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Abstract. Hesitant fuzzy sets (HFSs) are widely applied in pattern recognition, classification, clus-
tering, and multiple attribute decision making. In order to get more accurate decision results, the 
order relation of HFSs is particularly important. In this paper, some defects of the existing order 
relations for HFSs are discussed. In order to solve these problems, by employing a distance measure 
and the TOPSIS method, we propose a new order relation extraction method based on a new ad-
ditive consistency fuzzy preference relation for hesitant fuzzy elements (HFEs). Then, the proposed 
additive consistency fuzzy preference relation is applied to integrate group decision information. In 
multi-attribute group decision making (MAGDM), it is particularly important to ensure the consen-
sus of the decision-makers (DMs), and the consistency of the decision process is the precondition 
for DMs to reach consensus. The proposed method can maintain the consistency of the decision 
process for MAGDM under hesitant fuzzy environments, so as to get the consensus of DMs, besides, 
it can overcome the limitations of the existing order relations for HFSs. At the end of this paper, 
a numerical example is used to illustrate the effectiveness and feasibility of the new approach, and 
some comparative analyses are given. The obtained results confirm the theoretical and numerical 
analyses and emphasize the advantages, which can ensure the consistency of the whole decision 
process and avoid the original decision information change and loss of the proposed method, so as 
to be more in line with the actual situation.

Keyword: multi-attribute group decision making, hesitant fuzzy sets, TOPSIS, distance measure, 
fuzzy preference relation, additive consistency.
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Introduction

Many studies on the fuzzy set theory have been conducted (Kacprzyk & Orlovski, 1987; 
Turksen, 1986) and have achieved great success (Roy & Maji, 2007; Deschrijver & Kerre, 
2003; Erceg, 1979), since the fuzzy set theory was advanced by Zadeh (1965). With the 
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continuous improvement of the level of human knowledge, the theory of fuzzy sets has been 
extended by scholars. Therefore, many other forms of fuzzy sets were developed, such as in-
terval fuzzy sets (Chen, Xu, & Xia, 2013; Turksen, 1986), intuitionistic fuzzy sets (Atanassov 
& Rangasamy, 1986), interval-valued intuitionistic fuzzy sets (IVIFS) (Atanassov, 1989), 
2-type fuzzy sets (Yager, 1986), N-type fuzzy sets, fuzzy multisets (Xu & Xia, 2011), etc. In 
reality, when making decisions, the DMs are usually indecisive and tend to hesitate in the 
face of several possible choices, so it is difficult to reach a final agreement. For example, 
two DMs discuss the membership of one element to one set, one is to allocate 0.4, and the 
other wants 0.7. To deal with such cases, Torra (2010) put forward the definition of hesitant 
fuzzy sets (HFSs), developed the basic algorithm and discussed the application of HFSs in 
decision making (Torra & Narukawa, 2009; Turksen, 1986). In multi-attribute group deci-
sion making (MAGDM), when several DMs are different in knowledge and experience, it 
is difficult to reach a consensus. HFSs can allow DMs to have multiple membership degrees 
for alternatives.

Since then, many scholars have paid attention to HFSs and additional studies have ap-
peared in the literature (Chen, Xu, & Xia, 2013a; Farhadinia, 2013; Kessler et al., 2011; Qian, 
Wang, & Feng, 2013; Rodriguez, Martinez, & Herrera, 2012; Wu, Jin, & Xu, 2018; Xu & 
Zhang, 2013; Xu & Xia, 2012; Zhang, Xie, & Wu, 2015a), such as the related aggregation 
operators, the order relationship of HFSs and distance and similarity measures (Xu & Xia, 
2011a) of the HFSs. It has also been diffusely and successfully used to a lot of MAGDM 
problems. In general, hesitant fuzzy MAGDM problems have two phases: aggregation and 
exploitation. In the aggregation phase, the information is grouped to reflect a collective value 
for each alternative or criterion, while in the exploitation phase, the best alternative is se-
lected as a solution to the decision problem by using the collective values obtained in the 
previous phase (Bedregal, Reiser, Bustince, & Lopez-Molina, 2014).

There are two main ways to integrate hesitant fuzzy decision information. Firstly, ex-
tending the existing multi-attribute aggregation operators. For examples, Xia and Xu (2011) 
presented the hesitant fuzzy weighted averaging operator and the hesitant fuzzy weighted 
geometric operator and promoted the two operators, so as to obtain the generalized hesitant 
fuzzy weighted averaging operator, the generalized hesitant fuzzy weighted average geometric 
operator, the hesitant fuzzy hybrid averaging operator and the hesitant fuzzy hybrid geo-
metric operator. Wei (2012) proposed the hesitant fuzzy prioritized weighted average and 
hesitant fuzzy prioritized weighted geometric integrated operator in which he considered 
the priority between the different attributes. Qin, Liu, and Pedrycz (2016) developed hesitant 
fuzzy aggregation operators based on Frank operations. Zhu, C., Zhu, L., and Zhang (2016) 
discussed multi-attribute decision making problems with linguistic hesitant fuzzy informa-
tion and proposed a series of linguistic hesitant fuzzy power aggregation operators. Farhad-
inia (2016) introduced a novel HFS ranking technique in view of lexicographical ordering. 
Zhang, Wang, Tian, & Li (2014) developed a series of induced generalized aggregation opera-
tors for hesitant fuzzy or interval-valued hesitant fuzzy information. Tang, Fu, Xu, & Yang 
(2017) analyzed fuzzy Hamacher aggregation functions for uncertain multi-attribute decision 
making. Yu, Wu, and Zhou (2011) proposed a new hesitant fuzzy aggregation operator based 
on the Choquet integral which included the importance of the elements, their ordered posi-
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tions and a fuzzy measure. Zhu, Xu, and Xia (2012) based on the Bonferroni average (BM), 
which have a great impact on multi-criteria decision making, they proposed the definition 
of the hesitant fuzzy geometric Bonferroni mean (HFGBM) and the hesitant fuzzy Choquet 
geometric Bonferroni mean (HFCGBM). In addition, the weighted hesitant fuzzy geometric 
Bonferroni mean (WHFGBM) and the weighted hesitant fuzzy Choquet geometric Bonfer-
roni mean (WHFCGBM) are also proposed. 

