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Abstract. Hesitant fuzzy sets (HFSs) are a useful tool to manage situations in which the decision 
makers (DMs) hesitate about several possible values for the membership to assess a variable, 
alternative, etc. However, HFSs have the information loss problem and cannot identify different 
DMs, which interferes with the application of HFSs in decision making. To overcome these lim-
itations, we develop the extended hesitant fuzzy sets (EHFSs) in this paper. As an extension of 
HFSs, EHFSs have close relationships with existing fuzzy sets including intuitionistic fuzzy sets 
(IFSs), fuzzy multisets (FMSs), type-2 fuzzy sets (T2FSs), dual hesitant fuzzy sets (DHFSs), and 
especially HFSs. We propose a concept of extended hesitant fuzzy elements (EHFEs), then study the 
basic operations and the desirable properties of EHFEs in detail. Some extended hesitant distance 
measures are developed to illustrate their advantages comparing with the existing hesitant distance 
measures. To extend EHFSs to decision making, we combine the proposed distance measures with 
the Dempster-Shafer belief structure.

Keywords: extended hesitant fuzzy sets (EHFSs), extended hesitant fuzzy elements (EHFEs), hesitant 
fuzzy sets (HFSs), hesitant fuzzy elements (HFEs), distance measure, decision making.
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Introduction

Zadeh (1965) introduced fuzzy sets (FSs) as a powerful tool to address fuzziness, which 
have wide applications in practice (Baležentis et al. 2012; Stankevičienė, Mencaitė 2012). 
Then researchers developed some extensions of FSs, such as intuitionistic fuzzy sets (IFSs) 
(Atanassov 1986), type-2 fuzzy sets (T2FSs) (Zadeh 1975; Mizumoto, Tanaka 1976; Dubois 
1980), fuzzy multisets (FMSs) (Yager 1986), interval-valued fuzzy sets (IVFSs) (Zadeh 1975), 
interval-valued intuitionistic fuzzy sets (IVIFSs) (Atanassov, Gargov 1989), hesitant fuzzy 
sets (HFSs) (Torra 2010) and dual hesitant fuzzy sets (DHFSs) (Zhu et al. 2012b).
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Among these sets, IFSs should be one of the most famous extensions of FSs due to the 
simultaneous consideration of the membership and non-membership. From a mathematical 
point of view, IFSs, modeled with two functions that define an interval, can also be considered 
as IVFSs. Actually, IFSs and IVFSs are equipollent generalizations of the FSs. Atanassov and 
Gargov (1989) then proposed IVIFSs as another generalization of IFSs (Xu et al. 2008; Wang 
et al. 2009; Xu 2010; Chen et al. 2011). Be distinct from FSs and IFSs, FMSs, also known as 
bags, permit multiple occurrences of an element, and have wide applications in information 
retrieval (Miyamoto 2003). But, the basic operations of FMSs are not applied to FSs or IFSs. 
Furthermore, FSs, IFSs and FMSs all can be considered as particular cases of T2FSs. T2FSs, 
described by membership functions that are characterized by more parameters, permit the 
fuzzy membership as a FS improving the modeling capability of FSs (Hagras 2004; Doctor 
et al. 2005). However, T2FSs have some difficulties in establishing the secondary membership 
functions, and difficulties in manipulation (Karnik, Mendel 2001; Greenfield et al. 2009; 
Rickard et al. 2009).

HFSs, originally introduced by Torra (2010), have close relationships with IFSs and 
FMSs, and can also be considered as a particular case of T2FSs. The motivation to propose 
HFSs is that when defining the membership of an element, the difficulty of establishing the 
membership is not a margin of error (as in IFSs), or some possibility distributions (as in 
T2FSs) on the possible values, but a set of possible values. Torra (2010) gave an “membership 
problem” to illustrate this situation: two decision makers (DMs) discuss the membership of 
x into A, and one wants to assign 0.5 and the other 0.6, which can be denoted by a hesitant 
fuzzy element (HFE), h = {0.5, 0.6}. In such a case, two values given by the two DMs for the 
membership can be collected into a single HFE.

Moreover, Zhu et al. (2012b) developed DHFSs as a new extension of HFSs. DHFSs are a 
comprehensive tool encompassing several existing fuzzy sets with certain conditions, whose 
membership and nonmembership are represented by a set of possible values respectively. 
For example, DHFSs permit the DMs consider as possible values for the membership a few 
different values as 0.1, 0.2 and 0.3, and for the nonmembership as 0.4 and 0.5. In particular 
cases, DHFSs can reduce to FSs, IFSs, HFSs or FMSs.

Comparing with FSs and IFSs, HFSs can be used to collect discrete data from the math-
ematical point of view. However, as the “membership problem” described above, if the two 
DMs both assign the value 0.5, we can only save one value by the HFE, and loss the other 
one, which appears to be an information loss problem of HFSs. Further, since generallly the 
DMs have different importance in group decision making (Wei et al. 2012; Wu et al. 2012) 
due to their different social importance, position in the group, previous merits etc., a leading 
DM in a group for example, the loss of information provided by the leading DM may lead to 
ineffective results. Therefore, we should extend HFSs to overcome these limitations, which 
is also the topic we should articulate in this paper.

To resolve the information loss problem, we can collect the possible values provided by 
the DMs by several possible value-groups. For example, continued with the “membership 
problem”, if one DM assigns 0.5, another assigns 0.5 or 0.6, we collect one membership 
provided by each DM together resulting in two possible value-groups as (0.5, 0.5) and (0.5, 
0.6). In such a case, all the memberships provided by the DMs are saved and distinguished 
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clearly in the value-groups. Motivated by this idea, we develop a concept of extended hesitant 
fuzzy sets (EHFSs) in this paper, which considers possible value-groups for the membership 
of x into the set A. Furthermore, EHFSs have close relationships with IFSs, T2FSs, FMSs, 
DHFSs and especially HFSs. EHFSs are an extension of HFSs, on the contrary, HFSs can 
also be considered as a particular case of EHFSs. EHFSs increase the richness of numerical 
representation based on the value-groups, enhance the modeling abilities of HFSs, and can 
identify different DMs in decision making, which expand the applications of HFSs in practice.

On the other hand, the distance measure has received more and more attentions over the 
last decades and has wide applications in practice, such as pattern recognition (Li, Cheng 
2002), cluster analysis (Yager 1988), approximate reasoning (Wang et al. 2004) and decision 
making (Wang, Xin 2005; Xu 2010). It is a significant research topic with respect to fuzzy 
theories. For example, some famous distance measures including Hamming distance, Euclid-
ean distance and Hausdorff metric (Diamond, Kloeden 1994; Kacprzyk 1997; Chaudhuri, 
Rosenfeld 1999) have been extended to IFSs (Bustince, Burillo 1995; Szmidt, Kacprzyk 2000; 
Xu 2007b). For HFSs, Xu and Xia (2011) proposed some distance measures under the hesitant 
fuzzy environment, called hesitant distance measures, and gave some examples to show their 
applications in decision making.

As Xu and Xia (2011) explained, the hesitant distance measures can only be used in deci-
sion making with the conditions that all the DMs give their preferences anonymously or have 
the same importance so as to collect their preferences with no difference. This precondition 
interferes with the application of HFSs in practice, because the DMs usually have different 
importance in decision making. To deal with this problem, we develop some extended hesitant 
distance measures which take full advantages of EHFSs so as to show the advantages of HFESs 
comparing with HFSs. Furthermore, in order to take the DMs’ knowledge (Yager et al. 1994) 
and risk preference (Liu, Wang 2007; Merigó, Casanovas 2009; Merigó, Gil-Lafuente 2009) 
into account, we combine the extended hesitant distance measures with Dempster-Shafer 
belief structure, and develop an approach to deal with group decision making problems. An 
energy policy example is also given to illustrate our results.

