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Abstract. For an insurance company, the planning has to be carried out under uncertainty. Thus, 
the decision making model includes the parameters that are not completely known at the current 
point of time, when the decision has to be taken. These parameters can be named as risk factors. 
The activity of insurance company is affected by many risk factors, thus the multivariate uncertainty 
space, where the correlations among these factors are possible, can be constructed. For their depend-
ency structure, the alternative method – copula functions – are employed, which allows to model 
the non-linear dependencies between the correlated stochastic variables. The purpose of this work 
is to explore the copula effect on the investment portfolio of the insurance company. The insurance 
business is influenced by a large number of stochastic parameters, and decisions concerning the 
assets that must be invested over time to cover liabilities and to achieve goals subject to various 
uncertainties and various constraints are considered. Two approaches of making decision models 
under uncertainty are applied in the integrated dynamic management of insurance company’s 
financial assets and liabilities. One of them allows to evaluate the company’s strategy and techni-
cally is based on stochastic simulation. The other approach generates a strategy from the stochastic 
optimization model. Two copula functions – Gaussian copula and Student’s t-copula – concerning 
the investment performance are employed while generating the set of scenarios for representing 
the behaviour of risk factors in the multivariate structure.

Keywords: stochastic simulation, stochastic optimization, scenario generation, decision-making, 
copula function, investment portfolio, asset liability management, insurance.

Reference to this paper should be made as follows: Pranevičius, H.; Šutienė, K. 2008. Copula ef-
fect on investment portfolio of an insurance company, Technological and Economic Development 
of Economy 14(3): 344–373.

1. Introduction

Decision-making under uncertainty is one of the foremost challenges for any financial 
institution. This is especially true for dynamic decision problems, where the uncertainty is 
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related to the future realizations of certain key variables. Financial institutions, like insurance 
companies, need effective strategic planning for management of their financial resources and 
liabilities in stochastic environments, with market, economic and actuarial risks all playing 
an important role. (Dempster et al. 2003).

The insurance business is twofold. It includes: (a) the underwriting activity, which is 
mainly concentrated on collecting premiums and exploring the losses distribution; (b) the 
investment activity, which is aimed to allocate free resources into various investments and to 
earn additional revenues. Both activities are related and subject to the risk factors (Ziemba 
2003). In a multivariate structure of uncertainty, the correlations among risk factors (con-
temporaneous dependency) and correlations in time (intertemporal dependency) are pos-
sible. The good methods are needed to describe this dependency structure which is far from 
linear type. Besides, the distributions of risk factors rarely are of Gaussian type. In this paper, 
the alternative method – copula function – is applied to describe the dependency structure 
of non-linear type among non-normally distributed stochastic variables (Embrechts et al. 
2002; Nelsen 2006; Aas 2004). Since the scenarios are generated to represent the evolution 
of risk factors in future, the features of copula functions have to be reflected in the gener-
ated scenarios set. In this context, the algorithm how to incorporate copula functions in the 
scenarios set was developed (Pranevičius and Šutienė 2006, 2007).

The generated scenarios set with the included copula functions is the input to the deci-
sion-making model. Thus, it is natural to explore what is the copula effect on the output of 
decision-making model. For this purpose, two different approaches of the same underlying 
decision problem – investment portfolio management under uncertainty – are quantitatively 
compared. The first is based on decision-making using stochastic simulation model, while 
the other is a multistage stochastic programming (optimization) approach. In comparing the 
stochastic simulation and stochastic programming (optimization) approaches, it is important 
to note that the former allows to find the decision that is the best one from the set of tested 
alternative decisions, using the efficient frontier concept, while the latter allows to obtain 
the optimal decision subject to some restrictions and constraints under which the relevant 
system must operate.

The basic dynamic decision-making problem under uncertainty treated in this paper is: 
to invest the premiums and previous earnings from investments to yield good asset returns 
over time and to provide resources for insurance claims. These claims have distributions 
of losses, as with typical liabilities (Ziemba 2003). Scenarios are generated to represent the 
future paths for liabilities derived from the underwriting business and the future paths for 
asset variables subject to the investment activity. Hence, they are classical asset liability 
enterprises seeking the methods for the best or optimal management of their resources.

Asset liability modelling and management models usually require knowledge from differ-
ent fields such as statistics, economics, financial mathematics and optimization. In a schematic 
and generic way, the different elements of asset liability models can be organized along 3 
separate poles of interest and a common set of structural considerations (Collomb 2004). The 
first task is to declare the future asset and liability cash flows that are to be expected. Then, it 
is needed to set the objectives of an organization (or an individual). The final task is to choose 
the set of possible investment vehicles that we want to include in the decision-making process. 
Such structure creates a framework for decision-making under uncertainty (Fig. 1).
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The paper is organized as follows. In Section 2 the current research area in creating plan-
ning models under uncertainty in insurance business is described. The concepts of model-
ling the multivariate dependency structure through copulas are described in Section 3. Two 
copulas – Gaussian and Student’s – are presented. In Section 4 the role of scenarios and the 
different structures of scenarios are described. The main features of decision simulator are 
described in Section 5. The conceptual and formal models of decision-making concerning the 
investment activity in insurance business are described in Section 6. Finally, two considered 
approaches are compared by the application of investment portfolio selection and the effect 
of copula function is explored.

2. Short overview of decision-making models

Since the insurance business is particularly subject to the risk, the decisions that hedge 
the risk rising from environment are needed for insurance company itself in achieving the 
profit and at the same time ensuring the protection of its clients from the risk. That’s why the 
methodology to support the decisions in insurance operations is a very intensive research 
area (Beusekom-Bastiaans 2005; Shiu 2006; Kouwenberg and Zenios 2006). The appropri-
ate decisions have to be made concerning the underwriting and investment business. In the 
literature two main directions exist that can be applied for the case of insurance company 
management:

• strategy evaluation which allows to choose the ‘best’ decision (Kaufmann et al. 2001; 
Lowe and Stanard 1997; Nobles 2007),

• strategy generation which allows to choose the optimal decision (Pirbhai et al. 2003; 
Yu et al. 2003).

Fig. 1. Decision-making framework for asset liability management
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The popular models are based on the methodology, known as Dynamic Financial Analy-
sis (DFA), which belongs to the first group of decision-making models. Since this approach 
lacks the optimization capabilities, the other technique – Stochastic Programming (SP), 
which belongs to the second group of decision-making models, is often used. Both tasks are 
not trivial, because these models incorporate the uncertainty which is represented by a high 
number of scenarios.

The use of copulas to describe the non-linear dependency structure among correlated 
non-normally distributed stochastic variables is rather a new approach (Embrechts et al. 2002; 
Nelsen 2006; Aas 2004). For a decision-making model, the copulas have to be incorporated in 
the scenarios set, which is used as an input to this model. At the current time, the copulas are 
popular in risk management field (Kole et al. 2007; Rosenberg and Schuermann 2006; Pfeifer 
and Nešlehová 2003), where the models for representing the behaviour of risk factors are 
established. There exist some applications of copulas into integrated dynamic decision models 
established based on DFA concept (Eling and Toplek 2007; Nicholls and Skinner 2007). But 
the researches of applications of copula functions into decision-making model based on SP 
concept are missing. The reason is that SP models are often computationally intractable and 
must be approximated by a problem of smaller dimension. Here comes a need to construct 
the scenarios tree for representing the underlying uncertainty. In this context, in the paper 
(Kaut and Wallace 2006), it is argued that it is rather complicated to generate a scenario tree 
with implemented particular copula function for dependent stochastic variables. In their 
paper, the moment matching method was used to generate copula-based scenarios. But this 
research field is still missing good methods, how to implement copula functions while gen-
erating the scenarios tree for dependent risk factors. In the case of successful implementation 
of copula in the structure of scenario tree, researches how the copula function affects the 
optimal decisions, generated from SP model, can be performed.

