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Abstract. Shelling’s model and its different versions predict that segregation is the unique stable 
equilibrium. However, cities around the world show different levels of intermingle, and it is very 
uncommon to observe fully segregated urban patterns even when segregation is high. We argue 
that individuals do not take into account only their neighbours characteristics for making a loca-
tion decision. In particular, if residential segregation generates ghettos of low-skilled labourers, the 
societal level of production would diminish and, consequently, individuals’ level of consumption 
too, affecting all society members’ well-being. When agents care about the impact of segregation on 
their own consumptions, we prove that the set of system’s equilibria can be one containing states 
of residential integration. Besides, using simulations, we compare the aggregated utility related to 
these equilibria with the maximum level of aggregated utility.
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Introduction

Studies by Schelling (1971) of segregation based on prejudice show that segregation arises 
spontaneously and that it is the only stable equilibrium that society can reach, even if each 
member of this society may prefer living in a mixed community.

After Schelling’s work, several new investigations have confirmed that result. For in-
stance, Clark (1991) and Ruoff (2006) empirically tested Schelling model predictions and 
they concluded that stable integrated equilibria are very unlikely. 

Similarly, using regression discontinuity methods and data from Sweden, Alden et al. 
(2014) empirically showed that, after non-European immigrants reach a tipping point in a 
neighbourhood native population, growth discontinuously drops, a behaviour that is likely 
to be related to ethnic and socio-economic segregation.
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Zhang (2004) is an interesting work because it provides the first successful formal an-
alytical framework for Schelling-like models. He uses stochastic evolutionary game theory 
to prove that segregation is the unique stable equilibrium. He assumes that individuals have 
preferences for living in integrated communities, and even under these setting segregation 
arises as equilibrium. Zhang and Zheng (2015) provide empirical evidence that even in a 
segregated country as the United States of America (U.S.A.), people are willing to pay for 
reducing segregation.

Pancs and Vriend (2007) reinforces Zhang (2004) result, showing that this is true even 
when all agents have a strict preference for living in a fully integrated society. Even more, 
they indicate that this result raises doubts about the ability of public policies to produce 
urban integration. The key elements behind these results are the presence of externality 
and the asymmetry of the utility function: as long utility functions favour majority over 
minority, segregation will arise. 

Zhang (2011) revisits his previous investigations and concludes that segregation arises 
almost all the time in a checkerboard model because tipping is less probable to occur to 
such residential patterns. 

Although these are very strong results we argue that they do not represent all pos-
sible segregation patterns that can be empirically observed. For instance, if we consider 
the U.S.A. metropolitan areas, there are examples of moderate segregation. Accordingly 
to The Social Science Analysis Network calculations, based on census data, the average 
Dissimilarity index for white and black individuals in the U.S.A. is 58.5 (the maximum 
value is 100). Furthermore, 25% of the American metropolitan areas have a Dissimilarity 
index, which is less than 50, and most of them have a Dissimilarity index of 60, as it can 
be appreciated in Figure 1.

Bayer et al. (2004), using micro-data from the San Francisco bay area, found evidence 
that both level and drivers of racial segregation in USA depend on the kind of race. For 
instance when Hispanic population reaches higher levels of income the propensity for liv-
ing amongst Hispanics is reduced, something that does not happen in the Afro-American 
case, where segregation is higher and it persists even when Afro-Americans reach higher 

Fig. 1. American metropolitan areas dissimilarity index histogram
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levels of income. This result is ratified by Bayer et al. (2014). Hence, in a dynamic setting 
segregation based on race varies and it can be reduced for some ethnic groups when some 
of their socio-economics characteristics change.

Given the potentially important policy consequences that these results would have, 
it is relevant to find an answer for these differences between theoretical prediction and 
empirical observations.

Grauwin et al. (2009) developed a formal Schelling-like model, which includes the pos-
sibility of altruism as a parameter weighting the individual utility and the collective utility. 
The closer to 1 the parameter is, the more altruistic agents are. This altruism is understood 
as controlled by a central planner via a sort of pigouvian tax. When this parameter is 
close to the one they find equilibria associated with low levels of segregation. Grauwin 
et al. (2012) expands the analysis to different kind of utility functions and they study the 
equilibrium characteristics of them. These two works have added significant insights to the 
understanding of Schelling-like models and social interactions. Besides, they have given 
new and solid theoretical background for the analysis of segregation’s public policies.

Although Grauwin et al. (2009) and (2012) found situations where integration is an sta-
ble equilibrium they are based on the introduction of a pigouvian tax. However, empirically 
it is possible to observe moderate and low segregation levels without this tax.