1. Preliminaries

Atanassov (1986) originally introduced the concept of intuitionistic fuzzy sets (IFSs) below.
Definition 1 (Atanassov, Gargov 1989). Let X be a fixed set, an IFS A on X is represented in 

terms of two functions μ: [0,1]X →  and ν: [0,1]X → , with the condition, 0 ( ) ( ) 1x v x≤ µ + ≤ , 
 x X∀ ∈ , where μ represents the membership and ν the nonmembership of x into the set A. 

IFSs are often represented as , ,A Ax< µ ν > , for all x X∈ .
For convenience, Xu and Yager (2006) called ( , )A Aµ ν  an intuitionistic fuzzy number 

(IFN).
For three IFNs α, α1 and α1, Xu (2007a) gave some operations on them, shown as follows:
1) ( , )c

α αα = ν µ ;
2) 

1 2 1 2 1 21 2 ( , )α α α α α αα ⊕α = µ + µ − µ µ ν ν ;
3) 

1 2 1 2 1 21 2 ( , )α α α α α αα ⊗α = µ µ ν + ν − ν ν ;
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4) λα = (1 (1 ) , ), 0λ λ
α α− − µ ν λ > ;

5) ( ,1 (1 ) ), 0λ λ λ
α αα = µ − − ν λ > .

Torra (2010) defined hesitant fuzzy sets (HFSs) as follows.
Definition 2 (Torra 2010). Let X be a fixed set, a HFS on X is in terms of a function 

that when applied to X returns a subset of [0,1], which can be represented as the following 
mathematical symbol:

 { , ( ) | }E x h x x X= < > ∈ , (1)

Where h(x) is a finite set of some values in [0,1], denoting the possible memberships of the 
element x X∈  to the set E.

For convenience, h(x) is called a hesitant fuzzy element (HFE).
Given three HFEs h, h1 and h2, and let ih−  and ih+  be the minimum and maximum 

memberships in ih  ( 1,2)i =  respectively, Torra (2010) defined some operations which can 
be represented as follows:

1)
 

{1 }c
hh γ∈= − γ ;

2) 1 2 1 2 1 2{ ( ) | max( , )}h h h h h h h h− −= ∈ ≥  ;

3) 1 2 1 2 1 2{ ( ) | min( , )}h h h h h h h h+ += ∈ ≤  .
Xia and Xu (2011) developed some new operations as below:
1) { }hhλ λ

γ∈= γ ,
 

0λ > ;
2) {1 (1 ) }hh λ

γ∈λ = − − γ ,
 

0λ > ;
3) 

1 1 2 21 2 , 1 2 1 2{ }h hh h γ ∈ γ ∈⊕ = γ + γ − γ γ ;
4) 

1 1 2 21 2 , 1 2{ }h hh h γ ∈ γ ∈⊗ = γ γ .

Zhu et al. (2012a) further developed the following relationships for HFEs:
1) ( )1 2 1 2h h h hλ ⊕ = λ ⊕λ ;
2) ( )1 2 1 2h h h hλ λ λ⊗ = ⊗ .
Xia and Xu (2011) gave a method to rank any two HFEs as follows.
Definition 3 (Xia, Xu 2011). For a HFE h, ( ) (1/ # ) hs h h γ∈= γ∑  is called the score func-

tion of h, where #h  is the number of the elements in h. Moreover, for two HFEs 1h  and 2h , 
if 1 2( ) ( )s h s h> , then 1 2h h> ; if 1 2( ) ( )s h s h= , then 1 2h h= .

Torra (2010) gave a definition to the envelope of HFEs as follows.
Definition 4 (Torra 2010). Given a HFE h, an IFN ( )env hA

 
is defined as the envelope of h. 

This number, which will be denoted by ( )envA h , is represented by ( , )µ ν  with μ and ν defined 
as h−µ =  and 1 h+ν = − , where max{ | }h h+ = γ γ ∈  and min{ | }h h− = γ γ ∈ .

Furthermore, some properties of ( )envA h  are shown as follows:
1) ( ) ( ( ))c c

env envA h A h= ;
2) 1 2 1 2( ) ( ) ( )env env envA h h A h A h=  ;
3) 1 2 1 2( ) ( ) ( )env env envA h h A h A h=  .
Zhu et al. (2012b) originally introduced the concept of dual hesitant fuzzy sets (DHFSs).
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Definition 5 (Zhu et al. 2012b). Let X be a fixed set, then a DHFS D on X is described as:

 { , ( ), ( ) | }D x h x g x x X= < > ∈ , (2)
in which h(x) and g(x) are two sets of some values in [0,1], denoting the possible member-
ships and nonmemberships of the element x X∈  to the set D respectively, with the condi-
tions 0 , 1≤ γ η≤ , 0 1+ +≤ γ + η ≤ , where ( )h xγ ∈ , ( )g xη∈ , ( ) max{ }h x

+
γ∈γ = γ , and 

( ) max{ }g x
+

η∈η = η  for each x X∈ .
For convenience, the pair ( ) ( ( ), ( ))d x h x g x=  is called a dual hesitant fuzzy element 

(DHFE) denoted by ( , )d h g= .

2. EHFSs and basic operations and properties

2.1. EHFSs

Given several HFSs, we use a Cartesian product of HFSs to construct an extended hesitant 
fuzzy set (EHFS) as follows.

Definition 6. Let X be a fixed set, 
( )

( ) { }
DD

D Dh x
h x

γ ∈
= γ  ( 1, , )D m=   be HFSs on X. 

Then, an EHFS, that is 
DhH , is defined as:

 
{ }1 11 ( ), , ( ) 1( ) ( ) ( ) ,( ( ), , ( )) |

D m mh m h x h x mH x h x h x x x x x Xγ ∈ γ ∈= × × = < γ γ > ∈


   . (3)

For convenience, we call:

 1 11 , , 1{( , , )}
m mm h h mH h h γ ∈ γ ∈= × × = γ γ



   , (4)

an extended hesitant fuzzy element (EHFE).
For 

1 1, , 1{( , , )}
m mh h mH γ ∈ γ ∈= γ γ



  ,
 
let 1( , , )mu = γ γ , then we call u a membership 

unit (MU). Based on u, an EHFE H, can also be indicated by:

 
1

1( , , )
{ } {( , , )}

m
u H mH

H u∈ γ γ ∈
= = γ γ



   . (5)

HFSs can be used to construct EHFSs. On the contrary, EHFSs can reduce to HFSs. To 
investigate the relationship between HFSs and EHFSs, we develop a concept of reduced EHFEs.