Another application involves using the distance or similarity measure to aggregate deci-
sion information. Xu and Xia (2011a) presented a distance measurement method of fuzzy sets 
according to distance axioms, advanced the corresponding similarity measurement method, 
and studied the relationship and the character of the HFSs distance formula and similar met-
rics. Li, D., Zeng, and Li, J. (2015) presented some new distance measures between HFSs and 
a novel generalized hesitant fuzzy synergetic weighted distance measure. Peng, Gao, C. Y., 
and Gao, Z. F. (2013) presented a generalized hesitant fuzzy synergetic weighted distance 
measure. Farhadinia (2014) introduced a series of distance measures and similarity measures 
for the higher order HFSs. Zhang, Li, Chen, Sun, and Attey (2017) proposed a new hesitant 
distance set in which the distances between different HFSs can be characterized by a series 
of different values. Xu and Zhang (2013) developed a novel approach based on TOPSIS and 
the maximizing deviation method for solving MAGDM problems. Yue (2016) proposed a 
geometric method based on TOPSIS that could be used for sorting interval-valued intuition-
istic fuzzy numbers. Jin, Ni, Chen, Li, and Zhou (2016) further constructed several informa-
tion measure formulas for interval-valued hesitant fuzzy elements (IVHFEs) on the basis of 
the continuous ordered weighted averaging operator to deal with MAGDM whose attribute 
values are IVHFs forms. Dong, Chen, and Herrera (2015) proposed a novel distance-based 
consensus measure for hesitant linguistic group decision making. Zhang and Xu (2015) be-
lieved that distance and similarity measures were inaccurate in some cases. Therefore, a new 
concept of fuzzy set hesitant fuzzy index was proposed to measure the hesitation degree 
among the possible values in each hesitant fuzzy element of the HFS. According to their inde-
cisive and index considerations, a new method for measuring the distance between HFSs was 
proposed. There were still a lot of works about distance and similarity measures (Singh, 2015; 
Su, Xu, Liu, & Liu, 2015; Zeng, Li, & Yin, 2016; Papakostas, Hatzimichailidis, & Kaburlasos, 
2013; Hesamian & Shams, 2015; Williams & Steele, 2002) for HFSs.

In addition to the two main methods of dealing with hesitant fuzzy information, fuzzy 
preference relations are also research hotspots. Zhang, Wang, and Tian (2015b) proposed 
two group decision making support models with hesitant fuzzy preference relations (HFPRs) 
based on Tanino’s additive consistency concept and the b-normalization based method and 
then used them to MAGDM. Wu and Xu (2016) studied separate consistency and consen-
sus processes for hesitant fuzzy linguistic preference relations. Zhou, Xu, and Chen (2015) 
proposed a hesitant-intuitionistic fuzzy number and simultaneously proposed a proposal 
for the hesitant-intuitionistic fuzzy preference relation and its complementary form. Xu, 
Chen, Herrera, and Wang (2016) suggested the incomplete HFPR, which is a new type of 
fuzzy preference structure, and defined the additive consistency of incomplete HFPRs and 
the concept of consistency of multiple incomplete HFPRs, and they were used to solve the 
problem of group decision making. The above-mentioned models are based on consistency, 
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but they cannot deal with inconsistent situations. To resolve these limitations, Meng and An 
(2017) proposed 0-1 mixed programming models to judge the multiplicative consistency of 
HFPRs. Its main feature is that the concept does not increase the value of the HFEs, nor does 
it ignore any information from DMs. To obtain more consistent HFPRs, Xu, Cabrerizo, and 
Herrera-Viedma (2017) gave a consensus model of HFPRs and revised the definition of a 
HFPR. Then they proposed a revised additive consistency to estimate the unknown values, 
which are added to the short HFSs, which normalized the HFPRs, and based on this, they 
developed a model for MAGDM problems.

However, whether the aggregate operators, distance and similarity measures and fuzzy 
preference relations, when applied to MAGDM problems, there will be the following prob-
lems: 

(1) When using aggregation operators or score functions to rank HFSs, the results are not 
consistent with the actual situation (Lan, Jin, Zheng, & Hu, 2017);

(2) When some MAGDM methods of using distance and similarity measures, HFEs need 
to be extended to the same length (Li et  al., 2015; Zeng et al., 2016; Zhang & Xu, 
2015), these methods have changed the original decision information, which may lead 
to inaccurate decision results;

(3) When using fuzzy preference relations for MAGDM problems, in the decision pro-
cess, it is often difficult to ensure consistency, and thus the algorithm is modified 
(Khalid & Beg, 2016; Zhang et al., 2015b), which resulting in the changes in decision 
information, which may lead to inconsistent results, thus may make decision failure.

To overcome the flaws, the rest of this paper is arranged as follows: In Section 1, some 
basic concepts of HFSs and fuzzy preference relations are reviewed. Examples are used to 
analyze the rationality of the existing order relations of HFSs in Section 2. Section 3 builds 
a new fuzzy preference relation for HFSs. Section 4 develops an approach to hesitant fuzzy 
MAGDM based on FPRs. In Section 5, an example is given to illustrate the rationality and 
applicability of the new method. Finally, the conclusions are drawn in the end of the paper.

1. Preliminaries

1.1. HFS and its order relations

In this section, the definition of HFS and its order relations are introduced. Torra (2010) first 
proposed the definition of HFS, which takes the following form:

Definition 1. (Torra, 2010) Set a discourse X, then a HFS on X is in terms of a function that 
when applied to X returns a subset of [0,1].

To make calculations easier, Xia and Xu (2011) further refined the previous definition by 
redefining HFS through a mathematical expression, the form is as follows:

 ( )( )E , | .Ex h x x X= ∈   (1)

where ( )Eh x  is a membership function which returns all the possible memberships of x X∈  
to the set E, and Xia and Xu (2011) named ( ) ( )Eh x h x=  a hesitant fuzzy element (HFE).
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Example 1. Let { }1 2 3, ,X x x x= be the discourse set, and ( ) { } ( ) { }1 20.3,0.5,0.8 , 0.4,0.6E Eh x h x= =
( ) { } ( ) { }1 20.3,0.5,0.8 , 0.4,0.6E Eh x h x= =  and ( ) { }3 0.2,0.3,0.6Eh x =  are three HFEs of ( )1,2,3ix i =  to a set E. 

We express E to be a HFS, i.e,

 { } { } { }{ }1 2 3E , 0.3,0.5,0.8 , , 0.4,0.6 , , 0.2,0.3,0.6 . x x x=

In MAGDM problems under hesitant fuzzy environment, the order relations of HFSs 
tend to be involved. Thence, it is especially important to rank HFSs. In the following, we 
review the existing order relations of HFSs.

Definition 2. (Torra, Xu, & Herrera, 2014) Given two HFSs H1 and H2 on X of the same car-
dinality, we define that 1 2H H≥  if ( ) ( )1 2H x H x≥  for all x. Note that ( )1H x  and ( )2H x  
are HFEs. Here, ( ) ( )1 2H x H x≥  for HFEs ( )1H x  and ( )2H x  if ( ) ( ) ( ) ( )

1 2  j jH x H xσ σ≥  
for all { }1j 1, , H=  , where ( ) ( )  jH x σ is the jth element in ( )H x  when they are ordered 
in decreasing order.

Definition 3. (Torra et al., 2014) Let ∅ be a function on HFSs such that the cardinality of 
∅ is the same for all HFSs. We then say that ∅ is monotonic when ( ) ( )E E∅ ≥∅ ′  for all 

{ }1E , , nH H=   and { }1E , , nH H′ ′′ =   such that i iH H ′≥  for all { }1, ,i n=  .

Definition 4. (Torra et al., 2014) Let { }1E , , nH H=   be a set of n HFSs and Q a function, 
: 0,1 0,1nQ →      ; we then export Q on fuzzy sets to HFSs defining:

 ( ) ( ) ( ){ }
1

.
nE H x H xγ∈ × ×Q =∪ Q γ



  (2)

Property 1. (Torra et al., 2014) Let { }1E , , nH H=   and { }1E , , nH H′ ′′ =   such that i iH H′ ≥  
for all { }1, ,i n=  . Then, if Q is a monotonic function, QE is monotonic.