Other interesting works reporting equilibria different from segregation are Bischi and 
Merlone (2011) and Singh et al. (2009). The former develop a discrete two-dimensional 
dynamic model and then numerically analyse the system’s behaviour. They found path-de-
pendence, i.e., the long-run collective behaviour depends on the initials conditions and 
the historic accidents, which would have through the trajectories. According to them  
“... integration is possible if the system starts with a sufficiently balanced initial mixture of 
the two populations.” Singh et al. (2009) presents results for different artificial cities’ size 
and agents’ tolerance and density parameters. The most striking finding of this investiga-
tion is that considering the same values as Schelling’s, segregation is strictly a small city 
phenomenon, which means that as long as the number of agents increases, the conditions 
needed for observing segregation as an equilibrium become more demanding. Specifically, 
in order to obtain a segregated city the disparate comfort threshold must be greater than 3 
when the city is greater than 8×8, the values originally used by Schelling.

Xie and Zhou (2014) introduces individual-level agents heterogeneity in racial toler-
ance. Their main finding is that in the long run the model reaches a low level of segregation 
equilibrium than would be observed with homogenous racial tolerance.

There are two main differences between the works commented above and the investiga-
tion presented here: first, instead of analysing the system behaviour and its computational 
characteristics, our focus is on agents’ economic motivations and how they can lead to a 
particular segregation pattern, and, second, we analytically investigate about the system’s 
equilibrium instead of doing it numerically.

Our hypothesis is that individuals do not take into account their neighbours features 
only when they make their location decisions, but they can consider the potentially neg-
ative effects that segregation can have on their own level of consumption. Regarding neg-
ative effects literature has pointed out that segregation can have a negative impact on the 
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segregated population through the level of unemployment, out-of-wedlock births, crimi-
nality, low educational achievement, income inequality, and poverty traps, among others. 
Hence, if one part of society is affected by this sort of difficulty, it is almost certain that the 
population as a whole will be affected as well. For example, if segregation has a negative 
impact on educational achievement, ghettos of low-skilled labourers will emerge, a pro-
cess, which can reinforce itself. Consequently, society will lose productivity and, therefore, 
the level of consumption of all individuals will decrease, diminishing the welfare of every 
single individual, regardless of whether they are segregated or not. If that is the case, the 
prejudiced population is going to face a trade-off between the desire for living just among 
peers and the lower level of consumption that segregation brings about. It would be also the 
case that segregation generates higher levels of violent crime1, which will affect society as 
whole. Traditional Schelling-like models do not include these aspects. Probably the unique 
work that incorporates elements of this sort is Conejeros and Vargas (2007). In this article 
an agent-based model is developed in order to simulate a Schelling-like model including 
very simple production and consumption functions. The main finding they obtain shows 
that integration can be a stable equilibrium. Conejeros and Vargas (2007) argues that the 
negative consequences of segregation would also affect the utility of the non-segregated 
population. The idea behind this statement is that the negative effects of segregation on 
the segregated population in the long run will become a cost for society as whole, and if all 
members of society are aware of these costs, integration may arise as a stable equilibrium.

Although Conejeros and Vargas (2007) results are interesting, more general conclusions 
cannot be made as it pertains to only one particular set of parameter values. Therefore, 
based on this argument we develop a formal model to analytically show which conditions 
determine social integration to be a stable equilibrium.

This work has followed the traditional approach, which says that segregation can have 
negative effects on individuals, although we are aware of those works that using the Moving 
to Opportunity Program data have conclude that segregation has negligible effects upon 
households, such as, for instance, Kling and Liebman (2004), Kling et al. (2005, 2007) and 
Ludwig et al. (2008, 2013) and others that question the negative effects of segregation, such 
as Bolt et al. (2010) whom argue that there is not a strong relationship between segregation 
and integration. However we believe that this is still a matter for discussion, as shown by 
Clampet-Lundquist and Massey (2008) and Ludwig et al. (2008), and others works such 
as Ananat (2011) and Corvalan and Vargas (2015), whom have found negative effects of 
segregation on income distribution and the level of conflict observed in a country.

In Section 1, the theoretical model is developed, explaining its main characteristics. 
Then, in Section 2 the main results of the model are presented. Section 3, through the use of 
simulations, we exemplify equilibria and compare the relationship between equilibria and 
the maximum level of aggregated utility. Finally, conclusions and final remarks are offered.

1 Bjerk (2010) develops a model and then tests empirically the hypothesis that segregation increases the level of 
violent crime finding evidence that support this hypothesis.
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1. The model

The model developed here is based upon Zhang (2004) and Conejeros and Vargas (2007). 
As in Conejeros and Vargas (2007), we add to Zhang’s model three new features: first we 
introduce a consumption term into the agents’ utility function, hence in our version of the 
model agents have a two-terms utility function, one of them related to location, as in Zhang 
(2004), and another one related to consumption. The second feature is that agents may be 
of two different types: disadvantaged and non-disadvantaged. Segregation literature has 
been focused mainly on studying this phenomenon related to income and race, both highly 
correlated. Consequently, we have considered two types of population, as it was mentioned 
above, one non-disadvantaged and another one disadvantaged. The non-disadvantaged one 
may represent a dominant group within society such as affluent population or racial major-
ity, like white Anglo-Saxon in U.S.A. meanwhile the disadvantaged group may represent a 
racial minority, like Afro-American people in U.S.A or low-income households. The third 
feature is that agents have a very simple production function. This production function 
will depend on two factors, first, if the agent is a non-disadvantaged or disadvantaged one 
and, second, on the quantity of agents of the same type that live in the same neighbour.