Definition 7. Given an EHFE 
1

1( , , )
{( , , )}

m
mH

H
γ γ ∈

= γ γ


  , then

 1 1( , , ) { , , } { }
mH m HHh γ∈γ γ ∈= γ γ = γ



  

 
(6)

is called a reduced EHFE.
Furthermore, if there is only one MU in H, i.e., 1{( , , )}mH = γ γ  and satisfy-

ing 1( , , )mγ ≠ ≠ γ , we consider that the EHFE H is equivalent to a HFE, denoted by 

1{ , , }H mh = γ γ .
Proposition 1. The HFS h(x) is a particular case of the EHFS H(x), where  

H(x) 1{( ( ), , ( ))}mx x= γ γ  1( ( ) , , ( ))mx xγ ≠ ≠ γ , for each element in the domain.
Consider that IFSs are a particular case of HFSs, where HFSs are nonempty closed inter-

vals (Torra 2010). By an operation of envelope for EHFSs defined in the rest of the paper, we 
can also transform EHFSs into closed intervals. Therefore, IFSs can also be considered as a 
particular case of EHFSs. We state this below.
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Proposition 2. IFSs are a particular case of EHFSs, where EHFSs are nonempty closed 
intervals.

Moreover, as discussed by Zhu et al. (2012b), for a given DHFS ( )d x ≠ ∅ , if h(x) and g(x) 
have only one value for each element in the domain, then DHFSs reduce to IFSs; if ( )g x = ∅  
and ( )h x ≠ ∅ , then DHFSs reduce to HFSs. Thus, with the analyses above and according to 
Propositions 1 and 2, we conclude that DHFSs can also be considered as a particular case of 
EHFSs when DHFSs reduce to IFSs or HFSs.

2.2. Basic operations and properties

Definition 8. Let 
1 1, , 1{( , , )}

m mh h mH γ ∈ γ ∈= γ γ


   be an EHFE, then we define its comple-
ment as:

 1
1( , , )

{(1 , ,1 )}
m

c
mH

H
γ γ ∈

= − γ − γ


  . (7)

Since each u can be considered as a HFE, by the operation of HFEs, Eq.(7) can also be 
denoted as:
 { }c c

u HH u∈=  . (8)
Obviously, the complement of complement of an EHFE is itself, which can be concluded 

as below.
Proposition 3. The complement of an EHFE is involutive, denoted by ( )c cH H= .
Given an EHFE { }u HH u∈=  , we define the minimum and maximum memberships of 

H  as follows:
1) The minimum membership of H : min{ | }H Hh−γ = γ γ ∈ ;
2) The maximum membership of H : max{ | }H Hh+γ = γ γ ∈ .

where Hh  is the reduced EHFE of H.
Further, the minimum and maximum memberships of u can be defined as follows:
1) The minimum membership of u: min{ | }u u− = γ γ ∈ ;
2) The maximum membership of u: max{ | }u u+ = γ γ ∈ .
For any two EHFEs, 1H  and 2H , we now define their union and intersection.
Definition 9. Given two EHFEs, 1H  and 2H , the union of them is defined as:

 1 2 1 21 2 ( ){ | max( , )}u H H H HH H u u− − −
∈= ≥ γ γ



  ; (9)

or equivalently:

 
1 21 1 2 2

1 2 1 2 1 2,
{ , | , max( , )}H Hu H u H

H H u u u u− − − −
∈ ∈

= ≥ γ γ  . (10)

The intersection of them is defined as:

 
1 2 1 2

1 2 ( ){ | min( , )}u H H H H
H H u u+ + +

∈= ≤ γ γ


  ; (11)

or equivalently:

 
1 1 2 2 1 2

1 2 1 2 1 2,
{ , | , min( , )}

u H u H H H
H H u u u u+ + + +

∈ ∈
= ≤ γ γ  , (12)

where 
1H

+γ
 
and  

2H
+γ are the maximum memberships in 1H  and 2H  respectively.
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Example 1. Let 1 {(0.2,0.3),(0.2,0.4)}H =  and 2 {(0.3,0.4)}H =  be two EHFEs, we have 

1
0.2H

−γ = , 
2

0.3H
−γ = , 

1
0.4

H
+γ =  and 

2
0.4

H
+γ = . By Definition 9, we can get:

 1 2 {(0.3,0.4)}H H = , 1 2 {(0.2,0.3),(0.2,0.4),(0.3,0.4)}H H = .

The operations between EHFEs and HFEs have a close relationship.
Proposition 4. Assume two EHFEs, 1H  and 2H , and two reduced EHFEs of 1H  and 

2H , 
1H

h and 
2H

h , the following are valid:

1)
 1 2 1 2( )H H H H
h h h=



 ;

2)
 1 2 1 2( )H H H H
h h h=



 .

Proof.
1) For any two EHFEs, 1H  and 2H , by the operation of HFEs and Eq. (6), we can get:

 
1 21 2 1 2

1 2

1 2 1 2,
{ , | , max( , )}

H H
H HH H h h

h h − −
γ ∈ γ ∈

= γ γ γ γ ≥ γ γ  . (13)

By Eq. (6), it can be shown that:

 
1 2

1 2
( ) ( )

{ }
H H

H H h h
h

γ∈
= γ

 

 .
 

(14)

Since:

 1 2 1 21 2 ( ){ | max( , )}u H H H HH H u u− − −
∈= ≥ γ γ



  ; (15)

then:

1 2 1 21 2( ) { | ( ), max( , )}uH H H Hh u H H u− − −
γ∈= γ ∈ ≥ γ γ =



 

1 21 2
1 2

1 2 1 2 1 2,
{ , | , , ( ), max( , )}

H H
H Hh h

u u H H u− − −
γ ∈ γ ∈

γ γ γ γ ∈ ∈ ≥ γ γ = 

1 21 2
1 1

1 2 1 2,
{ , | , max( , )}

H H
H Hh h
− −

γ ∈ γ ∈
γ γ γ γ ≥ γ γ =

1 2H H
h h , (16)

which completes the proof.
The proof of the intersection of EHFEs is similar to that of the proof of union above, 

which is not listed here.
HFEs and IFNs have a close relationship that HFEs are deemed IFNs when HFEs are 

nonempty closed intervals. Given an IFN, ( , )µ ν , we can get a corresponding HFE, h, de-
noted by an interval [ ,1 ]h = µ − ν  if 1µ ≠ − ν ; given a HFE, h, the envelope of h is an IFN, 
i.e., ( ) ( ,1 )envA h h h− += − . The envelope of EHFEs also has close connections with HFEs and 
IFNs. We now give a definition of the envelope of EHFEs.

Definition 10. Given an EHFE { }u HH u∈=  , the envelope of H can be defined as 

,
( ) {( , ) | }env u u

A H u H− +µ∈ ν∈
= µ ν ∈ , where u−  and u+  are the minimum and maximum 

memberships of u, respectively.
It’s clear that the envelope of an EHFE may include several IFNs. In addition, in the 

particular case that an EHFE, H, is equivalent to a HFE, h (proposed in Proposition 1),  
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the envelope of H is equivalent to the envelope of h, i.e., ( ) ( )env envA H A h= . Thus, ( )envA h  
is also a particular case of ( )envA H , which is stated as below.

Proposition 5. ( )envA h
 
is a particular case of ( )envA H , when H is equivalent to h.

We can further propose a proposition of ( )envA H  below.
Proposition 6. For an EHFEs H and its envelope ( )envA H , we have ( ) ( ( ))c c

env envA H A H= .
Proof. For an EHFE H, and its envelope ( )envA H , since:

 

,

,

( ) ( { }) {(1 ,1 1 ) | }

{(1 , ) | }

c
env env u H u u u

u u u

A H A u u u u H

u u u H

+ −

+ −

+ −
∈ ∈

+ −
∈

= = − − + ∈ =

− ∈

 



 
(17)

and

 , ,( ( )) {( ,1 ) | } {(1 , ) | }c c
env u u u u u uA H u u u H u u u H+ − + −

− + + −
∈ ∈= − ∈ = − ∈  , (18)

then ( ) ( ( ))c c
env envA H A H= , which completes the proof.