In practical problems, the number of elements in several HFSs may not all be the same, 
and Xu and Xia (2011) have given an expansion rule by adding the minimum, maximum 
or any of them until they have the same length. The choice of this value depends primarily 
on the risk appetite of the DMs. Optimists expect the desired result to be achieved and may 
increase the maximum, while the pessimists are expected to produce negative results and 
possibly increase the minimum. However, when the expansion rule is applied to the calcula-
tion, it still changes the information of the original decision matrix, thus leads to inaccuracy 
in decision making. Therefore, Xia and Xu (2011) defined a score function to describe the 
order relation of HFSs. The definition is as follows:

Definition 5. (Xia & Xu, 2011) Let h be a HFE. The score function of h is defined by:

 
( ) ( )

1s
h

h
l h

γ∈

= γ∑ ,  (3)

where ( )l h  is the number of elements in h.
Let h1 and h2 be two HFEs; then,
if ( ) ( )1 2s sh h> , then 1 2h h> ;
if ( ) ( )1 2s sh h= , then 1 2h h= .
Farhadinia (2013) extended the score function from a HFE to a HFS as follows:

Definition 6. (Farhadinia, 2013) Let E1 and E2 be two HFSs on { }1 2, , , nX x x x=   . 
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1 2E E  if and only if ( ) ( )1 2Score ScoreE E≥ , where ( ) ( )( )11
1

1Score s
n

E i
i

E h x
n

=

= ∑  and 

( ) ( )( )22
1

1Score s
n

E i
i

E h x
n

=

= ∑ .

To get the same purpose, besides the score function, many other aggregation operators 
(Torra & Narukawa, 2007; Wei, 2012; Xia & Xu, 2011) have been also used to solve this 
problem. 

1.2. Fuzzy preference relation

The fuzzy preference relation is widely used in the decision making problems. Tanino (1984) 
gave its definition in 1984.

Definition 7. (Tanino, 1984) A fuzzy preference relation R on a finite set of alternatives 
{ }1 2A , , , kA A A=   is a fuzzy relation on the product set A×A with membership function 

: A A 0,1Ru × →   , ( ) ,R i j iju A A r= , and rij satisfies the following conditions:

 
0, 1, , 1,2, ,ij ij jir r r i j k≥ + = =  .  (4)

Usually, a preference relation is represented by a k×k matrix ( )ij k k
R r

×
= , in which rij 

represents the preference degree of Ai over Aj. Specifically, 0 0.5ijr≤ <  denotes a definite 
preference of Aj over Ai. In particular, rij = 0 denotes that Aj is totally preferred to Ai, and 
rij = 0.5 denotes that Aj and Ai are equally important.

Definition 8. (Tanino, 1984) A fuzzy preference relation ( )ij k k
R r

×
=  is called an additive 

consistency preference relation if and only if:

 
0.5, , , 1,2, ,ij it tjr r r i j t k= + − =  .  (5)

Definition 9. (Huo, Lan, & Wang, 2011) A fuzzy preference relation ( )ij k k
R r

×
=  is an additive 

consistency fuzzy preference relation if and only if there exists a positive normalized weight 
vector of k dimensions ( )1 2, , , kw w w , such that

 
ln ln 0.5, , 1,2, ,ij i jr w w i j k= − + =  .  (6)

where 
1

1 1

1exp

1exp

k
ijj

i k k
tjt j

r
kw

r
k

=

= =

 
 
 =

 
 
 

∑

∑ ∑
, ( )1,2, ,iw i k=   are called the priority weights.

Xu (2015) studied the properties of additive consistency fuzzy preference relation in de-
tail, and gave the following properties and theorems.

Property 2. (Xu, 2015) Let ( )ij k k
R r

×
=  be an additive consistency fuzzy preference relation. 

Then, 0.5i j ijw w r> ⇔ > , 0.5i j ijw w r= ⇔ = .

Definition 10. (Xu, 2015) Let ( )ij k k
R r

×
= , and b is a nonnegative real number. Then, bR is 

defined by:

 
( )ij k k

bR br
×

= .  (7)
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Theorem 1. (Xu, 2015) Let ( )1
1 ij

k k
R r

×

 =  
 

, ( )2
2 ij

k k
R r

×

 =  
 

,, ( ) n
n ij

k k
R r

×

 =  
 

 be a set of add-

itive consistency fuzzy preference relations, 0,1 , 1,2, ,lw l n∈ =     and 
1

1
n

l
l

w
=

=∑ . Then, 

( )
1

n

l l ij k k
l

R w R r
×

=

= =∑  is an additive consistency fuzzy preference relation.

2. Analysis on the existing order relations of HFSs 

As mentioned in the introduction, many scholars have suggested ranking methods for HFSs. 
However, there are some defects when using the existing order relations to rank HFSs. In 
this section, we will analyze the limitations of the order relations of HFSs through examples.

Example 2 (Adapted from Ref. Lan et al. (2017)) Jack and Tom play a game that has three 
turns. Jack has three cards: a 9 of spades, a 6 of spades and a 3 of spades; and Tom has 
three cards: an 8 of spades, a 5 of spades and a 2 of spades. Using the following game rules:  
(1) Each person can only select one of their own cards to play in each turn; (2) The card with 
the higher points wins in each turn; (3) The person who wins two turns is the final winner. 
Although Jack’s cards have a point’ advantage, it is not certain that Jack can win the game, 
we can only say that his probability of winning is 0.6667.

The above example can be transformed into a comparison of two HFSs as follows. Jack cor-
responds to the HFE { }1 0.9,0.6,0.3h = , and Tom corresponds to the HFE { }2 0.8,0.5,0.2h = . 
In line with definition 2 or the score function, we can conclude that 1 2h h . Obviously, the 
result is not consistent with reality. We are not sure that Jack can beat Tom, and Tom has a 
chance to win. Using the proposed order relations or score function to judge the hesitant 
preference relation between the HFSs always tends to ignore this possibility and ignores some 
information. Thus, the results obtained are sometimes inconsistent with reality.

In fact, there are real elements ( ) 1 2,u v h h∈ ×  satisfying u < v, for example, (0.6,0.8). 
Example 2 is a numerical example to show that by using the score function, there is a defect 
in ranking HFSs.

Example 3. Assume that { }1 2,X x x= . { } { }( )1 1 2, 0.5,0.4,0.3 , , 0.9,0.8,0.7,0.1E x x= , E2 =
{ } { }( )2 1 2, 0.5,0.3 , , 0.6,0.5,0.3E x x=  and { } { }( )3 1 2, 0.8,0.7,0.4,0.3 , , 0.7,0.4,0.2E x x=  are three 

HFSs on X.
In line with Definition 6, we find that ( )1Score 0.5125E = , ( )2 Score 0.4333E = ,
( )3 Score 0.4917E =  and then 2 3 1E E E  .

