h + + −
. After one thousand times of simulation, 

we obtain the following estimated parameter values: 0.7060h = , 0.4833g = and 0.9021a = . 
Compared with the parameters above, h decreases, g increases, and a increases too (Figure 7 
and Figure 8). From the value function, we find that after incorporating fuzzy information in 
decision making, the value of a remains below 1, but it increases. This means that although 
people are still risk averse, they become less risk averse under an intuitionistic fuzzy environ-
ment than under uncertainty without ambiguity. A potential explanation is that when there 
is fuzzy information regarding the probabilities of different consequents of an event, people 
tend to be over-optimistic regarding the indeterminacy part. In other words, for the part 
of indeterminacy, they may arbitrarily assign higher possibilities to the positive prospects 
of the event, while at the same time, assign lower possibilities to the negative prospects. As 
a result, with the presence of fuzzy information, the expected payoff of an event, perceived 
by the decision-makers, is more likely to be overestimated. Hence, compared with the situ-
ation where there is no indeterminacy, risky choices may appear to be more attractive when 
there are certain degrees of indeterminacy. Because of the above over-optimistic arbitrary 
decision-making process, people become less risk averse when the degree of ambiguity rises 
under an intuitionistic fuzzy environment. Moreover, we can see, from Figure 8, that the 
weighting function curve with fuzzy information is almost parallel with the one without 
fuzzy information, but at a lower position close to the latter. This means that with the pres-
ence of ambiguity, people systemically underweight the probabilities of the outcomes with 
gains as well as those of the outcomes with losses.

Table 3. Estimated coefficients in Gonzalez and Wu᾽s model without fuzzy terms

Estimated coefficients

Estimate SE t-Stat p-Value

h 0.80235 0.25117 3.1945 0.0020308
g 0.46553 0.032781 14.201 3.306e-23
a 0.82274 0.17007 4.8377 6.6004e-06
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Figure 5. The value function in Gonzalez and 
Wu᾽s model

Figure 6. The weighting function in Gonzalez 
and Wu᾽s model
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Figure 7. The value function under IFPT Figure 8. The weighting function under IFPT
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3.3. Experiment 2

3.3.1. Experiment design

This experiment is designed to test the combination rules under an intuitionistic fuzzy envi-
ronment. There are two sets of questions: the first set of questions is designed to test the ad-
dition principle; and those in the second set are designed to test the multiplication principle. 

In group 1, participants are asked two questions about the index. There are two stocks re-
lated to this index. A rise in either of the stock prices will lead to an increase in the stock index.  
But the index falls if and only if the prices of both stocks decrease. The first entry in the cell 
indicates the probability that the stock price will rise (i.e., the membership of “rise”), and the 
second entry shows the probability of falling (i.e., the non-membership of “rise”). The degree 
of indeterminacy is given by: 1 minus the sum of the membership and the non-membership. 
For example, in Table 4, question 1, the price of stock 1 will rise with probability 0.6 and fall 
with probability 0.3, so the degree of indeterminacy is given by: ( )1 0.6 0.3 0.1− + =  . Here, 
the participants are asked to choose how they think the indexes would change, i.e., rise, fall 
or uncertain. This experiment is designed to examine how well people use the addition rule 
to derive another set of intuitionistic fuzzy information.
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Table 4. Questions in Group 1

Group 1 Fuzzy information for stocks Index

Question 1 (0.6,0.3) (0.7,0.2) (0.88,0.06) (theoretical)
Question 2 (0.3,0.5) (0.4,0.4) (0.58,0.20) (theoretical)

Table 5. Questions in Group 2

Group 2 Fuzzy information for two stages Success rate of the project

Question 1 (0.5,0.3) (0.6,0.2) (0.30,0.44) (theoretical)
Question 2 (0.4,0.5) (0.3,0.6) (0.12,0.80) (theoretical)

In group 2, Table 5 shows two questions about an investment project involving two stages. 
This project will be successful accomplished only if both stages are completed successfully.

The fuzzy information in the table above is the success rate for each stage. The first entry 
in each cell shows the probability of success (i.e., the membership of “success”), and the sec-
ond one is the probability of failure (i.e., the non-membership of “success”). The degree of 
indeterminacy is given by: 1 minus the sum of the membership and the non-membership. 
For example, in Table 5, question 1, the first stage of the project will be a success with the 
probability 0.5, or a failure with the probability 0.3, and the degree of indeterminacy is given 
by: ( )1 0.5 0.3 0.2− + = . Here, the participants are asked to decide whether the project will be 
successful, based on two stages of fuzzy information. The purpose of this experiment is to 
examine how well people use the multiplication rule to derive the set of intuitionistic fuzzy 
information.

3.3.2. Results and discussions

Based on the choices of 12 participants in the experiment, we get the experimental data to 
illustrate their application the addition principle and the multiplication principle under a 
fuzzy environment. As shown in Table 6, although there is a slight difference between the 
experimental results and our theoretical predictions, the participants’ choices under an in-
tuitionistic fuzzy environment are consistent with the addition and multiplication principles 
of our framework.

Table 6. Results in the addition principle and the multiplication principle

Fuzzy 
formulae (0.6,0.3) + (0.7,0.2) (0.3,0.5) + (0.4,0.4) (0.5,0.3) * (0.6,0.2) (0.4,0.5) * (0.3,0.6)

Theoretical (0.88,0.06) (0.58,0.2) (0.3,0.44) (0.12,0.8)

Experiment 
results (0.92,0) (0.42,0.33) (0.25,0.42) (0.08,0.83)
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Conclusions and discussions

This paper develops a generalized decision-making framework based on the prospect theory 
under an intuitionistic fuzzy environment, by closely integrating the prospect theory and 
the intuitionistic fuzzy sets into our framework. We demonstrate how to compute the in-
tuitionistic fuzzy prospect value as the reference values for decision-making and elaborate 
a four-step editing phase and a valuation phase with two key functions: the value function 
and the weighting function.

We conduct experiments to test the validity and properties of our decision-making frame-
work. The experiments reveal that the ways that subjects choose to deal with information are 
consistent with what are implied by the fuzzy logic of our framework in various scenarios. 
The experimental results show that (i) the shapes of the value function and the weighting 
function in our framework are in line with those of prospect theory, (ii) people are less risk 
averse when making decisions under an intuitionistic fuzzy environment than under uncer-
tainty, and (iii) with the presence of ambiguity, people systemically underweight the prob-
abilities of the outcomes with gains as well as those of the outcomes with losses.

Our methodology can elicit prospects not only under uncertainty but also under am-
biguity, and the decision-making patterns can be fully captured by parameters in the value 
function and the weighting function. Our framework offers an illuminating approach for 
decision-making under an intuitionistic fuzzy environment. It can be applied in a wide range 
of decision-making problems, including those of the multi-attribute decision-making. It is 
not only an extension of PT, but also a further application of the theory of intuitionistic fuzzy 
sets in a more general environment. As our approach generalizes to the case of ambiguity, the 
prospect theory can therefore be viewed as a special case in our framework. 
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