We now develop some operations of EHFEs further.
Definition 11. Given three EHFEs, { }u HH u∈=  , 

1 11 1{ }u HH u∈=  , 
2 22 2{ }u HH u∈=  , 

0λ > , since the MUs u, 1u  and 2u  can be considered as three HFEs, we have the following 
operations:

1) { }u HH uλ λ
∈=  ;

2) { }u HH u∈λ = λ ;

3)
 1 1 2 21 2 1 2, { }u H u HH H u u∈ ∈⊕ = ⊕ ;

4) 
1 1 2 2

1 2 1 2,
{ }

u H u H
H H u u

∈ ∈
⊗ = ⊗ .

Based on Definition 11, we can prove the following proposition.
Proposition 7. For two EHFEs, 1H  and 2H , 0λ > , we have:
1) 1 2 2 1H H H H⊕ = ⊕ ;
2) 1 2 2 1H H H H⊗ = ⊗ ;
3) 1 2 1 2( )H H H Hλ ⊕ = λ ⊕λ ;
4) 1 2 1 2( )H H H Hλ λ λ⊗ = ⊗ .
Proof. For any two EHFEs, 1H  and 2H , 0λ > , based on the operations and relationships 

of HFEs, we can get:
1)

 1 1 2 2 1 1 2 21 2 1 2 2 1 2 1, ,{ } { }u H u H u H u HH H u u u u H H∈ ∈ ∈ ∈⊕ = ⊕ = ⊕ = ⊕  ;

2)
 1 1 2 2 1 1 2 2

1 2 1 2 2 1 2 1, ,
{ } { }

u H u H u H u H
H H u u u u H H

∈ ∈ ∈ ∈
⊗ = ⊗ = ⊗ = ⊗  ;

3)
 1 1 2 2 1 1 2 21 2 1 2 1 2, ,( ) { ( )} { }u H u H u H u HH H u u u u∈ ∈ ∈ ∈λ ⊕ = λ ⊕ = λ ⊕λ =   

1 1 2 21 2 1 2{ } { }u H u Hu u H H∈ ∈λ ⊕ λ = λ ⊕λ  ;

4)
 
( )

1 1 2 2 1 1 2 2
1 2 1 2 1 2 1 2, ,

{( ) } { }
u H u H u H u H

H H u u u u H Hλ λ λ λ λ λ
∈ ∈ ∈ ∈

⊗ = ⊗ = ⊗ = ⊗  .
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Proposition 8. For any three EHFEs H, 1H  and 2H , and their reduced EHFEs Hh , 
1H

h  
and 

2H
h , 0λ > , the following are valid:

1)
 

( )HH
h hλ

λ= ;

2) ( )HHh hλ = λ ;

3)
 1 2 1 2( )H H H H
h h h⊕ = ⊕ ;

4)
 1 2 1 2( )H H H H
h h h⊗ = ⊗ .

Proof. For any three EHFEs H, 1H  and 2H , and their reduced EHFEs Hh , 
1H

h  and 

2H
h , 0λ > , we have:

1)
 

{ | } { } ( )
Hu HhH

h u H hλ
λ λ λ

γ∈ γ∈= γ ∈ = γ =  ;

2)
 

{1 (1 ) | } {1 (1 ) } ( )
Hu HH hh u H hλ λ

γ∈λ γ∈= − − γ ∈ = − − γ = λ  ;

3) 
1 2 1 1 2 2 1 2 1 2 1 1 2 2( ) , { | , }H H u uh u H u H⊕ γ ∈ γ ∈= γ + γ − γ γ ∈ ∈ =

 
1 2 1 2

1 2
1 2 1 2, { }

H H
h h H H

h hγ ∈ γ ∈ γ + γ − γ γ = ⊕ ;

4) 
1 2 1 1 2 2 1 2 1 2

1 2

1 2 1 1 2 2 1 2( ) , ,
{ | , } { }

H H
H H u u h h H H

h u H u H h h⊗ γ ∈ γ ∈ γ ∈ γ ∈
= γ γ ∈ ∈ = γ γ = ⊗ 

.

Proposition 9. For any three EHFEs H, 1H  and 2H , 0λ > , we have:
1) ( ) ( ( ))env envA H A Hλ λ= ;
2) ( ) ( ( ))env envA H A Hλ = λ ;
3) 1 2 1 2( ) ( ) ( )env env envA H H A H A H⊕ = ⊕ ;
4) 1 2 1 2( ) ( ) ( )env env envA H H A H A H⊗ = ⊗ .

Proof. For any three EHFEs H, 1H  and 2H , 0λ > , we have:

1) ( ) ( { })env env u HA H A uλ λ
∈= =

, {(( ) ,1 ( ) ) | }u u u u u u H− +
− λ + λ

∈ − ∈ =

, {(( ) ,1 (1 (1 )) ) | }u u u u u u H− +
− λ + λ

∈ − − − ∈ =

, {(( ,1 ) ) | } ( ( ))envu u u u u u H A H− +
− + λ λ

∈ − ∈ = =
;

2) ( ) ( { ))env env u HA H A u∈λ = λ =

, {(1 (1 ) ,1 (1 (1 ) )) | }u u u u u u H− +
− λ + λ

∈ − − − − − ∈ =

, {(1 (1 ) ,(1 ) )) | }u u u u u u H− +
− λ + λ

∈ − − − ∈ =

,( {( ,1 ) | })u u u u u u H− +
− +

∈λ − ∈ =

( ( ))envA Hλ ;
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3) 1 1 2 21 2 1 2,( ) ( { )env env u H u HA H H A u u∈ ∈⊕ = ⊕ =

{ }
1 1 1 2 2 2 1 2 1 2 1 2 1 2 1 1 2 2, , , ( ,1 ( )) | ,u u u u u u u u u u u u u u u H u H− + − +

− − − − + + + +
∈ ∈ + − − + − ∈ ∈ =

{ }
1 1 1 2 2 2 1 2 1 2 1 2 1 1 2 2, , , ( ,(1 )(1 )) | ,u u u u u u u u u u u u u H u H− + − +

− − − − + +
∈ ∈ + − − − ∈ ∈ =

1 1 1 2 2 2
1 1 1 1 2 2 2 2, ,

( {( ,1 ) | }) ( {( ,1 ) | })u u u u u u
u u u H u u u H− + − +
− + − +

∈ ∈
− ∈ ⊕ − ∈ = 

1 2( ) ( );env envA H A H⊕

4) 1 1 2 2
1 2 1 2 1 2 1 1 2 2,

( ) ( ) ( { | , })env env env u H u H
A H H A H H A u u u H u H

∈ ∈
⊗ = ⊗ = ⊗ ∈ ∈ =

1 1 1 2 2 2 1 2 1 2 1 1 2 2, , , {( ,1 ) | , }u u u u u u u u u u u H u H− + − +
− − + +

∈ ∈ − ∈ ∈ =

{ }
1 1 1 2 2 2 1 2 1 2 1 2 1 1 2 2, , , (( ,(1 ) (1 ) (1 )(1 ))) | ,u u u u u u u u u u u u u H u H− + − +

− − + + + +
∈ ∈ − + − − − − ∈ ∈ =

1 1 1 2 2 21 1 1 1 2 2 2 2, ,{( ,1 ) | } {( ,1 ) | }u u u u u uu u u H u u u H− + − +
− + − +