3. Multivariate dependency structure through copulas

3.1. Issues with traditional approach

The traditional approach uses Pearson linear coefficient to measure dependent risks. It is 
assumed that random variables are linearly dependent and that the underlying univariate 
marginal distributions are normally distributed. The modelling of dependent variables is 
performed employing the Pearson’s correlation matrix to describe the multivariate structure. 
The basic linear correlation coefficient works well with multivariate Gaussian distribution. 
In practice, most financial and actuarial risks are usually heavy tailed: catastrophe claims are 
often modelled using Lognormal or Gamma distribution, stock prices are assumed to be log-
normally distributed. In a paper (Wirch 1999), it is argued that it is practically rare to find 
portfolios that had avoided high-end risk to the point that the tails of the loss distribution 
can be compared to that of the normal. Thus, the assumption of normality can underestimate 
or overestimate the actual risk distributions.

The paper (Embrechts et al. 1999) demonstrates how linear correlation coefficient can be 
a source of confusion. The authors show that it is possible to have two different multivariate 
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distributions with the same marginal distributions and the same linear correlation coef-
ficient, but with quite different dependencies. We include Fig. 2 as illustration of the given 
motivation in their paper.

Fig. 2 shows 1000 random variates from two distributions with identical standard Gaus-
sian marginal distributions: case (a) and case (b) depict bivariate structure of X1 and X2 with 
linear correlation coefficient ρ = 0,7. However, the dependency structure between X1 and X2 
is qualitatively quite different. It relates that in case (b) extreme values have a tendency to 
occur together. This example shows that the dependency between random variables cannot 
be distinguished on the grounds of correlation alone.

To overcome the limitations of correlation, the practitioners can draw on copula functions. 
It is very powerful technique, which allows to represent the joint distribution by splitting 
marginal behaviour, embedded in the marginal distributions, from the dependency, captured 
by the copula itself. This superiority of using copulas releases the modelling and estimation 
of dependent random variables.

3.2. The concept of copula

Employing the Monte Carlo technique for simulation of random variable X, a random uniform 
u  number from U   Uniform (0,1) is generated and then the inversion of u  by x F uX= ( )−1  
is performed. If we have d  variables, (X1, X2,… X d ), we need d uniform random variables, 
(U1,U2,…Ud). If variables (X1, X2,…Xd) are independent or correlated, then we need d  
independent or correlated uniform random variables, (U1,U2,…Ud), respectively. Thus, in 
multivariate structure, the dependency structure of the variables (X1, X2,…Xd) is completely 
determined by the correlation structure of the uniform random variables, (U1,U2,…Ud) 
(Wang 1997).

Let define the copula itself. A copula is defined as the joint cumulative distribution func-
tion of d  uniform random variables

 C u u u U u U u U ud d d1 2 1 1 2 2, ,..., Pr , ,...,( ) = ≤ ≤ ≤( ) . 

Fig. 2. Different dependency structures between X1 and X2 with ρ = 0,7
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A function C is the d -dimensional copula if it fulfils the following properties (Embrechts 
et al. 2002):

• The domain of C is 0 1,[ ]d ;
• C is grounded and d  is increasing.
The margins Ck of C satisfy C u uk ( ) = , k d= 1 2, ,...,  for all u  in 0 1,[ ] .
Let consider d  random variables X X X d1 2, ,...,( )  with multivariate distribution F and 

univariate margins F x F x F xd d1 1 2 2( ) ( ) ( ), ,..., . Sklar’s theorem, which is the foundation for 
copulas, states that any joint distribution can be written in a copula form.

Sklar’s theorem (1959) (Nelsen 2006). Given a joint distribution function F x x xd1 2, ,...,( )
for random variables X X X d1 2, ,...,( ) with marginals F F Fd1 2, ,...,( ) , F can be written as a 
function of its marginals:

 F x x x C F x F x F xd d d1 2 1 1 2 2, ,..., , ,...,( ) = ( ) ( ) ( )( ) , 

where copula C u u ud1 2, ,...,( )  is a joint distribution with uniform marginals. Moreover, if 
each Fi  is continuous, C is unique.

The dependency structure can be represented by a proper copula function. Moreover, the 
following corollary is attained from Sklar’s theorem.

Corollary. Let F be an d -dimensional distribution function with continuous margins  
F x F x F xd d1 1 2 2( ) ( ) ( )( ), ,..., and copula C. Then, for any u u u ud= ( )1 2, ,...,  in 0 1,[ ]d :

 C u u u F F u F u F ud d d1 2 1
1

1 2
1

2
1, ,..., , ,...,( ) = ( ) ( ) ( )( )− − − , 

where Fi
−1  is the generalized inverse of Fi .

Many copulas with differing characteristics are available that lead to the different rela-
tionships among variables (Embrechts et al. 2002; Nelsen 2006). Copulas differ not so much 
in the association degree they provide, but rather in which part of the distributions the 
association is the strongest. One such measure is tail dependency which is an issue of the 
following section.

3.3. Two instances of copula functions

Gaussian copula is implied by a well-known multivariate distribution function: multivariate 
Gaussian distribution. A complete copula-based joint distribution can be constructed using 
assessed rank-order correlations and marginal distributions. Examples of rank-order cor-
relations are Spearman’s rank ρrank and Kendall’s τau ρτau correlations, which are used to 
describe the dependency relations of a monotonic nature: it indicates the tendency of two 
random variables to increase/decrease concomitantly (positive dependency) or contrariwise 
(negative dependency). The relation between Kendall’s τau and Pearson’s rho ρ correlation 
coefficients is given by:

 ρ
π

ρτ
ij
au

ij= ( )2 arcsin , i j d, ,= 1 , 
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between Spearman’s rank and Pearson’s rho correlation coefficients is given by:

 ρ
π

ρ
ij
rank ij=











6
2

arcsin , i j d, ,= 1 . 

The Gaussian or Normal d -copula is given by:

 C u u u uCor
Ga

Cor
d

d( ) = ( ) ( ) ( )( )− − −Φ Φ Φ Φ1
1

2
2

1, ,..., , 

where ( )
2 2x tx e dt−

∞Φ = ∫  denotes the standard univariate function and ΦCor
d  denotes the 

standard multivariate normal distribution function with matrix Cor ij= ( )ρ , i j d, ,= 1  of 
linear correlation coefficients.

Fig. 3 shows four scatter plots of 1000 random values from a bivariate Gaussian copula 
for various levels of correlation coefficient to illustrate the range of different dependency 
structures.

The main property of such dependency structure is that Gaussian copula does not have 
neither upper nor lower tail dependency, i.e. the coefficients of lower tail and upper tails de-
pendency are λ λU UX X X X1 2 1 2 0, ,( ) = ( ) =  (Aas 2004). It means that regardless of high 
correlation 12ρ  is chosen, extreme events appear to occur independently in the tails of X1 
and X2.

Student’s t-copula is implied by multivariate Student’s t distribution, as it was for a Gaussian 
copula. The main difference of Student’s t-copula is that the Student’s t-dependency structure 
supports joint extreme movements regardless of the marginal behaviour of stochastic vari-
able compared with the Gaussian copula. A complete copula-based joint distribution can be 
constructed using assessed rank-order correlations and marginal distributions, as it was for 
a Gaussian copula. Besides, the Student’s t-dependency structure introduces an additional 
parameter compared with the Gaussian copula, namely the degrees of freedom ν . Student’s 
t-copula can be written as

Fig. 3. Gaussian dependency structures with different correlation coefficients
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 C u t t u t u t uCor
t

Cor
d

d, , , ,...,ν ν ν ν ν( ) = ( ) ( ) ( )( )− − −1
1

1
2

1 , 

where t x t dtν
ν

ν ν πν ν( ) = +( )( ) ( ) +( )



∞

∞ +( )
∫ Γ Γ1 2 2 1 2 1 2

/ / / /
/

 denotes the standard 

univariate Student’s t-distribution function with ν  degrees of freedom, t uν
− ( )1  is its inverse 

function and tCor
d

,ν  joint distribution function of the d -variate Student’s t-distribution 
with ν  degrees of freedom and with matrix Cor ij= ( )ρ , i j d, ,= 1  of linear correlation 
coefficients.