The first step is to define an artificial society comprising an advantaged prejudiced pop-
ulation and a non-prejudiced disadvantaged population. Each agent belongs to just one of 
these two population groups. The proportion of these two populations is given by pj, with 

{ } 0,1  j∈  indexing the population’s types. If j = 1, the agent is a disadvantaged one and with 
j = 0 a non-disadvantaged one. Each one of this society’s members, or agents, is allocated 
in the vertex of an N×N lattice graph with a periodic boundary condition.

Utility. Each agent’s utility is made up of two parts: a deterministic one ui and a sto-
chastic term . The deterministic part depends on how many like-type neighbours he has 
in the local neighbourhood – a neighbourhood here is a Moore neighbourhood: a simple 
3×3 square with output cell in the middle – and on his level of consumption. The stochastic 
part reflects other relevant neighbourhood characteristics and is assumed to be independ-
ent of the agent and location. As Zhang (2004) points out, the latter is because agents value 
different characteristics, and different locations have different idiosyncratic traits. Following 
McFadden (1973), the random component corresponds to unobserved utility terms, and if 
it is assumed to be independently distributed and with a cumulative extreme value distri-
bution, the swap probability among agents will reduce to the analytically convenient logit 
form, as it will be shown later on.

The deterministic utility function u is assumed additively separable in two components: 
a location term   and a consumption term C. Location term is based on Zhang (2004) and 
corresponds to the following expression:

 
( ) ( )

,                                        if  

2 ,      otherwise

xZ x n
n

xZ M M Z
n

   ≤    = 
  − + −    

 , (1)

where Z > M > 0 are parameters guaranteeing a linear kinked shape, increasing on the left 



692 R. Conejeros, M. Vargas. Can residential integration be a stable equilibrium?

side of n and decreasing on the right, with the peak at n, as shown in Figure 2. Therefore, 
n is the number of like-type neighbours in the local neighbourhood which maximizes  . 
The total number of like-type neighbours of the local neighbourhood is 2n. x is the actual 
number of like-type neighbours in the local neighbourhood. 

The consumption term for both types of agent is just the normalised level of consump-
tion. Therefore, the deterministic term of the utility function is given by:

  u C= +α , (2)

with a being a positive parameter indicating the importance of consumption for agents. 
The utility function for any agent i of type j is:

 
 ij jU u=β +ò

 
. (3)

Where b indicates how important is the deterministic part of the utility function related to 
the stochastic one. Finally, the aggregate utility is:

 
2

1
i

N
U U= ∑ .

 
(4)

Production. Each agent is endowed in every period of time with 1 unit of “productivi-
ty” that is not cumulative. An important assumption made here is that the agent’s produc-
tivity can be affected by the local neighbourhood’s characteristics (group effects). In par-
ticular, it is assumed that if in a local neighbourhood the number of disadvantaged agents is 
greater than a threshold value t, then the productivity of that type of agent decreases. This 
argument follows Benabou (1996), which says that when low-income group is segregated 
their local public goods consumption will diminish, because, for instance, they are funded 
by local taxes. Whether education is locally funded, then low-income municipalities will 
provide low quality education, which in turn will affect the qualifications and productivity 
of segregated low income households. Peer effects may reinforce this process. Hence, we 
have considered the productivity of a disadvantaged agent as follow:

Fig. 2. Deterministic utility
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 1

2 ,      if   
2

1,           otherwise

x n x
p n

− > τ= τ −


,

 

(5)

where 2n n≤ τ <  is the threshold value of like-type neighbours for triggering the productiv-
ity diminishing process, as is depicted in Figure 3. 

The productivity of a non-disadvantaged agent is always 1. The aggregate production is:

 
2

1
.i

N
P p= ∑

 
(6)

The level of consumption of every agent is 2P /C N= . This means that all the agents, 
prejudiced and non-prejudiced, are going to be affected negatively by segregation. We are 
aware this is a strong assumption and a simplification, but it can be considered as the con-
sumption of a public good provided by the state, of which the provision will depend on the 
level of production of the economy, because, for example, it is funded by taxes. Hence, the 
lower the production of the economy, the lower the consumption will be.

Log-linear behavioural rule. A log-linear behaviour is observed when agents change 
their location based on their own personal interests. In each period, two agents coming 
from different neighbourhoods are selected and in order to perform a change, every agent 
will bid in a sort of auction for a better location; consequently the focus is on the sum of 
two chosen agents’ utility. If the sum of switching is bigger than the sum of not switching, 
then agents will swap their locations. If the switch situation is called S and the opposite 
NS, and, for the following exposition, the chosen agents are agent 1 and agent 2, and they 
do not swap locations, then:

 ( ) ( )1 1 2 2 1 2 1 2| | ( | ) ( | ) NSU NS U NS U NS U NS V⋅ + + ⋅ + = ⋅ + ⋅ + + = + η    , 

but if they do, then:

 1 1 2 2 1 2 1 2( | ) ( | ) ( | ) ( | ) SU S U S U S U S V⋅ + + ⋅ + = ⋅ + ⋅ + + = + ε    . 