However, elements ( ) ( ) ( )1 1 1 1 3 1, E Eu v h x h x∈ ×  exist that satisfy 1 1u v<  and ( ) ( ) ( )2 2 1 2 3 2, E Eu v h x h x∈ ×
( ) ( ) ( )2 2 1 2 3 2, E Eu v h x h x∈ × , satisfying 2 2u v< . Therefore, from the perspective of decision making, 

we still cannot be sure that 1 3E E , so we can only say that E1 has an advantage over E3.
Many other aggregation operators (Xia & Xu, 2011; Wei, 2012; Tang et al., 2017) have 

been used to integrate hesitant fuzzy information, and the score function is used to deal with 
the order relations of HFSs. However, by using aggregation operators and the score function, 
situation similar to the above examples cannot be avoided. This shows that using aggregation 
operators and the score function to deal with the ordering relations of HFSs is inappropriate.
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3. A new fuzzy preference relation for HFEs 

When comparing the differences between two objects, many methods have been proposed, 
of which distance measure is often used. To rank HFSs, in this section we will solve the order 
relation of the HFEs based on the TOPSIS method.

Xu and Xia (2011) came up with the hesitant normalized Hamming distance, Euclidean 
distance and generalized hesitant normalized distance (Xu and Xia, 2011a), and their defini-
tions are as follows:

Definition 11. (Xu & Xia, 2011, 2011a) Let M and N be two HFSs on { }1 2, , , nX x x x=  .
Then,

                             

( ) ( ) ( ) ( ) ( )
1 1

1 1,
xi

i

ln
j j

h i iM N
xi j

d M N h x h x
n l

σ σ

= =

 
 = − 
  

∑ ∑ ;  (8)

 

( ) ( ) ( ) ( ) ( )

1
22

1 1

1 1, [ )
xi

i

ln
j j

e i iM N
xi j

d M N h x h x
n l

σ σ

= =

 
 = −   

∑ ∑ ;  (9)

 

( ) ( ) ( ) ( ) ( )

1

1 1

1 1, [ )
xi

i

ln
j j

g i iM N
xi j

d M N h x h x
n l

ll
σ σ

= =

 
 = −   

∑ ∑   (10)

are called the hesitant normalized Hamming distance, hesitant normalized Euclid-
ean distance and the generalized hesitant normalized distance, respectively, in which 

1l ≥  , 
( ) ( )j

iMh xσ  and ( ) ( )j
iNh xσ  are the jth values in ( )M ih x  and ( )N ih x , respectively, and 

( )( ) ( )( ){ }max ,
ix M i N il l h x l h x= .

Hwang and Yoon (1981) introduced the TOPSIS method, and its main idea is to choose 
the most ideal alternative. Deviation variables are introduced into the algorithm, that is, the 
shortest distance to the ideal solution and the farthest distance to the negative ideal solution, 
avoiding the loss of decision information and reduce the computational complexity caused 
by the traditional distance measures.

In the traditional TOPSIS method, based on the length of the HFEs, the positive and 
negative ideal points of the corresponding dimensions are obtained, therefore, when the 
length of the HFEs are different, it is necessary to extend the HFEs to the same length. This 
section has made the following change based on the thought of the traditional TOPSIS, the 
dimension of positive and negative ideal points varies according to the length of HFEs, and 
their values are still 1 and 0, respectively, which avoids the extension of the HFEs.

Now, we consider the use of the TOPSIS method to solve the HFEs ordering problem.
If ( )1,2, ,jh j n=   are a set of HFEs, then we have { }0Nh = , { }1Ph = , which are the 

negative ideal solution and positive ideal solution of the HFEs, respectively.

 

( ) ( ) ( ) ( )

1

1, , 1,2, ,
p

p

h g p N
p h

d d h h p n
l h

l
− l

γ∈

 
 l = = γ =  
 

∑    (11)
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represents the distance between hp and the negative ideal solution, and

 

( ) ( ) ( ) ( ) ( )

1

1, 1 , 1,2, ,
p

p

g p Ph
p h

d d h h p n
l h

l
l+

γ∈

 
 l = = − γ =  
 

∑    (12)

represents the distance between hp and the positive ideal solution, in which 1l ≥  and the 
number of elements in hp is represented by ( )pl h .

The relative closeness coefficient of the HFS hp with respect to the positive ideal solution 
hp is defined as the following formula:

 

( )
( )

( ) ( )
p

p
p p

h
h

h h

d
f

d d

−

− +

l
l =

l + l
,  (13)

where ( )0 1
phf≤ l ≤ .

Then we employ the closeness coefficient ( )
phf l  to rank the orders of ( )1,2, ,jh j n=  . 

The ranking order rules are as follows:

Definition 12. Let ( )1,2, ,jh j n=   be a collection of HFEs.
(1) If ( ) ( )

p qh hf fl > l , then p qh h , , 1,2, ,p q n=  .
(2) If ( ) ( )

p qh hf fl = l , then p qh h , , 1,2, ,p q n=  .

where ( )
( )

( ) ( )
p

p
p p

h
h

h h

d
f

d d

−

− +

l
l =

l + l
, ( ) ( )

1

1
p

p

h
p h

d
l h

l
− l

γ∈

 
 l = γ  
 

∑  and 

 
 

( ) ( ) ( ) ( )

1

1 1 , 1,2, ,
p

p

h
p h

d p n
l h

l
l+

γ∈

 
 l = − γ =  
 

∑  ,

when 1l = , ( ) ( )1
ph pd s h− = , ( ) ( )1 1

p phd s h+ = −  and ( ) ( )1
ph pf s h= .

Definition 12 shows that the score function is only a special case of the above ranking 
order rules.

Example 4. Assume that: { }1 0.5,0.4,0.3h = , { }2 0.9,0.8,0.7,0.1h = , { }3 0.8,0.7,0.4,0.3h = .
Take l = 1, then we can calculate:

( ) ( ) ( ) ( ) ( ) ( )
1 2 31 2 31 0.4,  1 0.625,  1 0.55;h h hd s h d s h d s h− − −= = = = = =

( ) ( ) ( ) ( )
1 21 21 1 0.6, 1 1 0.375;h hd s h d s h+ += − = = − =

( ) ( )
3 3 1 1 0.45;hd s h+ = − =  

( ) ( ) ( ) ( ) ( ) ( )
1 2 31 2 31 0.4,  1 0.625,  1 0.55.h h hf s h f s h f s h= = = = = =

Since ( ) ( ) ( )
2 3 1

1 1 1h h hf f f> > , we have 2 3 1h h h  .
Take l = 3, then we can calculate:

( ) ( ) ( )
1 2 3

3 0.4160, 3 0.7345, 3 0.6184;h h hd d d− − −= = =

( ) ( ) ( )
1 2 3

3 0.6109, 3 0.5761, 3 0.5296;h h hd d d+ + += = =  

( ) ( ) ( )
1 2 3

3 0.4051,  3 0.5604,  3 0.5387.h h hf f f= = =  
Since ( ) ( ) ( )

2 3 1
3 3 3h h hf f f> > , we have 2 3 1h h h  .
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In fact, as described in section 2, 1 2 3, ,h h h  are not strictly dominant; therefore, merely 
ranking HFEs by the proposed closeness coefficient or score function is inappropriate. To 
overcome the limitation, based on the relative closeness coefficient, a new fuzzy preference 
relation for HFEs is built:

Definition 13. Suppose that ( )1,2, ,jh j n=   is a collection of HFEs. The mapping 
( ): , 0,1i jR h h →     is defined by

 
( )

( )( ) ( )( )
( ), 0.5, , 1,2, , .