Fig. 4 shows four scatter plots of 1000 random values from a bivariate Student’s t-copula 
copula for various levels of ρ . These plots demonstrate that t2- copula differs from Gaussian 
copula, even when their components have the same correlation. The coefficients of lower tail 
and upper tail dependency are (Aas 2004):

 λ λ ν ρ ρνu LX X X X t1 2 1 2 1 12 122 1 1 1, , /( ) = ( ) = − + −( ) +( )( )+ . 

Student’s t-copula’s tail effect from both degrees of freedom and correlation coefficient is as 
follows: the strongers the linear correlation coefficient and the lower the degrees of freedom, 
the stronger is tail dependency.

4. The role of Scenario Generator

Scenario Generator (SG) forms the input to the decision simulator and contains stochastic 
models for a large set of these risk factors, belonging to different groups. The notation of “sce-
narios” is used to represent how the future might unfold. The main task of SG is to produce 
adequate scenarios for the uncertain factors. To these uncertain elements usually the theory 
of probability can be applied. In the paper (Dupačová 1998), the author proposes four types of 
problems, concerning the level of the available information: (a) full knowledge of underlying 
probability distribution, (b) known parametric family, (c) sample information, and (d) low 

Fig 4. Student’s t-dependency structures with different correlation coefficients and ν = 2
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information level. These four groups are not strictly distinguishable. Different information 
levels can be applied to the distinct parameters of the model. The output of the SG is a large 
number of random scenarios for the joint behaviour of risk factors included in the model 
over the given time horizon, representing possible evolution of their future developments.

4.1. The notation for the scenarios

The scenarios notation is given based on the references (Dupačová et al. 2000; Domenica 
et al. 2007). If a stochastic factor evolves in time, we have a stochastic process. Let introduce 
the index for time discretization t ≥ 0. The set of all discretization moments is denoted by 
t T t∈{ }0,... , where t T t=  is a time horizon, t = 0 is an initial time moment. Time step ∆t  
is the time span from time t – 1 to time t. Let assume that the stochastic process ξ ξ= { } =t t

T t

1
 

is defined on some filtered probability space Ω, , ,S PF( ) . The sample spaces Ω  are taken 
as finite dimensional. The σ-algebra S is the set of events with assigned probabilities by 
measure P, and Ft t

T t
{ } =1

 is a filtration on S. For scenario based models, one assumes that the 
probability distribution P is discrete, and concentrated on a finite number of points, say, 
ξ ξ ξ ξs s

t
s

T
s

t= ( )1 ,..., ,..., , s S= 1,..., .
If scenarios are described by the expected value of some stochastic factor, the scenarios 

lose their stochastic nature and scenarios structure is as in a deterministic case.

4.2. The structure of scenarios

At the current time moment t = 0, value ξ0  is known with certainty. Thus, all scenarios 
coincide at t = 0, and the initial root node ξ0  is formed. Such a structure of simulated data 
paths is called as scenarios fan (Fig. 5). The probability of ξt

S  is denoted as π π ξ
 

t
S

t
S

t
S= ( ) , 

s S= 1,..., , t T t∈{ }0,..., .
The first stage is usually represented by a single root node, where the values of random 

parameters are known with certainty. Moving to the second stage, the structure branches into 
individual scenarios at time t = 1, as shown in Fig. 5. Such scenarios structure is represented 
as two-stage problem, as all σ-fields Ft , t T t= 1,..., coincide. Thus, the probabilities π π

 

t
S

t
S

= , 
s S= 1,..., , t t≠ ′ , t t, ′ > 0 .

Fig. 5. The illustration of scenarios fan
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The other structure of scenarios is a multi-stage scenarios tree, which allows to reflect the 
inter-stage dependency and decreases the number of nodes while comparing to the scenarios 
fan. The time stage index t T t∈{ }0,... , where τ τ= T  is a time horizon, t = 0 is an initial deci-
sion moment, is associated with time moments when decisions are taken. The stage is the time 
span ∆τ  from time τ −1  to time τ. The structure of multi-stage scenarios tree (Fig. 6) at τ = 0 
is also described by a sole root node and by branching into a finite number of scenarios as it 
was in previous case. The probability distribution P is also concentrated on a finite number 
of points ξ ξ ξ ξτ τ

τ
τ

τ
s s s

T

s
T T= ( )1

1 ,..., ,..., , s Sτ τ= 1,..., , but with varying size of scenarios set Sτ . 
The probability of ξτ

τS  is denoted as 






π π ξτ τ τ
τ τ τS S S= ( ) .

The stages are connected with the possibility to take additional decisions based on newly 
revealed information. Such information can be obtained periodically (every day, week, month) 
or based on some events (expiration of investment portfolio duration). It is worth to note the 
tremendous effect of future branching on the size of scenarios tree.

The distinction between stages, which correspond to the decision moments, and time peri-
ods of discretization is essential, because in practical application it is important that the number 
of time periods would be greater than the corresponding nodes, i.e. 0 0,..., ,...,T T{ } ⊂ { } . The 
arcs linking nodes represent various realizations of random variables. The number of branches 
from each node can vary depending on problem specific requirements, and not definitely 
constant through the tree. One of the strategies is to use an extensive branching at the be-
ginning of time horizon and a relatively poor branching at the last stages of the tree. Each 
path through the tree from its root to one of its leaves corresponds to one scenario, i.e. to a 
particular sequence of realizations of random coefficients.

4.3. The methods for scenario generation

In general, the procedure of scenario generation consists of the following steps (Domenica 
et al. 2007):

• Choosing an appropriate model to describe the stochastic parameters. For instance, 
Econometric models and Time Series (Autoregressive models, Moving Average models, 
Vector Auto Regressive models), Diffusion Processes (Wiener Processes), Calibration 
of model parameters using historical data.

Fig. 6. Multi-stage scenarios tree

τ = 0 τ = 1 τ = Tτ–1... τ = Tτ time
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• Generation of data paths from the chosen model. Using statistical approximation 
(Property Matching, Non parametric methods) or sampling (Random sampling, 
Bootstrapping), the data paths can be generated performing the discretization of the 
distribution.

• Constructing the scenario tree with the desired properties.
Scenarios can be generated using various methods, based on different principles (Mitra 

2006):
• Scenario Generation by Statistical Approaches: Statistical Moment or Property Match-

ing, Principal Components Analysis (PCA), Regression and its variants.
• Scenario Generation by Sampling: Monte Carlo Sampling, Importance Sampling, 

Bootstrap Sampling, Internal Sampling, Conditional Sampling, Markov Chain Monte 
Carlo Sampling.

• Scenario Generation by Simulation: Stochastic Process Simulation, Error Correction 
Model, Vector Auto-regressive.

• Other Scenario Generation Methods: Artificial Neural Networks, Clustering, Scenario 
Reduction, Hybrid Methods.

A good approximation may involve a very large number of scenarios with probabilities. A 
better accuracy of uncertainties is described when scenarios are constructed via a simulated 
data path structure, also known as a scenario fan. But the number of scenarios is limited by 
the available computing power, together with a complexity of the decision model. To deal with 
this, we can reduce the dimension of the initial scenario set by constructing the multistage 
scenario tree out of it.

4.4. The multivariate structure of scenarios employing copulas

In Section 4.3, a common structure for scenario-based risk management, which can be ap-
plied to different scenario generation methodologies, is described. But due to the marked 
progress in the modelling of dependency among stochastic variables, employing copula 
functions (Section 3), it is important to organize the adequate model of joint variables. In 
the procedure of scenario generation, the separate step was introduced for a copula-based 
approach, since copula functions allow to model the dependency structure independently 
of the marginal distributions.

The basic notation of scenarios was presented in Sections 4.1–4.2. We generalize this 
notation for d -dimensional spaces of stochastic factors. For example, these data may cor-
respond to the random return of d  financial assets at different time moments t. The notation 
in the multivariate structure will be given for the structure of scenarios fan. Let denote the 
d-dimensional probability distribution function of ξ ξ ξt t t

d= ( )′1,...,  at point y y yd= ( )′1,...,  
by, f y( ) and its d -dimensional cumulative distribution function by F y( ) . The joint dis-
tribution F provides a complete information concerning the behaviour of ξt .