Fig. 3. Productivity function of disadvantaged agents
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Agents will change location if and only if NS SV V+η< + ε. It is assumed that h and e 
are independent, and that they follow an identical extreme value distribution. Then, based 
on McFadden (1973), and following Zhang (2004), a log-linear switch rule can be estab-
lished:

 ( )Pr .
NS S

NS

V V

V

e eS
e

 +
=   
   

This behavioural rule depends only on the deterministic utilities. Therefore, it is possible 
to avoid taking into account the stochastic utilities, which are unobservable.

A potential function. Let us consider the set ED as the set of all edges that connect two 
agents of different type. A function r is defined as the cardinality of set ED. This function, 
once it has been normalised, can be used as a segregation measure. 
Lemma 1. Let us consider the function F as

 ( ) 1, if    and  is large enough
,    otherwise

C xρ+α ≥ τ αΦ ⋅ =  −ρ
,
 

(7)

then, F is a potential function for this spatial game.

Proof. Monderer and Shapley (1996) define a general ordinal function F for a game in stra-
tegic form ( )1 2, ,..., nu u uΓ  with finite number of players n, a set of strategies for the player 
i, Y i, and a payoff function ui, such as if for every player i and for every  i iy Y− −∈  we have 
that ( ) ( ) ( ) ( ), , 0 , , 0i i i i i iu y x u y z y x y z− − − −− > ⇔Φ −Φ >  for every ,  ix z Y∈ . 

Consequently in order to prove Lemma 1 we need to show that 0  0u∆ > ⇔ ∆Φ> .
When 2 like-type agents interchange their locations, the residential pattern does not 

change. Hence, the production of society, consumption and r do not change. Therefore 
we will put our attention on those cases where agents of different type interchange their 
locations. The effects of these changes will depend on x1 and a. We have 4 cases: 1x ≥ τ  and 
a large, 1x ≥ τ  and a small, 1  x < τ  and a large, and 1  x < τ  and a small. Where we under-
stand that a is large when the consumption part of the utility function is more important 
than the location one. When 1x < τ  regardless of a the production function is not affected, 
therefore the level of consumption is not affected either. As consumption is not affected, 
when we calculate DF the consumption components cancel each other, then the relevant 
potential function is –r. This case is as the one studied by Zhang (2004) whom proves that 
under these conditions –r fulfils all the potential function requirements. 

When 1x ≥ τ  and a is large enough we have two main types of changes: the first one is 
when the disadvantaged agent is minority in the neighbourhood and after the interchange 
becomes part of the majority, and the second one is when the disadvantaged agent is al-
ready part of the majority and after the interchange the disadvantaged agents’ share in the 
neighbourhood increases. Before describing these interchanges note that when 1x ≥ τ  the 
type 1 agent production decreases and hence the level of consumption for one agent is 
( ) ( )( )22 / 2x n N n− τ− .

Interchange of Type 1: from minority to majority. Figure 4 depicts the case where a disadvan-
taged agent belonging to the minority in a neighbourhood, after an interchange becomes 
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part of the majority. As a matter of fact in this case both agents are in the same situation. 
Table 1 shows the utility values when a disadvantaged agent becomes part of the majority 
in the neighbourhood. The two first columns contain the utility values when the disadvan-
taged agent starts at point A (see Fig. 4), and the two finals columns when she/he starts at 
point B (see Fig. 4). When type 1 agent starts at point A the utility variation for her/him is:

 ( ) ( ) ( ) ( )
( )2

2
2   

2
n b n b nn aZ M M Z Z C

n n N n

 + + −−
− + − − +α − 

τ −  
.
 

(8)

Table 1. Type 1 interchange utility variation

Loca-
tion Utility (agent of type 1 starts in A) Utility (agent of type 1 starts in B)

A
 

( )Z n a
C

n
−

+α
 

( )Z n a
C

n
−

+α

B
 

( )Z n b
C

n
−

+α
 

( )Z n b
C

n
−

+α

A′  ( ) ( )( ) ( )
( )2

2
2  

2
M Z n b n b n

Z M
n N n

 − + + −
− + +α 

τ−  
 ( ) ( )( ) ( )

( )2

2
2

2
M Z n b n a n

Z M
n N n

 − + + −
− + +α 

τ−  

B′  ( ) ( )( ) ( )
( )2

2
2

2
M Z n a n b n

Z M
n N n

 − + + −
− + +α 

τ−  
 ( ) ( )( ) ( )

( )2

2
2

2
M Z n a n a n

Z M
n N n

 − + + −
− + +α 

τ−  

For the agent of type 0 the utility change is:

 ( ) ( ) ( ) ( ) ( )
( )2

2
2  .

2
n a n b n b n

Z M M Z Z C
n n N n

 + − + −
− + − − +α − 

τ −    
(9)

Summing up both agents’ utility changes we get: 

 ( ) ( )
( )2

2
2 2  .