2
i jh h

i j

g f g f
R h h i j n

l − l
= + =    (14)

where  : 0,1 0,1g  →     is strictly a monotone increasing function, ( )
( )

( ) ( )
p

p
p p

h
h

h h

d
f

d d

−

− +

l
l =

l + l
 

, 

( ) ( )

1

1
p

p

h
p h

d
l h

l
− l

γ∈

 
 l = γ  
 

∑ , ( ) ( ) ( ) ( )

1

1 1 , 1,2, ,
p

p

h
p h

d p n
l h

l
l+

γ∈

 
 l = − γ =  
 

∑  . 

Denote ( ),ij i jr R h h= , and rij represents the preference degree of hi over hj. Obviously, if 

( )( ) ( )( ) ( ) ( )0.5
i j i jij h h h h i jr g f g f f f h h≥ ⇔ l ≥ l ⇔ l ≥ l ⇔  .

Property 3. Suppose that 
( )( ) ( )( )

0.5, , 1,2, ,
2

i jh h
ij

g f g f
r i j n

l − l
= + =  ; then rij has the 

following properties:
(1) 0 1, , 1,2, ,ijr i j n≤ ≤ =  ,
(2) 1, , 1,2, ,ij jir r i j n+ = =  ,
(3) 0.5, , , 1,2, , .ij it tjr r r i j t n= + − = 

Proof

(1) Since 
( )( ) ( )( )

0.5 0.5
2

i jh hg f g fl − l
− ≤ ≤ , we have 0 1, ,ijr i j I≤ ≤ ∈ .

(2) 
( )( ) ( )( ) ( )( ) ( )( )

0.5 0.5 1
2 2

i j j ih h h h
ij ji

g f g f g f g f
r r

l − l l − l
+ = + + + = .

(3) 
( )( ) ( )( ) ( )( ) ( )( )

0.5 0.5 0.5 0.5
2 2

t ji t h hh h
it tj

g f g fg f g f
r r

l − ll − l
+ − = + + + − =

           

( )( ) ( )( )
0.5

2
i jh h

ij

g f g f
r

l − l
+ = ,

which completes the proof.
Through property 3, we know that ( )ij n n

R r
×

=  is an additive consistency fuzzy preference 

relation. And according to it, we can use the priority weights 
1

1 1

1exp

1exp

k
ijj

i k k
tjt j

r
kw

r
k

=

= =

 
 
 =

 
 
 

∑

∑ ∑
,

( )1,2, ,i n=   instead of ( )
ihf l  to rank the order relation of 1 2, , , nh h h .
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Example 5. In Example 4, we can set up its additive consistency fuzzy preference relation 
as follows:

Take 3l = , ( ) ( )exp
3

x
g x = , and we have:

 

0.5000 0.4580 0.4643
0.5420 0.5000 0.5063
0.5357 0.4937 0.5000

R
 
 =   
 

.

Based on the relationship between elements and the priority weights, we have 1 0.3248w =  , 
2 0.3387w = , 3 0.3366w = . So, ( ) ( )2 3 10.5063 0.5420h h h  . In fact, as discussed in this section, 

the preference of h2 over h3 is relative, not absolute. The preference degree of h2 over h3 is 
0.5063, and conversely, the preference degree of h3 over h2 is 0.4937.

Theoretically speaking, the method proposed in this section has the following differences 
and advantages compared with the use of TOPSIS method, aggregation operators, distance 
and similarity measures, and fuzzy preference relations to rank HFSs.

(1) According to the introduction of Feng, X., Zuo, Wang, and Feng, L. (2014), traditional 
TOPSIS method as well as a variety of modified TOPSIS method, on the theoretical 
flow of the algorithm, in the traditional and modified TOPSIS methods, after the rela-
tive closeness is obtained, then the HFSs are ranked directly according to the size of 
the relative closeness, while the new fuzzy preference relation put forward in this part 
is based on TOPSIS, using the relative closeness to construct an additive consistency 
fuzzy preference relation, then the priority weights are extracted and the HFSs are 
ranked by them, which can ensure the consistency of the algorithm process, so as to 
ensure the consensus of DMs.

(2) Using the aggregation operators to rank HFSs, they are usually used in conjunction 
with score function, it may not always ensure the consistency in the decision-making 
process, which may not always ensure the consensus of DMs, while the approach 
provided in this section ensures consistency throughout the decision process, and the 
theoretical proof is given. 

(3) Using the distance and similarity measures to rank HFSs, it is necessary to expand the 
HFEs to the same length, both optimistic and pessimistic approaches have changed 
the original decision-making information, however, the new method proposed in this 
section doesn’t need to extend the HFEs. 

(4) Using the fuzzy preference relations, it is often difficult to get consensus for DMs, and 
inconsistent may appear in the decision process, so the decision process need to be 
revised and adjusted, the process of revision has actually changed the decision infor-
mation of the original DMs, thus may lead to the failure of decision making. While 
the proposed method in this section can ensure the consistency of the whole decision 
process, and don’t need to be revised. 
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4. A new approach to MAGDM

In recent years, more and more researchers have studied the MAGDM problems because 
of its good practicability (Ballesteros-Pérez, Campo-Hitschfeld, Mora-Melià, & Domínguez, 
2015; Schubert et al., 2015; Pramanik, S., Pramanik, S., & Giri, 2016). We arrange this sec-
tion by advancing a new hesitant fuzzy MAGDM method due to fuzzy preference relations.

We use { }1 2, , , mA A A A=   to represent dispersed alternatives, { }1 2, , , nC C C C=   to 
represent the attribute sets, and finally { }1 2, , , kE e e e=   to represent the expert sets. For 
each alternative iA A∈ , expert et gives a preference value t

ija  with respect to attribute 
jC C∈ . Assume that ( )1 2, , , T

kw w w w=   is the weight vector of experts, where 0,1tw ∈   , 

( )1,2, ,t k=   and 
1

1
k

t
t

w
=

=∑ . Note that t
ija  represents the assessment information given by 

expert et about attribute Cj of alternative Ai, where t
ija  is a HFE; all of the preference values of 

the alternatives make up a series of the decision making matrix ( )t t
ij m n

D a
×

= , ( )1,2, ,t k=   
(Lan et al., 2017).

4.1. The method to determine attribute weights

Generally, in MAGDM problems, if the preference value difference of all alternatives under 
attribute C  is smaller, then attribute C  has less influences on the decision so as to the rank 
of the alternatives. Conversely, if the preference value difference of all alternatives under at-
tribute C  is larger, then attribute C  has more of an effect on the decision and ranking of 
the alternatives (Wang, 2012). Therefore, if the preference value difference of all alternatives 
under attribute C  is smaller, then the weight value of attribute C  is small. If the preference 
value difference of all alternatives under attribute C  is larger, then the weight value of at-
tribute C  is larger.

Let ( )t t
ij m n

D a
×

=  be a hesitant fuzzy decision making matrix, where t
ija  represents 

the assessment information given by expert et about attribute Cj of alternative Ai. Attri-

bute Cj corresponds to HFEs t
ija , ( )1,2, ,i m=  . Suppose that ( ) ( ){ }| 1,2, ,t jt t

ij iq ija q l a= γ = 

 
, 

( )

( ) ( )
( ) ( )

( ) ( )

1 1

1
t t
ij pjl a l a

t j t j t j
ip iq put t

ij pj q ul a l a = =

α = γ − γ∑ ∑ , where ( )t
ijl a  is the number of elements in t

ija .  