The marginal probability distribution function and cumulative distribution function of 
each element ξ

t
i at point yi , i = 1,...,d is denoted by f yi i( )  and F yi i( ) , respectively. The 

primary aim of scenario generator is to represent the distribution f  in a reasonable way. 
Thus, the underlying probability distribution f  is replaced by a discrete distribution P car-
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ried by a finite number of atoms ξ ξ ξ ξs s
t
s

T
s= ( )1 1,..., ,..., , ξ ξ ξt

s
t
s

t
s d= ( )′, ,,...,1 , s S= 1,...,  with 

probabilities  π π ξt
s

t
s

t
s= ( ) , πs

S
t
s

=∑ =1 1 , s S= 1,..., , s S= 1,..., , t T t∈{ }1,..., . The atoms ξs  ,  
s S= 1,..., of the distribution P are called as scenarios. For each of the considered stochastic 
factors these scenarios are independently generated. But in the case of multivariate structure of 
randomness, we introduced the concept of inter-correlated scenarios ξ ξ ξ ξs s

t
s

T
s

t= ( )1 ,..., ,...,  , 
ξ ξ ξt

s
t
s

t
s d= ( )′, ,,...,1 , s S= 1,..., , t T t∈{ }1,..., , if the multivariate stochastic distribution F is 

constructed employing some dependency structure, like copula functions during the discre-
tization process of underlying randomness.

Using copulas, the distribution F is given as:

 F y y y C F y F y F yd d d1 2 1 1 2 2, ,..., , ,...,( ) = ( ) ( ) ( )( ) , 

where C is the d-dimensional copula function. For example, it can be Gaussian copula or 
Student’s t-copula, as was introduced in Section 3.3.

5. Decision simulator

Decision simulator mimics the company’s (or decision maker’s) decisions over the planning 
period. In this work, the case when the insurance company makes decisions regarding their 
asset mix is considered. The investment planning is carried out under uncertainty because 
some or all model parameters are not completely known at the current point of time, when 
decision has to be taken. Despite rich involvement of the future, everything is aimed to make 
a well hedged decision in the present.

5.1. Classification of decision-making problems

Decision-making always involves making a choice between various possible alternatives. 
According to the considered alternatives, decision problems can be classified into two cat-
egories (Murty 2003):

Category 1. This category includes all decision problems for which the set of possible 
alternatives for the decision is a finite discrete set typically consisting of a small number of 
elements, in which each alternative is fully known in complete details, and any one of them can 
be selected as the decision. For instance, a person has received job offers from 3 companies. 
It has to decide whether to accept any one of these offers, or to continue the job search.

Category 2. This category includes all decision problems for which each possible alter-
native for the decision is required to satisfy some restrictions and constraints under which 
the relevant system must operate. Even when there are no constraints to be satisfied in a 
decision problem, if the number of possible alternatives is either infinite, or finite but very 
large, it becomes necessary to define the decision variables in the problem and to construct 
the objective function (the one to be optimized) as a mathematical function of the decision 
variables in order to find the optimal alternative to implement.

Decision problems of Category 1 can be solved using the first considered approach – sto-
chastic simulation, where one of the most common techniques used to present the results 
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is the efficient frontier (Kaufmann et al. 2001). This is a technique borrowed from finance 
theory for constructing the investment portfolio framed in terms of risk and return. “Return” 
is usually defined as arithmetic mean of key variable, and “Risk” is defined as corresponding 
standard deviation. Whatever definition of risk and return we wish to apply, we can define 
an “efficient” set of decisions (strategies). A decision is called efficient if there is no other one 
with a lower risk at the same level of return, or higher return at the same level of risk. For each 
level of risk there is a maximal return that cannot be exceeded, giving a rise to an efficient 
frontier. But we cannot be sure that a decision is really efficient or not. Stochastic simulation 
is not necessarily a method to come up with an optimal strategy. It is predominantly a tool 
to compare different decisions. It is important to note that a different measure of risk and 
return may lead to a different preferred decision.

Optimal decisions can be found when decision problems are formulated according to the 
concept of Category 2, as it is the main concept of the stochastic programming approach (Yu 
et al. 2003; Ziemba 2003; Kouwenberg and Zenios 2006; Dempster et al. 2003). This technique 
is known as strategy generation approach. On the conceptual level, stochastic programming 
combines two main components:

• Model of optimum resource allocation. It constitutes the core of the problem that has 
to be solved and varies with respect to the specific characteristics of each individual 
application.

• Model of uncertainty. Once the distribution is established, different scenarios that 
follow the underlying probability distribution are used to represent the randomness.

Thus, both strategy evaluation model and strategy generation model are based on the 
output from the Scenario Generator, but the structure of scenarios set is set to be different. For 
the stochastic optimization, when the strategy is generated, the multidimensional multistage 
scenario tree is preferable cause of limited available computing power. For the stochastic 
simulation when the set of strategies are evaluated, the scenarios fan is used. It is because the 
set of alternative strategies enlarges over the structure of scenarios tree and it is the very time 
consuming to evaluate all strategies for the initial and rebalancing time moments.

5.2. Notation for decisions

Let define that n -dimensional vector x represents values that are under control of the insur-
ance company management. Note that the spaces, from which the decisions are to be chosen, 
are taken as finite-dimensional but of possible varying dimensionality. If the structure of 
scenarios fan is used to describe the uncertainty, the initial decision x – x0 taken at the current 
time moment can only be considered. It is because of the requirements of decision-making 
models under uncertainty explained in the paper (Dupačová et al. 2000). The multi-stage 
decision-making model must avoid looking into the future in an inappropriate fashion. To 
prevent this occurrence, the special constraints are added to the model, called non-anticipatory 
conditions, i.e. the decision taken at any time does not directly depend on future realizations 
of stochastic parameters or on future decisions.

If the structure of multi-stage scenarios tree is used for describing the randomness, the 
decisions are of two types: the initial decision x0 taken at the current moment (anticipa-
tion) and the recourse decisions xτ , τ > 0  taken at τ τ∈{ }1,...,T  recourse stages (adapta-
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tion). Thus, the decision at stage τ > 0  is the random variable x Rn
τ : Ω → ; decisions are 

set as n -dimensional, but in general, may be of possibly varying dimensionality. In the 
stochastic programming model, the observations and decisions are given as a sequence 
x x x x

T T0 1 1 2 2, , , , ,..., ,ξ ξ ξ τ τ( ) ( ) ( ) , where x x T= { } =τ τ

τ

0
 is a decision process, measurable 

function of ξ ξτ τ

τ
= { } =1

T . The constraints on a decision at each stage involve past observa-
tions and decisions. It means that decision xτ  at τ  is measurable with respect to F Fτ ⊆ . 
Thus, the decision process is said to be non-anticipative based on the notion described in the 
paper (Dupačová et al. 2000), i.e. the decision x x xτ τ τ τξ= ( )− −1 1,  taken at any τ > 0  does 
not directly depend on future realizations of stochastic parameters or on future decisions. 
At the time when initial decision x0 must be chosen, nothing about the random elements in 
our process has been pinpointed. But in making a recourse xτ  decision in stage τ  we have 
the revealed current information ξ ξτ1,...,( )  until this moment and the residual uncertainty  

ξ ξτ+( )1,...,
Tt till the end of time horizon. The distribution for ξ ξτ+( )1,...,

Tt  is its conditional 
probability distribution given ξ ξτ1,...,( ) . By a strategy of insurance company, we will mean 
a choice of the initial decision x0 together with a choice of recourse functions x x

Tt1,...,( ) . 
Decisions that are taken have no effect on the probability structure. Thus, we have a multi-
stage decision-making formulation. The set x of these control values is called strategy.