2 2
n b nM a b C

n N n

 + −
+ + α − 

τ −    
(10)

Fig. 4. Interchange of Type 1
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Proceeding in the same fashion for the case where the agent of type 1 starts in B we get:

 ( ) ( )
( )2

2
2 2  .

2 2
n a nM a b C

n N n

 + −
+ + α − 

τ −    
(11)

The first part of expressions 10 and 11, ( )2 a b+ , corresponds to the decrease in the 
total number of different type neighbours multiplied by the constant / 2M n . The second 
part is the decrease in the consumption multiplied by a.
Interchange of Type 2: A larger agent of type 1 share. Figure 5 depicts the case when the agent 
of type 1 is already part of the majority in the neighbourhood and after the swaps her/his 
share increases, i.e. she/he starts in D and ends up in D′. Table 2 shows the agents’ utility 
values in this case. Agent of type 0 utility variation is: 

 ( ) ( )
( )2

.
2

c d d c
Z

n N n
− +

+α
τ−  

(12)

Table 2. Type 2 interchange utility variation

Location Utility (agent of type 1 starts in D)

C
( ) ( )

( )2

2
2

Z n c n d n
n N n

 − + −
+α 

τ−  

C′
( ) ( )

( )2

2
2

Z n d n c n
n N n

 − + −
+α 

τ−  

D ( ) ( )( ) ( )
( )2

2
2

2
M Z n d n d n

Z M
n N n

 − + + −
− + +α 

τ−  

D′ ( ) ( )( ) ( )
( )2

2
2

2
M Z n c n c n

Z M
n N n

 − + + −
− + +α 

τ−  

and the utility change for agent of type 1 is:

 ( ) ( ) ( )
( )2

.
2

c d d c
M Z

n N n
− −

− +α
τ−  

(13)

Summing up these two utility changes we get:

 ( ) ( )2
22 .

2 2
M dc d
n N n

− +α
τ−  

(14)

First part of expression 14 is the decrease of the total number of different types neigh-
bours and the second part is the decrease in the consumption due to the change in the 
number of same type neighbours. 

All the cases analysed and their reverses switches exhaust all different types agents inter-
changes. As Zhang (2004) does we can inflate r by the constant / 2M n  in F. Consequently, 
if an interchange affects the moving agents utility by DU, the function F will change in DU.
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When 1x ≥ τ  and a is small the location part of the utility predominates over the 
consumption one. In this case the relevant part of F is –r. It is easy to see that the utility 
variation will be ( ) C∆ ρ+α . As 0C∆α <  and a is relatively small, then ( ) 0C∆ ρ+α >  
which means that the decrease in the number of different type neighbours will increase the 
utility. Consequently,  0     0U∆ > ⇔ ∆Φ> .

Therefore, F is a potential function of this spatial game with a log-linear behavioural 
rule.

2. Results

We define the function { }0 1:  ,  N type typeσ Λ → as a state of the N×N lattice LN, which 
identifies each location with its type of occupant. st represents the state s at the time 
t. Hence, we have a finite Markov process with a transition probability matrix Pb. This 
markovian process is perturbed due to the shock  of the utility function. The larger b is, 
the lower the perturbation’s effects will be. As there is a positive probability of going from 
any state to any other state in a finite number of periods, Pb is irreducible. Besides, as the 
process can travel from any the state s to s itself in any finite number of periods, Pb is also 
aperiodic. Consequently Pb has a unique stationary distribution mb satisfying Pβ β βµ = µ  . 
The distribution ( )βµ σ  is the cumulative relative frequency with which state s will be 
observed when the process runs for a long time, and the probability of observing s at any 
time t when t is large enough.

Let us consider the set S as the set of all states, and let us define S as a set of states 
that maximise the potential function F, such as ( ) ( ){ | ,  }S y y= σ Φ σ ≥Φ ∀ ∈Σ . A finite N 
guarantees that S is non-empty.

Proposition 1. In this artificial world, S is stochastically stable, i.e., { }lim lim Pr  1t
t

S
→∞β→∞

σ ∈ = .

Proof. According to Young (1998) in any potential game with the log-linear behavioural 
rule, the set of all the states that maximise the potential function is stochastically stable. 
As in our model F is the potential function, so the states that maximise F are stochasti-
cally stable.

Fig. 5. Interchange of Type 2
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Proposition 2. In the long run, if b is large and a is sufficiently large then residential integra-
tion is observed almost all the time. 
Proof. By proposition 1 we know that when b is large in the long run we will observe almost 
all the time a state that maximises F. The characteristics of these states will depend on the 
actual number of type 1 agents living in a given neighbour: x1. 

As long as 1x < τ  the system will move towards a segregated pattern because consump-
tion is not affected, but as long as segregation increases the probability of reaching a situ-
ation where 1x ≥ τ  will increase too. When 1x ≥ τ , there are two forces going in opposite 
directions. On one hand, the location utility will decrease with the number of different type 
agents neighbouring each other. On the other hand the consumption utility will decrease 
with the number of type 1 agents living together in the same neighbourhood. The first term 
of expressions 10, 11 and 14 corresponds to this first effect meanwhile the second term of 
them corresponds to the second one. The first terms of expressions 10, 11 and 14 are clearly 
positive. As ( )  2n b n+ ≤ , ( )  2n a n+ ≤  and t < 2n and as the first part of the second terms of 
expressions 10 and 11 is less than C, the whole of the second terms of expressions 10 and 
11 are negative. In expression 14 as c > d the first term of the equation is positive and the 
second one is negative because t < 2n.