( )t j
ipα  represents the average deviation between t

ija  and t
pja , and the total average deviation 

about attribute Cj is 
( )

( )2
1

t jt
j ip

i p
m m

<

b = α
− ∑ .

For expert et, ( )1,2, ,t k=  , calculate the weight of attribute Cj, and the formula is: 

1

t
jt

j n t
pp

w

=

b
=

b∑
, ( )1,2, ,j n=  .

4.2. A new method for MAGDM

In order to solve the unknown attribute weight of MAGDM problems, we propose a new 
method for MAGDM problems, in which the attribute values are given in the form of HFS, 
and the attribute weight information is unknown.
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Step 1: Let ( )t t
ij m n

D a
×

= , ( )1,2, ,t k=   be a series of hesitant fuzzy decision making ma-
trixes, in which t

ija  represents the assessment information provided by expert et about at-
tribute Cj of alternative Ai.
Step 2: For a given 1l ≥  and attribute Cj, ( )1,2, ,j n=  , calculate ( ) ( ),0t t

ij g ijd d a− l =
 
, 

( ) ( ),1t t
ij g ijd d a+ l =  and the relative closeness coefficient ( ) ( )

( ) ( )
t
ijt

ij t t
ij ij

d
f

d d

−

− +

l
l =

l + l
, 

( )1,2, , ; 1,2, , ; 1,2, ,i m j n t k= = =   . Let ( )t t
ij m n

F f
×

= , ( )1,2, ,t k=   be a series of the 
coefficient matrixes for each expert.
Step 3: For a given strictly monotone increasing function : 0,1 0,1g →      , construct the fuzzy 

preference relation ( )j tt
j uv

m m
R r

×

 =  
 

 of attribute Cj, where: ( ) ( )( ) ( )( )
0.5

2

t t
uj vjj t

uv

g f g f
r

l − l
= +

 
, 

( ), 1,2, ,u v m=  .
Step 4: According to section 4.1, calculate the weight of attribute Cj, 

1

t
jt

j n t
pp

w

=

b
=

b∑
, 

( )1,2, ,j n=  .

Step 5: Calculate 
1

n
t t t

j j
j

R w R
=

=∑ , ( )1,2, ,t k=  , and then calculate ( )
1

k
t

t ij m m
t

R w R r
×

=

= =∑ .

Step 6: According to R, calculate the priority weight of each alternative 

1

1 1

1exp

1exp

m
ijj

i k m
tjt j

r
m

r
m

=

= =

 
 
 w =

 
 
 

∑

∑ ∑
.

Step 7: Rank alternatives according to wi.
Step 8: End.

Remark 1. According to Theorem 1, for expert et about attribute Cj, of alternative Ai, 

( )1,2, , ; 1,2, ,t
jR j n t k= =   are additive consistency FPRs; thus, 

1

n
t t t

j j
j

R w R
=

=∑ , ( )1,2, ,t k=   
satisfies additive consistency, so ( )

1

k
t

t ij m m
t

R w R r
×

=

= =∑ .

5. Illustrative example and comparison analysis

5.1. Illustrative example

To show the feasibility and validity of the above MAGDM method, in this part, we give a 
practical example as follows:

Example 6. Let us consider the group decision making problem of evaluating several fund 
management companies. Suppose that there are four companies (alternatives) ( )1,2,3,4iA i =  
to be assessed from which the best fund management company to invest in financial man-
agement is to be chosen. There are four attributes to be considered, C1: revenue ability, C2: 
asset size, C3: stabilization, and C4: quality of service. Four economics experts are invited to 
evaluate the choices. Suppose that { }1 2 3 4E , , ,e e e e=  is the expert set, and suppose that the 
weight vector of 1 2 3 4, , ,e e e e  is ( )0.15,0.3,0.2,0.35w = . The assessment values provided by 
the experts are contained in hesitant fuzzy decision matrices, shown in Tables 1, 2, 3, and 4.
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Table 1. Hesitant fuzzy decision matrix of expert e1

C1 C2 C3 C4

A1 { }0.5,0.4,0.3 { }0.9,0.8,0.7,0.1 { }0.5,0.4,0.2 { }0.9,0.6,0.5,0.3

A2 { }0.5,0.3 { }0.9,0.7,0.6,0.5,0.2 { }0.8,0.6,0.5,0.1 { }0.7,0.4,0.3

A3 { }0.8,0.7,0.4,0.3 { }0.7,0.4,0.2 { }0.8,0.1 { }0.9,0.8,0.6

A4 { }0.9,0.7,0.6,0.3,0.1 { }0.8,0.7,0.6,0.4 { }0.9,0.8,0.7 { }0.9,0.7,0.6,0.3

Table 2. Hesitant fuzzy decision matrix of expert e2

C1 C2 C3 C4

A1 { }0.8,0.6,0.4 { }0.7,0.5,0.4 { }0.6,0.4,0.3 { }0.7,0.6,0.5,0.4

A2 { }0.7,0.5,0.4 { }0.7,0.6 { }0.6,0.5,0.3 { }0.7,0.5,0.3

A3 { }0.7,0.4,0.3 { }0.6,0.4,0.3 { }0.8,0.6,0.1 { }0.8,0.6

A4 { }0.9,0.8 { }0.5,0.4 { }0.7,0.6,0.4 { }0.8,0.7,0.6

Table 3. Hesitant fuzzy decision matrix of expert e3

C1 C2 C3 C4

A1 { }0.9,0.6,0.4 { }0.6,0.5,0.3 { }0.7,0.4,0.3 { }0.7,0.6,0.5

A2 { }0.8,0.6,0.4 { }0.6,0.5,0.2 { }0.8,0.7,0.5,0.4 { }0.8,0.5,0.4

A3 { }0.8,0.7 { }0.7,0.6,0.4 { }0.8,0.7,0.5 { }0.4,0.3,0.1

A4 { }0.8,0.7,0.6 { }0.7,0.5,0.4,0.1 { }0.7,0.5,0.4 { }0.8,0.6,0.5,0.3

Table 4. Hesitant fuzzy decision matrix of expert e4

C1 C2 C3 C4

A1 { }0.9,0.7,0.6 { }0.4,0.3,0.1 { }0.7,0.5,0.3 { }0.7,0.6,0.4,0.3

A2 { }0.8,0.5,0.3 { }0.6,0.5,0.2 { }0.6,0.5,0.1 { }0.6,0.4,0.3

A3 { }0.9,0.7,0.5 { }0.7,0.5,0.2 { }0.6,0.4 { }0.5,0.4,0.1

A4 { }0.8,0.7,0.6 { }0.9,0.7,0.6,0.4 { }0.3,0.2,0.1 { }0.9,0.7,0.6

Using the above proposed MAGDM method to deal with the problem, the calculation 
processes are as follows:

Step 1: We obtain a series of hesitant fuzzy decision making matrices as the above Tables 
1–4.
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Step 2: For expert e1, according to attribute C1, take l = 3 and calculate:

( ) ( ) ( )1 1 1
11 11 113 0.4160, 3 0.6109, 3 0.4051;d d f− += = =

( ) ( ) ( )1 1 1
21 21 213 0.9598, 3 1.0231, 3 0.4840;d d f− += = =

( ) ( ) ( )1 1 1
31 31 313 1.2081, 3 1.2146, 3 0.4986;d d f− += = =

( ) ( ) ( )1 1 1
41 41 413 1.4271, 3 1.3872, 3 0.5071.d d f− += = =

For each attribute, the corresponding coefficient is calculated, and let ( )t t
ij m n

F f
×

= , 
( )1,2, ,t k=   be a series of the coefficient matrices; then, for experts 1 2 3 4, , ,e e e e , the coef-
ficient matrices are obtained, and the results are shown in the Appendix.