∈ ∈− ∈ ⊕ − ∈ = 

1 2( ) ( ).env envA H A H⊗

Proposition 10. For any three EHFEs H, 1H  and 2H , 0λ > , we have:
1) 1 2 1 2( )c c cH H H H=  ;
2) 1 2 1 2( )c c cH H H H=  ;
3) ( ) ( )c cH Hλλ = ;
4) ( ) ( )c cH Hλ = λ ;
5) 1 2 1 2( )c c cH H H H⊕ = ⊗ ;
6) 1 2 1 2( )c c cH H H H⊗ = ⊕ .
Proof. For any three EHFEs H, 1H  and 2H , 0λ > , we have:

1) 1 1 2 2 1 2
1 2 1 2 1 2, { , |( ) ,( ) max((1 ),(1 )}c c c c c c

u H u H H H
H H u u u u− − + +

∈ ∈= ≥ − γ − γ = 

1 1 2 2 1 2
1 2 1 2, { , |( ) ,( ) 1 min( , )}c c c c

u H u H H H
u u u u− − + +

∈ ∈ ≥ − γ γ =

1 1 2 2 1 2
1 2 1 2,( { , | , min( , )})c

u H u H H H
u u u u+ + + +

∈ ∈ ≤ γ γ =

1 2( )cH H ;

2) 1 1 2 2 1 21 2 1 2 1 2, { , |( ) ,( ) min((1 ),(1 ))}c c c c c c
u H u H H HH H u u u u+ + − −
∈ ∈= ≤ − γ − γ = 

1 1 2 2 1 21 2 1 2, { , |( ) ,( ) 1 max( , )}c c c c
u H u H H Hu u u u+ + − −
∈ ∈ ≤ − γ γ =

1 1 2 2 1 21 2 1 2,( { , | , max( , )})c
u H u H H Hu u u u− − − −
∈ ∈ ≥ γ γ =

1 2( )cH H ;
3)

 
{ }

1 1( , , )( ) { ( )} (1 (1 (1 )) , ,1 (1 (1 )) )
m

c c
u H mHH u λ λ
∈ γ γ ∈λ = λ = − − − γ − − − γ =



  

1 1( , , ) {((1 ) , ,(1 ) )} {( ) } ( )
m

c c
m u HH u Hλ λ λ λ

∈γ γ ∈ − γ − γ = =


   ;
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4)
 1 1( , , )( ) {( ) } {((1 ) , ,(1 ) )}

m
c c

u H mHH uλ λ λ λ
∈ γ γ ∈= = − γ − γ =



  

{ }
1 1( , , ) ((1 (1 ) ) , ,(1 (1 ) ) )

m
c c

mH
λ λ

γ γ ∈ − − γ − − γ =


 

{( ) } ( )c c
u H u H∈ λ = λ ;

5) Since 
1 1 2 21 2 1 2 1 2, {(1 ) (1 ) (1 )(1 )}c c

u uu u γ ∈ γ ∈⊕ = − γ + − γ − − γ − γ =

1 1 2 2 1 2 1 2, {1 } ( )c
u u u uγ ∈ γ ∈ − γ γ = ⊗ ,

we can get 
1 1 2 2 1 1 2 21 2 1 2 1 2 1 2, ,{ } {( ) } ( )c c c c c c

u H u H u H u HH H u u u u H H∈ ∈ ∈ ∈⊕ = ⊕ = ⊗ = ⊗  ;

6) Since 
1 1 2 2 1 1 2 21 2 1 2 1 2 1 2, ,{(1 )(1 )} {(1 )}c c

u u u uu u γ ∈ γ ∈ γ ∈ γ ∈⊗ = − γ − γ = − γ − γ + γ γ = 

1 1 2 2 1 2 1 2 1 2, {1 ( )} ( )c
u u u uγ ∈ γ ∈ − γ + γ − γ γ = ⊕ ,

then 
1 1 2 2 1 1 2 21 2 1 2 1 2, ,{ } {( ) } ( )c c c c c c

u H u H u H u HH H u u u u H H∈ ∈ ∈ ∈⊗ = ⊗ = ⊕ = ⊕  .

For a given EHFS H on X, we have H(x) for all x in X. Then, we can define the EHFS as 
a fuzzy multiset (FMS) as:

 
{( , ) | ( )}H x X uFMS x u H x∈ γ∈= ⊕ ⊕ γ ∈ . (19)

Thus, we can give the relationship between EHFSs and FMSs below.
Proposition 11. EHFSs can be represented as FMSs.
Similar to HFSs, the operations for FMSs also do not apply correctly to the EHFSs. Given 

an EHFS H on X, for all x in X, we can also define the EHFS as the following type-2 fuzzy 
set (T2FS):

 
( )

1, , ( )
( )   ( )

0, , ( )H x
u u H x

x X
u u H x

γ ∈ ∈µ γ = ∈ γ ∉ ∈
.

Thus, we can derive the following result.
Proposition 12. EHFSs can be represented as T2FSs.

3. Extended hesitant distance measures

In the following, we put forward the axioms of extended hesitant distance measures.
Definition 12. Let 1H  and 2H  be two EHFEs, then the extended hesitant distance measure 

is denoted by 1 2( , )d H H , which satisfies the following properties:
1) 1 20 ( , ) 1d H H≤ ≤ ;
2) 1 2( , ) 0d H H =  if and only if 1 2H H= ;
3) 1 2 2 1( , ) ( , )d H H d H H= .
For any finite universe set 1{ , , }nX x x=  , Bustince and Burillo (1995) defined some 

distance measures between two IFSs 1( )A x  and 2( )A x
 
on X . For two IFNs, 1A  and 2A , 

we have:
1) The normalized Hamming distance

 1 2 1 21 1 2
1( , ) (| | | |)
2 A A A Ad A A = µ − µ + ν − ν ;

110 B. Zhu, Z. Xu. Extended hesitant fuzzy sets



2) The normalized Euclidean distance

 1 2 1 2
2 2

2 1 2
1( , ) (( ) ( ) )
2 A A A Ad A A = µ − µ + ν − ν .

With respect to HFSs, Xu and Xia (2011) further defined the hesitant distance measures. 
For two HFEs 1h  and 2h , the hesitant distance measures can be stated as follows:

1) The hesitant normalized Hamming distance

 
( ) ( )

1 21 2

( ) ( )
1 1 2 1 2,

1( , ) {| |}
# i i

i i
s h h

d h h S
h σ σ

σ σ
γ ∈ γ ∈

  = γ − γ    
 ;

2) The hesitant normalized Euclidean distance

 
( ) ( )

1 21 2

1 2
( ) ( ) 2

2 1 2 1 2,

1( , ) {( ) }
# i i

i i
s h h

d h h S
h σ σ

σ σ
γ ∈ γ ∈

   = γ − γ      
 ,

where 1 2# max(# ,# )h h h= , sS  is a function that indicates a summation of all values in a 
set, ( )

1
iσγ  and ( )

2
iσγ  are the ith largest values in 1h  and 2h  respectively.

To use the hesitant distance measures above, we need to make sure that there is the same 
number of memberships between two HFEs. Zhu and Xu (2013) developed an optimized 
parameter ς  (0 1)≤ ς ≤  to add linguistic terms in hesitant fuzzy linguistic term sets. Moti-
vated by the optimized parameter, we give the following definition.