6. The model of decision-making in insurance business

6.1. The conceptual model

The decisions of investment and underwriting activity of insurance company concern the asset 
liability management. Thus, the framework given in Fig. 1 can be applied. The asset manage-
ment is associated with investment activity, and the liability management is associated with 
underwriting activity. The revenues from the performance of investment and underwriting 
business are added to the insurer’s asset, while the wealth is depleted by outflows allocated 
to various investments and by claims of its clients. The main goal of a modelled company is 
to earn the profit and to cover claims carried by its clients.

Table 1. Risk factors and decision variables of investment activity

Risk factors of investment business

Inflation rate q t1  and its expectations Rt T
q
,

Real interest rate r t1  and its term structure Rt T
r
,

Return on cash Rt t t
nom
−∆ ,

Yield of discount bonds Rt T
nom
,  with maturity T

Return on stocks Et

Decisions of investment performance

Weights α α1,..., J( )  of asset allocation to J investments
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Table 2. Risk factors and decision variables of underwriting activity

Risk factors of underwriting business

Number of non-catastrophe losses Nt
noncat

Severity of non-catastrophe losses Xt
noncat

Number of catastrophes Nt
cat

Severity of catastrophe losses Xt
cat

Exposure units wt
Underwriting cycles Π
Expenses Gt

Decisions of underwriting performance

Safety loading θ  in determining the size of premiums Bt

The cash flows of both investment activity and underwriting activity are influenced by 
risk factors, which are classified in Tables 1–2.

The set of scenarios is simulated to represent the behaviour of each stochastic risk fac-
tor. Strategy is evaluated or generated to represent the decisions of a modelled insurance 
company

The main feature of risky variables is that they are uncontrollable, i.e. the insurance com-
pany can not affect their values. The set of scenarios having the structure of scenarios fan is 
created to represent the behaviour of stochastic risk factors in the future. The index t ≥ 0  
for time discretization is introduced in order to construct the scenarios fan. The set of all 
discretization moments is denoted by t T t∈{ }0,..., , where t T t=  is a time horizon, t – 0 is 
an initial time moment. Simulation time step ∆t  is the time span from time t – 1 to time t.

The scenarios fan can be approximated by multi-dimensional multi-stage scenarios tree 
employing some clustering approach, introducing additional stages τ ≥ 0  for determined 
decision moments in advance. Thus, stages are connected with decision moments. The set of 
all decision moments is denoted by τ τ∈{ }0,...,T , where τ τ= T  is a time horizon, τ = 0  is 
an initial decision moment. The stage is the time span ∆τ  from time τ −1  to time τ . Since 
the investment strategy is considered in this paper, the scenario tree has to be constructed 
only for asset returns.

The models of risky variables concerning the investment activity are based on the refer-
ence (Hibbert et al. 2001); the models concerning the underwriting activity are based on the 
reference (Kaufmann et al. 2001). The short description of these variables is given below.

Inflation rate q t1  and its expectations Rt T
q
, are stochastic variables used to represent the 

possible behaviour of short-term inflation rate and inflation expectations over different 
time horizons T. The scenarios fan is created by discretization procedure of two factors 
Ornstein-Uhlenbeck process in continuous time and its Monte Carlo simulation. Values of 
these stochastic variables are simulated over all planning horizon with simulation step ∆t . 
Inflation rate correlates with real interest rate r t1  through the dependency structure – Gaus-
sian copula or Student’s copula (Section 3.3). Inflation rate has impact on the severity of 
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company’s non-catastrophe and catastrophe losses, as well as on premiums size. This relation 
is modelled introducing the variable qt

X , which describes inflation’s impact on loss sever-
ity, and variable 

qt
X c, , which describes the cumulative change in loss severity triggered by 

changes in inflation rates.
Real interest rate r t1  and its term structure Rt T

r
,  are the stochastic variables used to rep-

resent the possible behaviour of short term real interest rate and the yield of real discount 
bonds with maturity T. The scenarios fan is created by discretization procedure of two fac-
tors Ornstein-Uhlenbeck process in continuous time and its Monte Carlo simulation. The 
values of these stochastic variables are simulated over all planning horizon with simulation 
step ∆t . Real interest rate r t1  correlates with inflation rate q t1  through the dependency 
structure – Gaussian copula or Student’s copula (Section 3.3).

Return on cash Rt t t
nom
−∆ ,  is a stochastic variable, obtained by combining the short-term 

inflation rate q t1  and short-term real interest rate r t1 . The scenarios fan with simulation 
step ∆t is created by summing up the corresponding values from the scenarios fan for infla-
tion rate and for real interest rate. The multi-stage scenarios tree with stages τ  for return on 
cash R t1  is constructed to approximate the scenarios fan of Rt t t

nom
−∆ , , employing the clustering 

procedure described in the reference (Pranevičius and Sutienė 2007).
Yield of discount bonds Rt T

nom
,  is a stochastic variable used to describe the return of nominal 

discount bonds for defined discretization time moments t with time maturity T. The scenarios 
fan of yields for nominal discount bonds for each time maturity T is obtained by summing up 
the corresponding values from the scenarios fan of inflation expectations Rt T

q
,  and from the 

scenarios fan of the term structure for real interest rate Rt T
r
, . The multi-stage scenarios tree 

with stages τ  for return on bonds portfolio R2τ  is constructed to aggregate and to approxi-
mate the scenarios fans of Rt T

nom
,  with time maturity T, employing the clustering procedure 

described in the reference (Pranevicius and Sutienė 2007).
Return on stocks Et  is a stochastic variable used to generate the total return from stocks, 

using two regime Markov chain model. The scenarios fan is constructed for defined time 
discretization moments t. The multi-stage scenarios tree with stages τ  for return on stocks 
R3τ is constructed to approximate the scenarios fan of Et , employing the clustering procedure 
described in the reference (Pranevičius and Sutienė 2007).

Number of non-cat losses Nt
noncat  and mean severity of non-catastrophe losses Xt

noncat  are 
stochastic variables used to describe the total non-catastrophe losses for defined time discreti-
zation moments. These losses depend on the written exposure units wt . The scenarios fan of 
number of non-catastrophe losses is created by sampling procedure from Negative Binomial 
distribution; the scenarios fan of mean loss severity is sampled from Gamma distribution. 
The loss severity is influenced by the size of inflation rate.

Catastrophes Nt
cat  can occur accidentally, which generate the catastrophe losses, modelled 

by the severity of catastrophe losses Xt
cat . Since their values are stochastic, the scenarios fan is 

created by sampling procedure: the number of catastrophes Nt
cat  is sampled from Poisson dis-

tribution, and the severity of catastrophes Xt
cat  is sampled from Lognormal distribution.

Exposure unit wt  is a stochastic variable used to describe the number of persons or 
properties exposed to insurance losses. To simulate its values with simulation step ∆t , the 
autoregressive process of order 1 is assumed. The scenarios fan is created by simulation 
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procedure. Exposure units influence the values of number of non-catastrophe losses, the 
values of expenses and the values of written premiums.

Underwriting cycles Π  are stochastic variables, simulated from the homogeneous Markov 
chain model and used to describe the states of competition between the insurance companies. 
Thus, in every underwriting cycle the size of written premiums is modified by introducing 
the coefficients depending on the state of underwriting cycle. The scenarios fan is created to 
represent the transition probabilities at each simulation step ∆t .

Expenses Gt  are stochastic variables and depend on the written exposure units wt . The 
deterministic relation is used to model the dependency from exposure units.

Written premiums Bt  are separated from the earned premiums Bt
earn . The separation of 

these premiums is done because not all premiums are collected at once for time t, some of 
them can be received after the time t. Written premiums Bt  are influenced by the change in 
loss trends qt

X , by the position in the underwriting cycle Π , and by the number of written 
exposures wt .