Step 3: Take expert e1 as an example. Take ( ) ( )exp
3

x
g x = , and then build fuzzy preference 

relations about attributes 1 2 3 4, , ,C C C C  of each alternative ( )1,2,3,4iA i = , respectively. The 
results are shown in the Appendix.

Step 4: For each expert, calculate the weight of each attribute.
1 1 1 1
1 2 3 40.0419, 0.1138, 0.3252, 0.5191;w w w w= = = =
2 2 2 2
1 2 3 40.0672, 0.1752, 0.2867, 0.4710;w w w w= = = =
3 3 3 3
1 2 3 40.0735, 0.1459, 0.2884, 0.4922;w w w w= = = =
4 4 4 4
1 2 3 40.0538, 0.1292, 0.3167, 0.5003.w w w w= = = =

Step 5: Calculate 
1

n
t t t

j j
j

R w R
=

=∑ , ( )1,2, ,t k=  . The results are shown in the Appendix. Then, 

calculate the additive consistency fuzzy preference relation 1 2 3 40.15 0.3 0.2 0.35R R R R R= + + +  :

 

0.5000 0.5026 0.5021 0.4989
0.4974 0.5000 0.4995 0.4963
0.4979 0.5005 0.5000 0.4968
0.5011 0.5037 0.5032 0.5000

R

 
 

=  
  
 

.

Step 6: Compute the priority weight of each alternative:

1 2 3 40.2502, 0.2496, 0.2497, 0.2505.w = w = w = w =

Step 7: The ranking of the alternatives is:

( ) ( ) ( )4 1 3 20.5011 0.5021 0.5005 .A A A A  
Step 8: End.

We can see that the ranking results obtained from different l are shown in Table 5.
This example shows that the ranking of the alternatives may change when the parameter l 

changes. Additionally, we can find that the priority weight of alternatives A1 and A2 becomes 
larger as the parameter l increases, while the priority weight of alternatives A3 and A4 be-
comes smaller as the parameter l increases. In fact, for alternatives 1 2 3 4,  ,  ,  A A A A  , each at-
tribute corresponding to the HFEs is not absolutely dominant; therefore, the results obtained 
by the algorithm should be relative, rather than absolute. Moreover, the fuzzy preference 
relation calculated always satisfies the additive consistency. Finally, through the results, the 
new MAGDM method is more reasonable and conforms to the actual situation.
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Table 5. Results obtained by different l

A1 A2 A3 A4
Rankings

w1 w2 w3 w4

l = 1 0.2501 0.2494 0.2496 0.2508 ( ) ( ) ( )4 1 3 20.5026 0.5020 0.5010A A A A  

l = 2 0.2501 0.2495 0.2497 0.2507 ( ) ( ) ( )4 1 3 20.5020 0.5019 0.5007A A A A  

l = 5 0.2505 0.2497 0.2496 0.2502 ( ) ( ) ( )1 4 2 30.5011 0.5019 0.5005A A A A  

l = 10 0.2509 0.2499 0.2494 0.2497 ( ) ( ) ( )1 2 4 30.5039 0.5007 0.5013A A A A  

l = 20 0.2512 0.2506 0.2493 0.2494 ( ) ( ) ( )1 2 4 30.5043 0.5030 0.5005A A A A  

l = 40 0.2513 0.2503 0.2492 0.2493 ( ) ( ) ( )1 2 4 30.5041 0.5040 0.5002A A A A  

l = 100 0.2513 0.2503 0.2492 0.2492 ( ) ( ) ( )1 2 4 30.5039 0.5043 0.5003A A A A  

5.2. Comparison analysis

As we have analyzed in section 3, the new method we proposed has an advantage over the 
use of TOPSIS method, aggregation operators, distance and similarity measure and fuzzy 
preference relation at the end of section 3, the theoretical analysis has been given, next we 
give an numerical comparison analysis:

Xia, Xu, & Chen (2013) put forward some hesitant fuzzy aggregation operators and ap-
plied them to group decision making, now we use their algorithm to calculate the example 
in the section 5.1, and the main results are as follows:

In the algorithm flow, the hesitant normalized Hamming distance is used, the premise is 
to extend the two HFEs as comparison calculations to the same length, 

Step 1. Calculate the weights ( ) ( )1,2,3,4k
ijv k = :

 

( ) ( )11

4 4

0.2321 0.2330 0.2133 0.2467
0.2320 0.2459 0.2524 0.2560
0.2571 0.2580 0.2535 0.2405
0.2361 0.2563 0.2351 0.2520

ijV v
×

 
  = =   

    
 

;

 

( ) ( )22

4 4

0.2608 0.2612 0.2638 0.2550
0.2576 0.2623 0.2547 0.2516
0.2411 0.2352 0.2459 0.2568
0.2427 0.2455 0.2730 0.2514

ijV v
×

 
  = =   

    
 

;

 

( ) ( )33

4 4

0.2608 0.2644 0.2638 0.2467
0.2529 0.2313 0.2453 0.2451
0.2470 0.2489 0.2497 0.2459
0.2606 0.2455 0.2730 0.2452

ijV v
×

 
  = =   

    
 

;

 

( ) ( )44

4 4

0.2464 0.2413 0.2592 0.2517
0.2575 0.2606 0.2476 0.2473
0.2548 0.2580 0.2509 0.2568
0.2606 0.2527 0.2189 0.2514

ijV v
×

 
  = =   

    
 

.
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Step 2. Assume that the weights of the attributes have correlations with each other and 

 ( ) 0m Φ = , ( )1 0.3m A = , ( )2 0.3m A = , ( )3 0.2m A = , ( )4 0.4m A =

then we can calculate:

{ }( )1 2, 0.5414m A A = , { }( )1 3 , 0.4609m A A = , { }( )1 4 , 0.6219m A A = ; 

{ }( )2 3, 0.4609m A A = , { }( )2 4 , 0.6219m A A = , { }( )3 4 , 0.5479m A A = ; 

{ }( )1 2 3, , 0.7883m A A A = , { }( )1 2 4 , , 0.9766m A A A = , { }( )1 3 4 , , 0.8844m A A A = ;

{ }( )2 3 4, , 0.8844m A A A = , { }( )1 2 3 4, , , 1m A A A A = .

Step 3. Aggregate all the individual hesitant fuzzy decision matrices into the collective hesi-
tant fuzzy decision matrix.