Hence, which effect will predominate depends on the value of a. When a is suffi-
ciently large then the second term of those equations will be larger than the first one and 
consequently the sign of the complete expressions will be negative, which means that the 
consumption utility will be so important that its reduction will hurt agents and hence they 
will not be interested in swapping their locations. Under these conditions the states that 
maximises F are those that minimise segregation. 

3. Simulations

The aim of our simulations is twofold: firstly, to analyse a and its relationship with a non-
segregated pattern. Specifically we want to observe the predictions made by Proposition 2 
that the system will converge towards non-segregated equilibria as long a increases to big 
enough values. Secondly, to compare the aggregated utility reached in equilibrium with the 
highest level of aggregated utility, as a way to look at the social optimality of segregation. 

3.1. Equilibrium segregation

We have formally shown that integration can be a stable equilibrium. Now we will exam-
ine some features of an equilibrium of these characteristics using simulations. As it was 
mentioned, Singh et al. (2009) indicate that segregation is a small city phenomenon, conse-
quently, as we are looking for integration equilibria (as our formal results establishes it will 
arise when consumption is of high relative importance) we run simulations using a small 
city because in this situation is more probable to observe segregation equilibria, which is an 
adverse scenario for the equilibria we are looking for. For simulation purposes, an artificial 
society comprising 100 agents is considered. Hence, N = 10. Both types of agent are equally 
distributed across the population, therefore 0 1 0.5π = π = . Moore local neighbourhoods 
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were considered for every agent, which include the eight adjacent agents as neighbours, 
with a total amount of 9 agents per neighbourhood. Zhang (2004) shows, that models using 
this kind of neighbourhood converge faster, and moreover the final outcome is independent 
of the neighbourhood type2. Two scenarios will be analysed. In the first one it is assumed 
that non-disadvantaged agents and disadvantaged ones prefer balanced neighbourhoods. 
Consequently, 1 0 4n n= = . In the second one we study the system behaviour when non-
disadvantaged agents have strong preferences for living among peers, then n0 = 8. In order 
to facilitate the calculations and normalize the utility functions, we set Z = 1 and M = 0.6. 
Chosen values for parameters are b = 10 and t = 5, consequently the function simulated 
is ( )10  C+α + ò  . b determines the extent of importance of the non-stochastic part of the 
utility function. b equal to zero implies all agents moving in a random way. The Appendix 
shows a pseudo-code of the algorithm.

We started the simulations with a = 0 and then we incremented a by 0.02 until we 
reached a = 0.7 (therefore 10a = 7). For each value of a we performed 10 runs of 3,000 
simulations each of them, and then we calculated the average segregation. Figure 6 depicts 
the relationship between a and the average segregation when n0 = 4 and Figure 7 shows the 
same but when n0 = 8. Regarding a our focus is on how important is consumption relative 
to location, therefore we are not interested in the value of 10a itself but in how many times 
is consumption greater than location preferences.

As it can be appreciated, in the first case, for values between 0 and 4, the system con-
verges to high levels of segregation (the segregation measure has been normalised between 
0 and 1). Once 10a exceeds this threshold, segregation falls pronouncedly. When 10a = 5.7, 
the system always converges to the lowest possible level of segregation: 0.04. The latter is 
the level of segregation that the system produces with the first random move at the start-
up of simulations.

2 The other two kind of neighbourhoods used in the agent-based literature are Von Neumann and r(2), where the 
former considers the four surrounding agents as neighbours and the latter comprises 12 agents inside a circle with 
radius 2.
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The system behaviour in the second case is very similar (Fig. 7), but the high level of 
segregation can be observed for greater values of a. As a matter of fact for values of 10a 
between 0 and 5.5 the average segregation is greater than 0.7. Once 10a goes beyond 5.5 the 
average segregation falls, and after the value of 6.3 has been reached, the system stabilises 
at an average segregation of 0.04.

The fact that the system stabilises at 0.04 means that full integration comes to be a stable 
equilibrium. This finding is quite different from the previous results reported in literature, 
where the main conclusion has been exactly the opposite: the system always converges to 
the highest level of segregation. The element that makes the difference is that here, agents 
take into account segregation’s negative effect on their own level of consumption. This result 
will remain as long as consumption is important enough compared to location character-
istics as Proposition 2 indicates. 