For the risky variables of real interest rate and inflation rate, the dependency structure 
using functions of Gaussian copula and Student’s t-copula are employed: short-term real in-
terest rate r t1  correlates with short-term inflation rate q t1 , and long-term real interest rate r t2  
correlates with long-term inflation rate q t2 . Contemporaneous dependencies among these 
variables are identified through Wiener processes dZ t N g dt dti i( ) ( ) , , i = 1 4, . To model 
the dependency between these stochastic drivers, we construct the joint distribution Ft  by 
linking these marginal distributions through the copula function:

 F y y y y C y g t
t

y g t
t

y g t
tt 1 2 3 4

1 2 2 2 3 3, , , , ,( ) =
−


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where C is the 4-dimensional copula function – Gaussian or Student’s tν  dependency struc-
ture (Section 3.3). In a discrete form, let Wiener processes dZ ti ( )  be represented by εit , 
i = 1 4, :

 ε εit i ig t t ∆ + ∆( ) , εi N 0 1,( ) . 

Thus, the dependency structure can be described with the joint distribution Ft  by linking 
the marginal distributions εi N 0 1,( ) , i = 1 4,  through the copula function. We get

 F y y y y C y y y yt 1 2 3 4 1 2 3 4, , , , , ,( ) = ( ) ( ) ( ) ( )( )Φ Φ Φ Φ , 

where C is the 4-dimensional copula function (Section 3.3). The simulation algorithm of this 
equation with incorporated Gaussian copula or Student’s t2 copula is given in the reference 
(Pranevičius and Sutienė 2006).

Making adequate decisions, the modelled company can hedge the risk of these uncertain-
ties. In this case of a study, the decisions are evaluated for the underwriting and investment 
business jointly. The value of safety loading θ = 0,2 is fixed, and the decisions concerning the 
investment activity are explored.
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Weights α α1,..., J( )  of asset allocation to various investments J are modelled as decision 
variables and used to represent the different asset mixes by different combinations of the 
weights applied to the investment portfolio. The free reserves, resulted from the underwrit-
ing activity plus the initial surplus D0 , are allocated among a few aggregated asset classes, 
such as cash, bonds and stocks. It is we assumed that the investments in these asset classes 
are bounded with lower limit and upper limit as follows: α1 0 02= ( ),  for cash, α2 = (0,4, 
0,9) for bonds, and α2 =  (0,3, 0,6) for stocks. These constraints are introduced in the model, 
because such requirements are usually under statutory restriction. The base strategy is chosen 
as the fraction (0, 0,4 0,6) to cash, bonds and stocks from the invested wealth. Since the set 
of alternatives decisions can be enough big, especially if more asset classes are considered, 
two approaches are applied for choosing the weights of asset allocation:

The best strategy is found at the initial time moment t = 0, applying the stochastic simula-
tion approach described in Section 5. The set of alternative strategies is evaluated over the 
set of simulated scenarios having the structure of scenarios fan.

The optimal strategy for the weights of asset allocation at the initial time moment τ = 0  
and the recourse strategies for the weights of asset allocation to various investments at recourse 
stages τ > 0  investments are found, applying the stochastic programming (optimization) 
approach. The decisions at recourse stages are considered as rebalancing decisions, antici-
pated at the initial time moment. The objective function and constraints, both incorporating 
stochastic variables, are formulated. The multi-stage multi-dimensional scenario tree with 
nodes containing information about returns on cash R t1 , bonds R2τ , and stocks R3τ  is used 
in decision generating.

6.2. The formal model

The described decision-making model is specified by formal method Piece Linear Aggregates 
(PLA) (Pranevičius 2004). The activity of the modelled company is formalized by introduc-
ing the following aggregates:

• Aggregate “RF” is used to specify the certain risk factor, arising from the insurance 
company’s environment. Since there exist several types of risk factors, the aggregates 
are classified into 2 groups:
• The first group “ASG” represents Asset Scenario Generator (ASG) and combines 

the aggregates used to specify the behaviour of stochastic risk factors that influence 
the company’s cash flows of investment activity. Some of these risk factors have a 
link with risk factors from “LSG” group.

• The second group “LSG” represents Liability Scenario Generator (LSG) and com-
bines the aggregates used to specify the behaviour of stochastic risk factors that 
influence the company’s cash flows of underwriting activity.

• Aggregate “DS” is used to specify the dependency structure among correlated stochastic 
variables in a multivariate structure incorporating copula function.

• Aggregate “UA” is used to specify the underwriting activity itself. The decisions con-
cerning the underwriting activity are determined. In this case of a study, the safety 
loading θ  is fixed.
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• Aggregate “IA” is used to specify the investment activity itself. The decisions concern-
ing the weights α α1,..., J( )  of asset allocation to various investments J are explicitly 
considered.

• Aggregate “A” is used to specify the accounting of insurance company’s cash flows 
based on the equation:

 ∆ = ∆ + − −D I B Z Gt t t
earn

t
ult

t , 

where Dt  is the surplus of an insurance company, Bt
earn  is a value of earned premiums, Zt

ult

is a value of ultimate losses of modelled insurance company, Gt  is a value of general expenses 
of modelled insurance company, ∆ It  is an income from assets’ investment.

The development of written premiums Bt  and computation of earned premiums Bt
earn  are 

given in reference (Kaufmann et al. 2001). Based on this reference, it is still needed to employ 
some principles for premiums determining at the current time. That’s why referring to the 
premiums principles (Landsmana and Sherrisb 2001), we set the initial premiums B0  as

 B w N Xnoncat noncat
0 0 0 01= +( )θ , 

Fig. 7. Aggregate scheme for the decision-making model in insurance business

aSg – asset scenario generator

lSg – liability scenario generator

ag – aggregate

Rf – risk factor

dS – dependency structure

a – surplus accounting

Ia – inverstment activity

Ua – investment activity

x – input

y – output

Insurance company
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where w0  – written exposure units at the initial time moment t = 0 , N noncat
0  – the number 

of non-catastrophe losses at the initial time moment t = 0 , X noncat
0  – the mean severity of 

non-catastrophe losses at the initial time moment t = 0 , θ∈( ]0 1,  – the safety loading.
The structural scheme of related system is depicted in Fig. 7. It is the base structure which 

is used in developing the decision-making model for a modelled insurance company.

7. The numerical experiment

We will compare the results obtained from stochastic simulation and stochastic optimization 
approaches in the context of a specific investment portfolio problem of insurance company. 
The portfolio selection problem is modelled at the strategic level, where resources are al-
located among a few aggregated asset classes, such as cash, stock and bonds. The objective 
is to maximize the expected portfolio value at the end of the horizon net of costs, subject to 
some constraints.

In the experiment, we will have 4 cases at all (Table 3). The copula functions are used to 
describe the dependency structure among real interest rate and inflation rate. Two cases are 
separated for the instances when catastrophes losses are ignored and when they have a low 
probability to occur.

Table 3. The considered cases for the experiment

Instances of the considered experiment Gaussian copula Student’s t2 copula

Catastrophe event is ignored YES YES
Catastrophe event is not ignored YES YES

The common settings for both decision-making approaches are as follows. Scenarios 
fan for each of the stochastic element consists of 1000 scenarios, which are generated with 
1-month step during 10 years time horizon. The initial investment consists of the current 
surplus from

underwriting business plus the initial surplus D0
45 10= ⋅ . As it was described in Sec-

tion 6.1, the lower bound for bonds is usually statutory restrictions; thus, stocks and cash 
investments are chosen so that the total weights in the remaining portfolio sum up to 100 %. 
The transaction costs for purchasing and selling the assets are ignored.

7.1. The scheme for insurance company management

The implemented scheme, which is constructed based on the Fig. 1 and Fig. 7, for strategy 
evaluation and strategy generation is depicted in Fig. 8. The best or optimal decisions are 
associated with Asset Liability Management (ALM) in a modelled insurance company.