Definition 13. For a MU, 1( , , )mu = γ γ , let min{ | }u u− = γ γ ∈  and max{ | }u u+ = γ γ ∈  
be the minimum and maximum memberships in u respectively, and ς  (0 1)≤ ς ≤  be the 
optimized parameter, then we call ( )1u u+ −γ = ς + − ς

 
an added membership.

For two EHFEs with different number of MUs, we further utilize the optimized parameter 
to obtain a MU.

Definition 14. Given an EHFE, 
1 1, , 1{( , , )}

D m mh h h mH γ ∈ γ ∈= γ γ


 

 
( 1, , )D m=  , let Dh−  

and Dh+  be the minimum and maximum memberships in Dh  respectively, and ς  (0 1)≤ ς ≤  
be the optimized parameter, then an added MU is defined as 1( , , )mu = γ γ ,

 
where

 ( )D Dh+γ = ς +
 
(1 )( )Dh−− ς

 
( 1, , )D m=  .

To compare two MUs, the comparison law can be stated below.
Definition 15. For a MU, 1( , , )mu = γ γ , then we call ( ) (1/ # ) us u u γ∈= γ∑  the score 

function of u, where #u  is the number of memberships in u. For any two MUs, 1u  and 2u , 
if 1 2( ) ( )s u s u> , then 1 2u u ; if 1 2( ) ( )s u s u= , then 1 2~u u , where “ ” denotes “be superior 
to”, and “ ~ ” means “be indifferent to”.

Furthermore, we can also consider the deviation degree to compare MUs. A small de-
viation degree of all elements with respect to the average value in a MU reflects how these 
elements agree with each other, that is, they have a higher consistency.

Definition 16. For a MU, 1( , , )mu = γ γ , let s(u) be the score function of u, then we call 
1
22( ) (1/ # ) ( ( ))

u
u u s u

γ∈
 ρ = γ −  ∑  the deviation function of HFSs, where #u  is the number 

of memberships in u.
The deviation function reflects the deviation degree between all possible memberships 

in a MU and their average value. Based on the score function and the deviation function, we 
develop the following comparison laws.
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Definition 17. Let u1 and u2 be two MUs, s(u1) and s(u2) the scores of u1 and u2 respec-
tively, and ρ(u1) and ρ(u2) the deviation degrees of u1 and u2 respectively, then:

1) if 1 2( ) ( )s u s u< , then 1 2u u ;
2) if 1 2( ) ( )s u s u= , then

(1)  if 1 2( ) ( )u uρ = ρ , then 1 2~u u ;
(2) if 1 2( ) ( )u uρ < ρ , then 1 2u u ;
(3) if 1 2( ) ( )u uρ > ρ , then 1 2u u .

For any two EHFEs, 
1 1

1 1{ }
u H

H u
∈

=   and 
2 2

2 2{ }
u H

H u
∈

=  , and ς  (0 1)≤ ς ≤ , we 
make them have the same number of MUs and the same number of memberships in each 
MU by Definitions 13 and 14, respectively. According to Definitions 15–17 to rank MUs, 
and combining the normalized Hamming distance and the normalized Euclidean distance, 
we define the following distance measures:

1) Extended hesitant Normalized Hamming distance

 

( ) ( ) ( )( ) ( )
1 21 2

( ) ( )# # 1 2( ) ,( )
1 2

( ) ( )1 1 1 1 2 2

{|( ) ( ) |1,
(# )(# ) | , }

j ji i
j jH u

u u
h s

i ii j
d H H S

H u u H u H

σ σσ σ
σ σ

γ ∈ γ ∈

σ σ= =

  γ − γ
  =
  ∈ ∈  
∑∑



; (20)

2) Extended hesitant Normalized Euclidean distance

( ) ( ) ( )( ) ( )
1 21 2

1
2( ) ( ) 2# # 1 2( ) ,( )

1 2
( ) ( )1 1 1 1 2 2

{(( ) ( ) )1,
(# )(# ) | , }

j ji i
j jH u

u u
e s

i ii j
d H H S

H u u H u H

σ σσ σ
σ σ

γ ∈ γ ∈

σ σ= =

   γ − γ
   =     ∈ ∈   

∑∑


; (21)

3) Extended hesitant Normalized generalized distance

( ) ( ) ( )( ) ( )
1 21 2

1
( ) ( )# # 1 2( ) ,( )

1 2
( ) ( )1 1 1 1 2 2

{(( ) ( ) )1,  
(# )(# ) | , }

j ji i
j jH u

u u
g s

i ii j
d H H S

H u u H u H

σ σσ σ
λσ σ λ

γ ∈ γ ∈

σ σ= =

   γ − γ
   =     ∈ ∈   

∑∑


( 0)λ > ,

(22)

where 1 2# # #H H H= =  ( 1#H  and 2#H  are the number of MUs in 1H  and 2H  respec-
tively), 1 2# # #u u u= = , Ss is a function that indicates a summation of all values in a set, 

( )
1( ) jσγ  and ( )

2( ) jσγ  are the jth largest memberships in u1 and u2 respectively, ( )
1

iuσ  and 
( )

2
iuσ  are the ith largest MUs in 1H  and 2H  respectively.
It’s clear that the extended hesitant generalized normalized distance can reduce to the 

extended hesitant normalized Hamming distance and the extended hesitant normalized 
Euclidean distance when λ = 1 and λ = 2 respectively.

Example 2. Let 1 {(0.2,0.3),(0.2,0.4),(0.3,0.3),(0.3,0.4)}H =  and 2 {(0.3,0.4),(0.1,0.6)}H =  
be two EHFEs, and 0.8ς = . Since 1 2# ( 4) # ( 2)H H= > = , then we should add two MUs to 

2#H . According to Definition 14, we can get the added MU, 1 2( , ) (0.26,0.56)u = γ γ = ,
 where

 1 0.8 0.3 0.2 0.1 0.26γ = × + × = , 2 0.8 0.6 0.2 0.4 0.56γ = × + × = .

Thus, an adjusted 2H  with the added MUs is:

 2 22 2{ } {(0.3,0.4),(0.1,0.6),(0.26,0.56),(0.26,0.56)}u HH u∈= =′  .
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By Eqs (20) and (21), we have:

( ) ( ) ( )( ) ( )
1 21 2

( ) ( )4 2 1 2( ) ,( )
1 2

( ) ( )1 1 1 1 2 2

{|( ) ( ) |1, 0.1250
2 4 | , }

j ji i
j j

u u
h s

i ii j
d H H S

u H u H

σ σσ σ
σ σ

γ ∈ γ ∈′ ′

σ σ= =

  γ − γ ′
  = =
  × ∈ ∈′ ′  
∑∑



,

( ) ( ) ( )( ) ( )
1 21 2

1
2( ) ( ) 24 2 1 2( ) ,( )

1 2
( ) ( )1 1 1 1 2 2

{(( ) ( ) )1, 0.1442
2 4 | , }

j ji i
j j

u u
e s

i ii j
d H H S

u H u H

σ σσ σ
σ σ

γ ∈ γ ∈′ ′

σ σ= =

   γ − γ ′
   = =   × ∈ ∈′ ′   

∑∑


.

In Example 2, the distances vary with two parameters, the optimized parameter ς, and 
the parameter λ. More details can be found in Figure 1.

From Figure 1, we can partly conclude that the distances between 1H  and 2H  increase 
with the increase of ς. However, as λ increases, the distances increase approaching the path 
of the sine function.