3.2. Well-being analysis

In this section we compare equilibrium segregation with the segregation that produces the 
highest aggregated utility for a given set of parameter values. We call the segregation related 
to the maximum level of aggregated utility Optimal Segregation (in the Appendix there is 
an explanation of the algorithm used for this propose). The analysis has been made for a 
different combination of parameters values. In particular the focus is on non-disadvan-
taged agents’ prejudice n and on the effects of segregation on productivity of disadvantaged 
agents t. Values considered for n are 5, 6, 7 and 8, and for t we considered 4, 5, 6, 7 and 
8, i.e. we combine every level of prejudice, n, with all possible levels of segregation’s nega-
tive impact on productivity t, and for every one of these combinations we have obtained 
optimal segregation and equilibrium segregation, and then we calculated the difference 
between these two values. We made this exercise for two situations, one, when a is closer 
to 0, consequently the system evolves to full segregated equilibria and, second, when a is 
greater than 0.65 (consequently 10a is greater than 6.5), which makes the system evolve to 

Fig. 7. Segregation equilibria with n0 = 8
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non-segregated equilibria. Figures 8 and 9 present the average difference between Equilib-
rium Segregation (ES) and Optimal Segregation (OS) for all analysed cases.

As mentioned, when a is closer to 0 the system evolves to full segregated equilibria, 
however as a is greater than 0 segregation produces a loss in utility due to the consumption 
decrease. Hence, to find out when ES becomes optimal, we must ask when full segrega-
tion is optimal. The answer is linked to the non-disadvantaged agents’ level of prejudice 
and the extent of the segregation impact on the productivity of the disadvantaged agents. 
Then, the higher the prejudice, the higher the level of optimal segregation, and the lower 
the impact on productivity, the lower the level of optimal segregation. In this case there is 
only one situation where equilibrium and optimal segregation coincide, that is, when the 
latter is also the highest level of segregation. Without any surprise, this result comes about 
when non-disadvantaged agents are highly prejudiced and the negative impact of segrega-
tion upon the disadvantaged agents’ productivity is irrelevant. In Figure 8 it is possible to 
appreciate that when n0 = 8, i.e. when advantaged agents want to live just with like neigh-
bours – maximum prejudice – and t = 8, i.e. when there is no impact of segregation on 
productivity, equilibrium segregation and optimal segregation are equal, hence ES – OS = 0. 
The opposite case occurs when prejudice reaches a value of 5 and the impact of segregation 
on productivity reaches its maximum (t = 4). In that case, the difference between equilib-
rium segregation and optimal segregation reaches its maximum for any level of prejudice.

These results indicate that in almost all cases, society is in a situation where the optimal 
level of aggregate utility is not reached. A problem that increases meanwhile the level of 
non-disadvantaged agents’ prejudice decreases. This is because when the level of prejudice 
decreases, the difference between the optimal segregation and the equilibrium segregation 
gets higher. The intuition is straightforward: less prejudiced agents prefer lower levels of 
segregation, then the optimal level of segregation will be lower too, but the equilibrium 
segregation remains at the same high level, hence the social loss, under these circumstanc-
es, is bigger.

When a is big enough the system evolves to low level of segregation equilibria. In this 
case, as it can be seen in Figure 9, difference between ES and OS are very small, particu-
larly when t is 4 and 5, the highest impact of segregation on productivity. Gradually the 
gap gets bigger, till t = 8 when the difference reaches the maximum value. The reason is 
that when a is greater than 0.65 the system stabilises at very low levels of segregation, but 
if t = 8 segregation almost does not affect productivity, therefore some positive values of 
segregation will increase the aggregated utility.

The extreme cases where either the highest or the lowest segregation are the social 
optimum, sort of corner solutions, are less common. This implies that segregation reduc-
tion can generate social gains, but, in almost all cases, not its complete elimination. In 
other words, segregation is not bad by itself, but it is not good either just because it is an 
equilibrium state. To search for policies which can establish a socially optimal individual 
allocation, demands a full understanding of agents’ preferences for local neighbourhoods 
characteristics and the extent of groups effect impact upon disadvantaged agents. Therefore 
neither a full elimination of segregation nor a laissez-faire equilibrium can be seen a priori 
as the best solution.
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Conclusions

The well known Schelling model predicts that segregation is the unique stable equilibrium 
even when individuals have preference for living in integrated communities, which has 
been confirmed by subsequent investigations. Nevertheless, it is empirically possible to 
observe that segregation varies across cities and even in highly segregated cities there is 
some extent of intermingle. We argue that this difference between theoretical prediction 
and reality emerges because individuals do not take into account just their neighbours 
characteristics when they decide where to live but other factors as well, such as, for in-
stance, public goods consumption.

Based on this concept, in this paper we have developed a mathematical formalisation 
of a Schelling-like model of segregation, which includes a simple production function. The 
main difference from the previous literature is that here we consider that segregation can 

Fig. 8. Difference between ES and OS for a close to 0
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affect the utility of every single agent, including non-segregated ones. There are two types 
of agents, advantaged and disadvantaged. The novelty of this work arises in the assump-
tion that disadvantaged agents living segregated lose productivity and then the economy 
as a whole is less productive too, affecting in a negative way the level of consumption of 
all agents. 

Segregation also affects production negatively and therefore the levels of consumption 
of everyone, prejudiced and non-prejudiced alike. The mechanism driving this process is 
that of group effects.