From Fig. 8, strategy evaluation is based on scenarios fan for each stochastic risk factor 
concerning the investment and underwriting activities. Strategy generation is based on sce-
narios fan for each stochastic risk factor concerning the underwriting activity and scenarios 
tree for stochastic risk factors concerning the investment activity.
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7.2. Strategy evaluation for the investment business

For the strategy evaluation, we will explore how different levels of asset returns affect the 
insurance company’s surplus. We vary the scenarios and fix the concrete values of portfolio 
weights at the current time moment t = 0 . As depicted in Fig. 8, for the strategy evaluation 
(if stochastic simulation is applied), the scenarios fans for the classes of assets and liabilities 
have to be generated. The alternative strategies (Table 4) are tested over the equation, which 
describes the cash flows of a modelled insurance company (Section 6.1). The simulation 
is performed for each strategy separately. Then, the surplus is evaluated at the end of time 
horizon, and the efficient frontier of decisions is constructed.

For the output analysis and strategy evaluation we use the measures:
• Surplus reward as the mean value of scenarios for estimated surplus at the end of time 

horizon.

Fig. 8. Structural scheme of insurance company management

Table 4. The set of alternatives strategies

Case No. Asset mix (cash, bonds, stocks), %

1
2
3
4
5

(0, 40, 60)
(0, 70, 30)

(10, 40, 50)
(10,60,30)
(20, 50, 30)
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• The mean value of the total duration TT 
of negative surpluses over all planning 
horizon.

The obtained results are analyzed through the 
efficient frontier concept (Figs 9–12).

From Figs. 9–12, one can see that strategies 
2, 5 and partially 5 form the efficient frontier in 
all cases.

For the case, when the catastrophe event is 
ignored (Figs 9–10), it can be seen that under 
Student’s t2 dependency structure the surplus 
reward is lesser and the risk is higher compared 
with the Gaussian dependency structure. Choos-
ing the strategy with minimal risk, the Case 2 
with investment portfolio composition (0, 70, 
30) in cash, bonds, and stocks is recommended 
independently from Gaussian or Student’s t2 de-
pendency structure.

For the case, when the catastrophe event is not 
ignored (Figs 11–12), it can be seen that under 
Student’s t2 dependency structure, the reward is 
higher, but the risk is lower comparing it with 
the reward and risk under Gaussian dependency 
structure. For choosing the strategy with minimal 
risk, the Case 2 with investment portfolio com-
position (0, 70, 30) in cash, bonds, and stocks 
is recommended independently of Gaussian or 
Student’s t2 dependency structure is employed.

Fig. 9. The efficient frontier under 
Gaussian copula without catastrophe 
event
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Fig. 10. The efficient frontier under 
Student’s t2 copula without catastrophe 
event
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Fig. 11. The efficient frontier under 
Gaussian copula with catastrophe event
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Fig. 12. The efficient frontier under 
Student’s t2 with catastrophe event
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7.3. Strategy generation for the investment 
business

For the strategy generation, where the rebalancing 
of decisions is possible, the planning horizon is 
decomposed into stages. The first stage is the initial 
time moment τ = 0 , and the recourse stages are t = 
(1, 3, 6, 10) in years. It determines that we have 5 
stages during 10 years time horizon. The scenario 
tree with 5 stages (Fig. 13) and with 3 scenarios per 
each node is generated. It is used as an input for 
a considered problem. The target value of surplus 
determined at the end of 10 years is needed for the 
optimization task and is set equal to 4 105⋅ .

Fig. 13. 5-stage scenarios tree of stochastic 
parameters

The following formulation is fairly standard in Asset Liability Management applications 
of stochastic optimization.

Inventory constraints are used to describe the dynamics of holdings in each asset class:

 h R h p qj
s

j
s

j
s

j
s

j
s

τ τ τ τ τ, , , , ,= + −−1 , 

where τ τ∈{ }0,...,T , s S= 1,..., , j J= 1,..., , R j
s
τ,  – return on asset j (random) over period  

τ τ−[ ]1, in scenario s are parameters; and p j
s
τ,  – non-negative purchases of asset j at time 

τ in scenario s, q j
s
τ,  – non-negative sales of asset j at time τ  in scenario s, h j

s
τ,  – holdings 

in asset j in period τ τ, +[ ]1  are decision variables. For the initial time moment τ = 0 , the 
equation of inventory constrains is:

 h h p qj
s

j j
s

j
s

0
0

0 0, , ,= + − , 

where hj
0  – initial holdings in asset j, j J= 1,..., , s S= 1,..., .

Budget constraints are used to guarantee that the total expenses do not exceed revenues:

 1 1+( ) ≤ −( ) + −∑ ∑k p k q V Lj
p

j J
j

s
j
q

j J
j

s

ε
τ

ε
τ τ τ, , , 

where τ τ∈{ }0,...,T , s S= 1,..., , j J= 1,..., , k j
p ≥ 0  – transaction costs for buying asset j, 

k j
q ≥ 0  – transaction costs for selling asset j, Vτ  – cash inflows of underwriting business 

(random) in period τ τ−[ ]1, , Lτ  – cash outflows of underwriting business (random) in 
period τ τ−[ ]1,  are parameters.

Portfolio constraints give limits for the allowed range of portfolio weights:

 b h h b hj j
s

j J
j

s
j j

s

j J
τ

ε
τ τ

ε
, , ,∑ ∑≤ ≤ , 

where τ τ∈{ }0,...,T , s S= 1,..., , j J= 1,..., , h j
s

j J
τ

ε
,∑ – total wealth at time τ , b j  – lower 

bound for the proportion of h j
s

j J
τ

ε
,∑  in asset j, b j  – upper bound for the proportion of 

h j
s

j J
τ

ε
,∑  in asset j are parameters.
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Of course, the income should be sufficient to cover the liabilities and to earn the gain. 
To encourage such outcomes, let ψτ  be the target wealth at the horizon τ τ= T , wT

s
 be an 

excess over target wealth at horizon τ τ= T , wT
s

 be a deficit under target wealth at horizon
τ τ= T  . The objective function will include d1 , the penalty coefficient for the shortfall, and 
d2 , the reward coefficient for the surplus. Thus, the required wealth constraint is:

 
, 1

s ss s
T j T j T T TT Tj J

R h V L w wτ τ τ τ ττ τ−ε
+ − − + = ψ∑ , 

and the objective function:

 min 



π
τ

τ τs
s

S
T

T
s

T
sd w d w

=
∑ ⋅ − ⋅



1

1 2 , 

where 


πs  – probability of scenario s.
Given optimization problem is a multi-stage stochastic program with recourse. The flows 

for the optimization model are generated from Scenario Generator. Random parameters
Rt j

s
,  are described by the scenario tree (Fig. 13), whose nodes are 3-dimensional vectors. It 

was solved using SLP_IOR solver (Kall and Mayer 2007), developed by P. Kall and J. Mayer 
(University of Zurich, Switzerland). The given problem is imported to the solver in SMPS 
standard (Gassmann and Kristjansson 2007). It is the extension of well-known MPS format 
for deterministic optimization programs.

The given optimization task is reformulated in matrix notation. To do this, order the 
number of possible asset classes for an allocating resources in any way, and let J be the 
number of assets. Define vectors:
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 B diag b bJ= ( )1,..., , B diag b bJ= ( )1,..., , I J J
 = ×1 . 

Then, we may express the given problem in a matrix notation. For τ τ∈{ }0,...,T , define
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In the first stage, the initial decision x0  has to be chosen from the set x R A x bJ
0

3 2
0 0 0∈ ∞{ }+ :  

at a direct cost c x0 0 . The notation ∞  denotes the equality or inequality respectively. Depending 
on the decision x0  taken at present and the realizations ξτ τ

τ
{ } =1

T  that would be available in the 
future, there would be the indirect costs due to the recourse actions. If the realization ξ1  is ob-
served, then the recourse decision x1  is chosen from the set x R A x b W xJ

1
3 2

1 1 1 1 1 0∈ ∞ − ( ){ }+ : ξ  
at a direct cost c x1 1 . Such logic of finding decisions is applied to all stages until the end of 
time horizon is reached.