Fig. 1. Extended hesitant Normalized generalized distance ( [1,5], [0,1])λ ∈ ς ∈

4. Weighted extended hesitant distance measures

The hesitant distance measures proposed by Xu and Xia (2011) cannot consider the weights 
of the DMs. To save all the information provided by the DMs, distinct them from each other, 
and consider their different importance in decision making, we now propose the weighted 
extended hesitant distance measures in this section.

Assume a group decision making problem with m DMs. For two EHFEs, { }
k k

k ku H
H u

∈
= =

 

( ) ( )
1

( ) ( )
1( , , )

{( , , )}k k
m k

k k
mHγ γ ∈

γ γ


   ( 1,2)k = , the weights of DMs are Dω  ( 1, , )D m=   with 

[0,1]Dω ∈  and 1 1m
DD= ω =∑ . Let ( ) ( )

D

k k
D Dω

γ = ω γ  ( 1, , )D m=   be memberships associat-

ed with the DMs’ weights. According to the extended hesitant generalized distance, we now 
develop a weighted extended hesitant generalized distance as:

 

( ) (1) ( ) (2) ( )
1 2

1
( ) ( )(1) (2)# #

,
1 2

( ) ( )1 1 1 1 2 2

{(( ) ( ) )1,  
# | , }

i i
D D

j jH u
u u

wg s
i ii j

d H H S
H u H u H

σ σ
λσ σ λ

ω ωγ ∈ γ ∈

σ σ= =

   γ − γ
   =     ∈ ∈   

∑∑


 ( 0)λ > ,

(23)
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where ( )(1)( )
D

jσ
ω
γ  and ( )(2)( )

D

jσ
ω
γ  are the jth largest memberships associated with the DMs’ 

weights in u1 and u2 respectively.
In particular, if λ = 1 and λ = 2, then the weighted extended hesitant generalized distance 

reduces to a weighted extended hesitant weighted Hamming distance and a weighted extended 
hesitant Euclidean distance respectively.

To emphasize the importance of DMs in group decision making further, we now combine 
the weighted extended hesitant distance measures with the Dempster-Shafer belief structure 
(Dempster 1967; Shafer 1976). The Dempster-Shafer belief structure has proven to be a use-
ful tool for representing uncertainty, which has been used in an astonishingly wide range of 
applications (Yager 1992; Yager et al. 1994).

Definition 18 (Dempster 1967; Shafer 1976). A Dempster-Shafer belief structure 
consists of a collection of r non-null subsets kB

 
( 1,2, , )k r=   of X defined on a space 

1 2{ , ,..., }nX x x x= , called focal elements, and a mapping p  called the probability assignment, 
defined as p : 2 [0,1]X →  such that:

1) ( ) [0,1]jp B ∈ ;

2) 
1

( ) 1
r

k
k

p B
=

=∑ ;

3) ( ) 0p C = , ∀ kC B≠ .
Assume a group decision making problem associated with m DMs with a collection of 

weights Dw  ( 1, , )D m=  , and a set of the alternatives, 1{ , , }qA A , with the set of states 
of nature 1{ , , }nS S . The DMs provide all possible preferences over all the alternatives iA
( 1, , )i q= 

 with respect to the states of nature (criteria) jS ( 1,2, , )j n= 
, then we can get 

q n×  EHFEs  ( 1, , ; 1, , )ijH i q j n= =  , which indicates the group preferences over the al-
ternative iA  of the criterion jS .

Let ijC  be a payoff to the alternative iA  and the state of nature is jS , ( )ij q nC C ×=  a 
payoff matrix, and ς (0 1)≤ ς ≤  the optimized parameter. The DMs’ knowledge of the states 
of nature is captured in terms of a belief structure p  with the focal elements 1 2, , , rB B B , 
each of which is associated with a weight ( )kp B , where 1 ( ) 1r

kk p B= =∑ . We now develop 
the following approach to deal with group decision making.

Step 1. Construct the extended hesitant fuzzy decision matrix ( )q nikH H ×=  by EHFEs, 
ijH ( 1, , ; 1, , )i q j n= = 

.
Step 2. Assume a standard EHFE H*, and the optimized parameter, then calculate the 

distance between H* and ijH  by the extended hesitant distance measures or the weighted 
extended hesitant distance measure. Let ijC  equal to the distance, and construct the payoff 
matrix ( )ij q nC C ×= .

Step 3. Calculate the belief function p  about the states of nature.
Step 4. Utilize the optimized parameter to calculate the collection of weights (O’Hagan 

1988; Yager 1993) which are used in the OWA aggregation for each cardinality of focal el-
ements.

Step 5. Determine the payoff collection, { | }ij jik kM C S B= ∈ , which is a set of payoffs 
that are possible if we select the alternative Ai and the focal element kB  occurs, and calculate 
the aggregated payoff, ( )ik ikV OWA M= .
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Step 6. Calculate 
1

( )
r

i ik k
k

C V p B
=

= ∑ , and select the alternative which has the best gener-

alized expected value as the optimal alternative.
Example 3 (Kahraman, Kaya 2010). Energy is an indispensable factor for the social-eco-

nomic development of societies. Thus the correct energy policy affects economic development 
and environment, the most appropriate energy policy selection is very important. Suppose that 
there are five alternatives (energy projects) iA ( 1,2,3,4,5)i =  to be invested, and four criteria 
to be considered: S1 – technological; S2 – environmental; S3– socio-political; S4– economic. 
Five DMs are invited to evaluate the performances of the five alternatives.

Xu and Xia (2011) used HFSs to collect the DMs’ preferences and utilized the hesitant 
distance measures to deal with this problem. The precondition of the method introduced by 
Xu and Xia (2011) is that the DMs should give their preferences anonymously so as to ignore 
the repeated preferences. To deal with this energy policy problem without information loss, 
consider weights of the DMs in group decision making, and compare Xu and Xia (2011)’s 
resolution, we now give the following approach to deal with this problem.

Step 1. The DMs kD ( 1,2,3,4,5)k =  provide their preferences over all the alternatives Ai 
iA  ( 1,2, ,5)i =   with respect to the criteria  ( 1,2,3,4)jS j =  based on HFSs, then we can 

construct EHFSs, and get an extended hesitant fuzzy matrix 5 4( )ijH H ×= , which indicates 
the group preferences over the alternative iA  of the criterion Sj. Assume that the matrix is 
shown in Table 1.

Table 1. Extended hesitant fuzzy decision matrix

S1 S2

1A {(0.3,0.4,0.3,0.4,0.5)} {(0.7,0.8,0.3,0.8,0.6),(0.7,0.8,0.4,0.8,0.6)}

2A {(0.3,0.4,0.5,0.2,0.5),(0.3,0.4,0.5,0.3,0.5)} {(0.5,0.6,0.5,0.6,0.6)}

3A {(0.4,0.5,0.5,0.5,0.6)}
(0.5,0.6,0.7,0.6,0.5),(0.6,0.6,0.7,0.6,0.5),
(0.5,0.6,0.8,0.6,0.5),(0.6,0.6,0.8,0.6,0.5)
  
 
  

4A {(0.3,0.2,0.2,0.3,0.1)} {(0.6,0.5,0.7,0.5,0.5)}

5A {(0.3,0.4,0.6,0.2,0.2),(0.3,0.3,0.6,0.2,0.2)} {(0.6,0.8,0.5,0.4,0.6),(0.6,0.8,0.5,0.5,0.6)}

S3 S4

1A
(0.3,0.4,0.2,0.3,0.2),(0.4,0.4,0.2,0.3,0.2),
(0.3,0.4,0.3,0.3,0.2),(0.4,0.4,0.3,0.3,0.2)
  