Table 6. Collective hesitant fuzzy decision matrix

C1 C2 C3 C4
 
A1 { }0.7811,0.5782,0.4261  { }0.6478,0.5216,0.3711,0.0233  { }0.631,0.4259,0.2787  { }0.7493,0.6,0.4748,0.2515

 
A2 { }0.7046,0.4789,0.2814  { }0.7,0.5754,0.2459,0.1230,0.0492  { }0.6995,0.5743,0.3500,0.1233  { }0.6998,0.4497,0.3245

 
A3

 { }0.8014,0.6277,0.354,0.0771,0.0257  { }0.6765,0.4756,0.2733  { }0.7498,0.4488,0.1494  { }0.6487,0.523,0.1946
 
A4

 { }0.8479,0.7243,0.4544,0.0708,0.0236  { }0.7271,0.5772,0.4036,0.2281  { }0.6595,0.5322,0.4049  { }0.8503,0.6755,0.5755,0.1492

Then, through Step 4 and Step 5, we can get the final ranking results:

 4 1 3 2A A A A   .

Through the calculation process, we can see the following problems:
(1) First, in the first step, the original HFEs need to be extended to the same length. In 

this process, the original decision information has been changed.
(2) In the second step, the correlations between different attributes are given, which has 

a strong subjectivity.
(3) According to the data analysis, the result 4 1 3 2A A A A    is too absolute, for ex-

ample, for expert e4, under attribute C1, the HFEs of A4 are completely less than the 
HFSs of A1, thus there is also a possibility that A4 is less than A1, while the result 
presented in this paper is that the possibility of A4 greater than A1 is 0.5011, that is 

( )4 10.5011A A , which is more in line with the actual situation.
(4) It increases the flexibility of decision making and avoids the loss of decision informa-

tion.

Conclusions

Generally speaking, the mathematical model is constructed based on the reality of environ-
ment, and most of the reality MAGDM problems, are often set up in a complex environment, 
therefore, the decision data that DMs can provide is highly uncertain and complex, while 
HFSs can better deal with DMs’ choice of alternative fuzziness. In this paper, we have stud-
ied MAGDM problems in which the preference information offered by experts are HFSs. In 
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order to get more reasonable decision results, the ranking of HFSs is particularly important. 
However, there are some defects in the existing rank relations for HFSs, such as score func-
tion, aggregation operator, etc., so that the decision results are inconsistent with the actual 
situation. Hence, we employ a distance measure and the TOPSIS method through which a 
new additive consistency fuzzy preference relation for HFSs is built. The TOPSIS method is 
based on the relative closeness of each alternative to determine the order of all alternatives, 
which can avoid excessive information loss in the process of information aggregation. Besides 
that, TOPSIS can effectively avoid high complexity of aggregating hesitant fuzzy information 
in traditional methods. The advanced new additive consistency fuzzy preference relation 
can overcome the defect of the existing order relations when ranking HFSs. In addition, this 
method can maintain the additive consistency of the fuzzy preference relation. Moreover, 
due to the advanced new additive consistency fuzzy preference relation, a new MAGDM 
method has been addressed. In MAGDM, whether experts can get the right decision results 
depends on whether experts can achieve consistent consensus decision, the existing deci-
sion making methods can not guarantee the consistency of the decision process, although 
some can achieve acceptable consistency or revised to achieve consistency, they still change 
the original decision information, while the method proposed in this paper guarantees the 
consistency of the whole process of decision making in theory and it is loyal to the original 
decision information. The new MAGDM method we have developed is not only simple and 
practical but is also more consistent with reality in integrating group decision information. 
At the end of this paper, an empirical analysis of a fund management company is carried out 
to illustrate the practicability and rationality of the model proposed in this paper and the 
corresponding comparative analysis is given. The proposed MAGDM method based on HFSs 
can be widely applied to a series of MAGDM problems such as military, transportation and 
economic management. In the later period, the proposed method can be extended for the 
decision making on interval valued hesitant fuzzy sets, intuitionistic fuzzy sets and interval 
valued hesitant fuzzy sets.
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APPENDIX

The partial calculation results of the numerical example used in Section 5 are as follows.

Step 2: For each attribute, the corresponding coefficient is calculated, and let ( )t t
ij m n

F f
×

=
 
, 

( )1,2, ,t k=   be a series of the coefficient matrices. Then, for experts 1 2 3 4,  ,  ,  e e e e , the coef-
ficient matrices are obtained, and the results are as follows:

 

1

0.4051 0.5092 0.4770 0.4971
0.4840 0.4966 0.4961 0.4938
0.4986 0.4940 0.4907 0.5068
0.5071 0.5124 0.5248 0.5286

F

 
 

=  
  
 

;

 

2

0.5835 0.5583 0.5202 0.5261
0.5269 0.5436 0.5331 0.5287
0.5222 0.5145 0.5114 0.5238
0.5431 0.5381 0.5393 0.5465

F

 
 

=  
  
 

;
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3

0.6049 0.5438 0.5215 0.5362
0.5454 0.5278 0.5354 0.5382
0.5553 0.5556 0.5628 0.5394
0.5481 0.5393 0.5388 0.5389

F

 
 

=  
  
 

;

 

4

0.7068 0.5000 0.5000 0.5000
0.5053 0.4960 0.4849 0.4806
0.4998 0.4971 0.4973 0.4868
0.4988 0.5070 0.4918 0.5028

F

 
 

=  
  
 

.

Step 3: Take expert 1e  as an example, and then build FPRs about attributes 1 2 3 4,  ,  ,  C C C C  
of alternatives ( )1,2,3,4iA i =  as follows:

 

1
1

0.5000 0.4795 0.4755 0.4732
0.5205 0.5000 0.4960 0.4937
0.5245 0.5040 0.5000 0.4977
0.5268 0.5063 0.5023 0.5000

R

 
 

=  
  
 

;

 

1
2

0.5000 0.5035 0.5042 0.4991
0.4965 0.5000 0.5007 0.4956
0.4958 0.4993 0.5000 0.4949
0.5009 0.5044 0.5051 0.5000

R

 
 

=  
  
 

;

 

1
3

0.5000 0.4948 0.4963 0.4869
0.5052 0.5000 0.5015 0.4920
0.5037 0.4985 0.5000 0.4906
0.5131 0.5080 0.5094 0.5000

R

 
 

=  
  
 

;

 

1
4

0.5000 0.5009 0.4973 0.4912
0.4991 0.5000 0.4964 0.4903 .0.5027 0.5036 0.5000 0.4939
0.5088 0.5097 0.5061 0.5000

R

 
 

=  
  
 

Step 5: Calculate 
1

n
t t t

j j
j

R w R
=

=∑ , ( )1,2, ,t k=   

 

1

0.5000 0.4983 0.4969 0.4899
0.5017 0.5000 0.4985 0.4916
0.5031 0.5015 0.5000 0.4931
0.5101 0.5084 0.5069 0.5000

R

 
 

=  
  
 

.

In the same way, we have:

 

2

0.5000 0.5004 0.5044 0.4975
0.4996 0.5000 0.5039 0.4971
0.4956 0.4961 0.5000 0.4931
0.5025 0.5029 0.5069 0.5000

R

 
 

=  
  
 

;

 

3

0.5000 0.5005 0.4967 0.4996
0.4995 0.5000 0.4962 0.4991
0.5033 0.5038 0.5000 0.5029
0.5004 0.5009 0.4971 0.5000

R

 
 

=  
  
 

;

 

4

0.5000 0.5074 0.5055 0.5035
0.4926 0.5000 0.4981 0.4961 .0.4945 0.5019 0.5000 0.4980
0.4965 0.5039 0.5020 0.5000

R

 
 

=  
  
 