Using this model and stochastic evolutionary game theory techniques we prove that 
when individuals’ consumption is important enough, integration can emerge as a stable 
equilibrium. The reason is that agents take into account segregation’s negative effects on 
their own level of consumption at the moment of taking their location decisions. This is 
an interesting result because is the first time that has been formally shown that integration 
can be a stable equilibrium.

After a formal proof was obtained, two simulation scenarios were analysed: one where 
both kinds of agents prefer balanced neighbourhoods, and a second one where advantaged 
agents have strong preferences for neighbouring just peers. Under these two scenarios we 
observed that when a is big enough the system converges to a full integration equilibrium. 
The only difference is that in the second case the value of a needed for observing integra-
tion is greater than the one needed in the first case.

This result can be interpreted as follows: when individuals are aware about the poten-
tially pernicious effects of segregation, which can affect every single society member, they 
are more conscious at the moment of choosing their location. Depending on how detri-
mental is segregation, or how important the location characteristics are, the equilibrium 
segregation will vary from high levels to almost full integration, which is something that 
can be empirically observed: according to The Social Science Analysis Network calcula-
tions, based on census data, the average dissimilarity index for White and Black individuals 
in the U.S.A. is 58.5 (the maximum value is 100).

We also use simulations for comparing the aggregated utility of the optimal segregation 
level with equilibrium segregation one. The optimal segregation value depends on the de-
gree of prejudice and on its negative impact of group effects on productivity. For instance, 
with highly prejudiced agents and irrelevant group effects, the social optimum will be full 
segregation. In the opposite case, the social optimum will be full integration. However, 
with more balanced parameter values, the optimal segregation will be a positive value lying 
between 0 and 1 but not reaching the extremes.

Although we are aware that more research is needed before proposing any kind of 
policy implications, our findings can suggest something. First of all, segregation must not 
be seen as a bad situation a priori. As a matter of fact, using the model presented in this 
work, it has been possible to find different levels of optimal segregation, from no segre-
gation at all up to full segregation. What is going to be the optimal level of segregation is 
something which depends on how prejudiced are the prejudiced agents, the extent of the 
impact of group effects, and the relative importance of local neighbourhood characteristics 
and consumption on agents’ utilities. Consequently, it can be argued that there is no such 
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thing as a unique optimal level of segregation or an absolute segregation target. In other 
words, segregation is not bad in itself, because there is one part of society that wants to live 
segregated, but it is not good in itself either, because segregation affects all agent’s levels of 
consumption. If the aim is to improve welfare, policy makers must have a clear picture of 
individual preferences, group effects, and other elements, which have not been treated in 
this research, but it is worth mentioning them, such as the provision of local and non-local 
public goods, before implementing any policy with the objective of reducing segregation. 
Besides, it is clear too that if two cities, or regions, have not the same characteristics, then 
they have different levels of optimal segregation and, therefore, they need different policies.

Despite the fact that the model developed in the present paper has provided interesting 
insights into segregation, it is also true that is a simple model. So that further work may be 
needed to obtain a deeper understanding of this phenomenon. For instance, incorporating 
prices, the real estate market, the labour market and the capital market. Using a model like 
that, the relationship between segregation – group effects – and economic growth could 
be investigated. It is worthwhile also to empirically investigate on the elements defining 
the level of optimal segregation, such as prejudices and group effects, as a way to test the 
findings of the present paper, and, also, as a useful base for policy design.
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APPENDIX

Pseudo-code

Algorithm 1 Household exchange algorithm procedure

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

procedure HOUSEHOLD EXCHANGE

Set initial neighbourhood distribution as full integration

Perform initial random house swap

while maximum iteration criterion not satisfied

* Select at random two households for exchange

* Compute utility (U) for each household and location

* Add random externalities to U(U = U + e), in order to account 

for mistakes and heterogeneity in decision making

if 
1,2

i
i

U
=
∑  at location 

1,2
2  i

i
U

=

> ∑  at location 1, where i indicates 

households’ location then

* Perform exchange

end if

Report results

end while

end procedure
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Algorithm 2 Optimal Segregation Algorithm

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

24:

25:

26:

27:

procedure OPTIMAL SEGREGATION

Set random initial neighbourhood distribution

Set Social Utility (SU)

Set Total Productivity (TP) to 0

Let     
out inbest bestSU SU SU= =

 
out inbest bestTP TP TP= =

while maximum outer iteration criterion not satisfied do

while maximum inner iteration criterion not satisfied do

Select at random two households for exchange

Compute utility (U) for each household and location

Add random externality to U(U = U + e, in order to account 
for mistakes and heterogeneity in decision making

If U at location 2 > U at location 1 then

Perform household exchange

Compute SU and TP

end if 

end while

if 
inbestSU SU<  then

  
inbestSU SU=

  
inbestTP TP=

end if 

if 
out inbest bestSU SU<  then

  
out inbest bestSU SU=

  
out inbest bestTP TP=

end if 

end while

Report results 
outbestSU  and 

outbestTP

end procedure
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