 
  

{(0.6,0.5,0.5,0.4,0.6)}

2A {(0.6,0.4,0.5,0.3,0.5),(0.6,0.4,0.4,0.3,0.5)} {(0.3,0.4,0.5,0.2,0.2),(0.3,0.4,0.4,0.2,0.2)}

3A {(0.7,0.3,0.9,0.8,0.6),(0.7,0.3,0.8,0.8,0.6)} {(0.7,0.8,0.7,0.8,0.8)}

4A {(0.4,0.3,0.2,0.3,0.5)} {(0.3,0.2,0.7,0.2,0.1)}

5A {(0.7,0.5,0.6,0.8,0.6)} {(0.6,0.4,0.5,0.4,0.6),(0.7,0.4,0.5,0.4,0.6)}
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Step 2. Let A* = {(1,1,1,1,1)} be the ideal values of alternative seen as a standard EHFE H*, 
0.75ς =  be the optimized parameter, (0.3,0.1,0.3,0.2,0.1)w =  be the weighting vector of the 

DMs, and λ = 1. By Eq. (23), we can calculate the distance between H* and ijH , i.e. ( , )wg ijd H H∗ . 
Let ( , )ij wg ijC d H H∗= , then construct the payoff matrix 5 4( )ijC C ×= , shown in Table 2.

Table 2. The payoff matrix

S1 S2 S3 S4

1A 0.6800 0.4000 0.7750 0.5000

2A 0.6550 0.4900 0.5700 0.7600

3A 0.5500 0.4550 0.4000 0.2700

4A 0.8700 0.4800 0.7000 0.7800

5A 0.7400 0.4350 0.4100 0.5050

Step 3. The DMs analyze the energy policy problem so as to obtain the probabilistic in-
formation about the states of nature. Assume that the DMs’ knowledge of the states of nature 
consists of the following belief structure, shown in Table 3.

Table 3. Belief structure

Focal element Weights

{ }1 1 3,B S S= 0.15

{ }2 2 4,B S S= 0.25

{ }3 1 3 4, ,B S S S= 0.6

Step 4. We use the O’Hagan (1988) method to obtain weighting vectors associated with 
the OWA operators for various numbers of arguments. Since 0.75ς = , then we can get the 
weighting vectors shown in Table 4.

Table 4. Weighting vectors for various numbers of arguments

Number of arguments w1 w2 w3

2 0.75 0.25
3 0.62 0.27 0.11

Step 5. Since { | }ij jik kM C S B= ∈  and ( )ik ikV OWA M= , then we can get ikV  for all i 
and k ( 1,2,3,4,5; 1,2,3)i k= = .

Step 6. Since 
3

1
( )i ik k

k
C V p B

=
= ∑ , and according to ikV  and the belief structure, we have 

1 0.5884C = , 2 0.5801C = , 3 0.4135C = , 4 0.6617C = , 5 0.5390C = . Thus, A3 is the optimal 
alternative closest to the ideal values of alternative with the minimum generalized expected 
value, 3 0.4135C = .
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According to the approach above, we know that iC  ( 1,2,3,4,5)i =  vary with the parameter λ. 
For different λ, we get Table 5 below.

Table 5. Generalized expected values for different λ

C1 C2 C3 C4 C5 Rankings

λ = 1 0.5884 0.5801 0.4135 0.6617 0.5390 4 1 2 5 3A A A A A   

 λ = 2 0.3006 0.2873 0.2069 0.3221 0.2663 4 1 2 5 3A A A A A   

 λ = 5 0.2258 0.2074 0.1531 0.2315 0.1922 4 1 2 5 3A A A A A   

It’s clear that for the three different values of  λ, the same ranking result can be obtained 
in Example 3. In practice, we let λ = 1 without loss of generality.

The DMs influence the final decision result due to their different importance, if we let 
(0.2,0.2,0.2,0.2,0.2)w =′  be the weighting vector of the DMs, which means that there is 

no difference among the DMs, we can obtain a different ranking result. By the developed 
approach, and all other conditions are still the same, we have 1 0.5673C = , 2 0.5764C = , 

3 0.4179C = , 4 0.6820C = , 5 0.5463C = , and the ranking 4 2 1 5 3A A A A A    , where 
a change in ranking happens between A1 and A2.

The hesitant distance measures cannot consider the differences among the DMs, which 
is similar to the situation that the weighting vector of DMs is (0.2,0.2,0.2,0.2,0.2)w =′ . 
For comparison, we apply the hesitant distance measures to Example 3. According to the 
definition of reduced EHFEs, we first transform Table 1 to a hesitant fuzzy decision matrix, 
shown in Table 6.

Table 6. Hesitant fuzzy decision matrix

S1 S2 S3 S4

1A {0.3,0.4,0.5} {0.7,0.8,0.3,0.6,0.4} { }0.3,0.4,0.2 {0.6,0.5,0.4}

2A {0.3,0.4,0.5,0.2} {0.5,0.6} {0.6,0.4,0.5,0.3} {0.3,0.4,0.5,0.2}

3A ,{0.4 0.5,0.6} {0.5,0.6,0.7,0.8} {0.7,0.3,0.9,0.8,0.6} {0.7,0.8}

4A {0.3,0.2,0.1} {0.6,0.5,0.7} {0.4,0.3,0.2,0.5} {0.3,0.2,0.7,0.1}

5A {0.3,0.4,0.6,0.2} {0.6,0.8,0.5,0.4} {0.7,0.5,0.6,0.8} {0.6,0.4,0.5,0.7}

With other conditions still being the same, and according to the hesitant normalized Ham-
ming distance, we have 1 0.7043C = , 2 0.7153C = , 3 0.5869C = , 4 0.7851C = , 5 0.6201C = , 
and the ranking 4 2 1 5 3A A A A A    , which is the same as the ranking result when the 
weighting vector of the DMs is (0.2,0.2,0.2,0.2,0.2)w =′ . Thus, the existing hesitant distance 
measures can be considered as a particular case of the extended hesitant distance measures 
with certain conditions. And the extended hesitant distance measures appear to be more 
extensive and effective in practical applications.
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Conclusions

We have developed the extended hesitant fuzzy sets (EHFSs) to resolve the information loss 
problem of hesitant fuzzy sets (HFSs) in this paper, and have shown that intuitionistic fuzzy 
sets (IFSs), HFSs and dual hesitant fuzzy sets (DHFSs) are particular cases of EHFSs with 
certain conditions. EHFSs can also be represented as fuzzy multisets (FMSs) or type-2 fuzzy 
sets (T2FSs). Given several hesitant fuzzy elements (HFEs), we can construct an extended 
hesitant fuzzy element (EHFE) by their Cartesian product. On the contrary, given an EHFE, 
we can get its reduced EHFE which is a HFE. As an extension of HFSs, EHFSs increase the 
richness of numerical representation based on the membership units (MUs), enhance the 
modeling abilities of HFSs, and can identify different DMs in group decision making. We 
have further developed some extended hesitant distance measures which take advantages of 
EHFSs without the information loss problem. A weighted extended hesitant distance measure 
has been developed, which can take the different importance of the DMs into account in 
group decision making comparing with the existing hesitant distance measures. Combining 
the proposed weighted extended hesitant distance measure with Dempster-Shafer belief 
structure, we have proposed an approach to deal with group decision making problems with 
an illustrative example. In the future, EHFSs are likely to play an importance role in group 
decision making with more studies on the theory and applications.
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