According to the settings for a numerical experiment, the non-zero pattern of constraints 
is depicted in Fig. 14. The obtained results the optimal value of objective function for 4 ex-
periment’s cases (Table 3) are analyzed through Tables 5–6, distinguished for the cases, 
when the catastrophe event occurs or not. The negative value of objective function means 
that we get the excess over the target capital, i.e. the rebalancing in recourse stages enlarges 

δ τ
τ τ

τ

T

T
otherwise

= =




1
0
, ,
, .

if  

the insurance company’s surplus. The portfolio 
compositions for 4 considered cases are also given 
in Tables 5–6.

For all cases the recommended decisions for 
the optimal composition of investment portfolio 
in cash, bonds, and stocks respectively is the same. 
We get the excess over the target capital, i.e. the 
rebalancing in recourse stages enlarges the insur-
ance company’s surplus. But the obtained surplus 
at the end of planning horizon is different for the 
considered 4 cases.Fig. 14. The non-zero pattern of constraints



 369Technological and Economic Development of Economy, 2008, 14(3): 344–373

If the copula effect on the portfolio composition is explored, one can see that under 
Student’s t2 dependency structure the excess over target surplus is larger than the excess 
obtained under Gaussian dependency structure if the catastrophe event is ignored (Table 5). 
The conclusion is opposite if catastrophe event is not ignored (Table 6). The optimal strategy 
vector is (0, 40, 60) in cash, bonds, and stocks for all cases.

7.4. Stability testing for the stochastic program 

Since the input to the stochastic program the multistage multidimensional scenarios tree  
involves the randomness, it should be tested for stability (Kaut and Wallace 2007). Let de-

note the constructed scenarios tree by 
 

ξ ξτ τ

τ
= { }

=1

T
. The stability requirement means that if 

we generate G scenarios trees 
 

ξ ξ
τ τ

τ
g g T

= { }
=1

, g G= 1,  and solve the stochastic programming 
problem with each tree, we should get approximately the same optimal value of the objec-
tive function. Since we do not have a representation of the true distribution, we perform the 
in-sample stability testing.

To test the in-sample stability, 25 five-stage 3-dimensional scenarios tree with branching 
scheme Kτ = 2  and Kτ = 3  were generated. The instance of Gaussian dependency structure 
between real interest rate and inflation rate, with the catastrophe event not ignored, is ex-
plored. The stochastic optimization problem is formulated as in Section 7.3. Sample means 
and standard deviations of the optimal values of investment problem obtained for different 
sizes of scenarios set and different branching schemes are given in Table 7.

One can see that the standard deviation is reduced when the number of simulated data 
paths is enlarged. The optimal solution obtained from the scenario tree with branching scheme  
Kτ = 3 a has larger standard deviation comparing to the case with branching scheme Kτ = 2 . 

Table 5. The optimal values under different dependency structures without catastrophe event

Gaussian 
dependency

Student’s t2-
dependency

Stochastic value of objective function, · 105 –7,6041 –7,7565

Expected value of objective function, · 105 –7,5982 –7,7539

Strategy (cash, bonds, stocks) at t = 0 (0, 40, 60) (0, 40, 60)

Table 6. The optimal values under different dependency structures with catastrophe event

Gaussian 
dependency

Student’s t2-
dependency

Stochastic value of objective function, · 105 –1,7746 –1,7720

Expected value of objective function, · 105 –0,2228 –0,2199

Strategy (cash, bonds, stocks) at t = 0 (0, 40 ,60) (0, 40, 60)
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We can not say anything about the “true” optimal solution, because we do not have the “true” 
probability distribution of stochastic variables.

Table 7. In-sample stability test for the instance with Gaussian dependency structure and catastrophe losses

Value of objective function
# of simulated data paths (scenarios)

1000 1500 2000

Branching scheme Kτ = 2
Average, · 105 –1,3073 –1,3759 –1,3839
Standard deviation, · 105 0,6365 0,6127 0,6009

Branching scheme Kτ = 3
Average, · 105 –1,9517 –1,8258 –1,7324
Standard deviation, · 105 0,8095 0,7606 0,6128

8. Conclusions

In this paper, the composition of investment portfolio in insurance business was considered 
as the problem of dynamic decision-making under uncertainty. The different asset mixes 
by different combinations of the weights applied to the investment portfolio were explored, 
i.e. resources were allocated among a few aggregated asset classes, such as cash, stock and 
bonds.

The performance of two alternative approaches applied for the decision-making under 
uncertainty was compared. The results showed that for the considered case the multistage 
stochastic programming (optimization) dominated the stochastic simulation approach: the 
excess over the target wealth (which was set approximately equal to the surplus at the end 
of planning horizon if stochastic simulation was applied) is obtained. Investment strategy 
obtained from simulation model was different from the strategy generated from stochastic 
program. It determined that the stochastic parameters of optimization problem had the 
scenarios tree structure and allowed the possibility to rebalance the decisions in the plan-
ning horizon, while the stochastic simulation was applied for the strategy evaluation over 
scenarios fan and did not allow adapting the strategy. If the simulation approach was applied, 
the rebalancing strategies were difficult to evaluate because the set of alternatives strategies 
was enough large and it was very time consuming. It is a drawback of this approach. The 
multistage stochastic optimization allows to choose optimal decisions, which means that the 
objective will be achieved in optimally way. But this field is still missing good solvers, and at 
this moment it is a very intensive research area.

During the investigation of copula effect on the surplus of insurance company, it was 
concluded that the employed copula function and the probability of catastrophe event had 
the influence on the size of surplus, but the strategy vector was the same.
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JUNGINIŲ ĮTAKOS DRAUDIMO KOMPANIJOS INVESTICINIAM 
PORTFELIUI TYRIMAS

H. Pranevičius, K. Šutienė

Santrauka

Sprendimai, susiję su ilgalaikiu draudimo kompanijos veiklos planavimu, yra dažniausiai veikiami 
aplinkos neapibrėžtumų, todėl dalis ar visi modelio parametrai nėra iki galo žinomi tuo momentu, 
kai sprendimai turi būti priimti. Šie parametrai dar vadinami rizikos veiksniais. Kadangi draudimo 
kompanijos veiklai įtaką daro tam tikra rizikos faktorių aibė, tai formuojama daugiamatė neapibrėžties 
erdvė su galimomis priklausomybėms tarp šios erdvės kintamųjų – rizikos veiksnių. Jų priklausomybei 
modeliuoti taikoma alternatyvi metodika – junginiai: tai funkcijos, leidžiančios aprašyti netiesines 
priklausomybes tarp stochastinių kintamųjų, nebūtinai pasiskirsčiusių pagal normalųjį dėsnį. Šio darbo 
tikslas – ištirti junginių įtaką draudimo kompanijos sprendimams, susijusiems su ilgalaikiu investicinės 
veiklos planavimu. Tokio tipo uždaviniuose egzistuoja gan daug stochastinių parametrų, ir sprendimai turi 
būti parenkami taip, kad grąža iš investuojamo turto leistų padengti draudimo kompanijos įsipareigojimus 
laikui einant bei uždirbti kuo daugiau pelno. Tikslui pasiekti taikomos dvi skirtingos sprendimų priėmimo 
modeliavimo metodikos: tai imitacinis modeliavimas ir stochastinis programavimas (optimizavimas). 
Šios metodikos daugiausia skiriasi tuo, kaip parenkami sprendimai: stochastinis imitavimas remiasi 
efektyvaus rinkinio koncepcija, o taikant antrąjį metodą sprendimai gaunami iš daugelio tochastinio 
optimizavimo modelio etapų. Bendra savybė yra ta, kad stochastinis procesas, aprašantis investicinės 
veiklos rizikos faktorius, yra esminė įvestis į abu modelius ir yra apibrėžiamas sudarant scenarijų aibes. 
Eksperimento pavyzdyje taikomos dvi funkcijos – Gauso junginys ir Stjudento t2 junginys – šių rizikos 
veiksnių priklausomybėms aprašyti generuojant scenarijų aibes.

Reikšminiai žodžiai: stochastinis imitavimas, stochastinis optimizavimas, scenarijų generavimas, 
sprendimų priėmimas, junginių funkcijos, investicinis portfelis, turto ir įsipareigojimų valdymas, drau-
dimas.
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