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Abstract. The directive 2009/138/EC „Solvency II”, provides the determination of insurance capital 
requirements based either on a standard formula or an internal model built by the company and 
approved by the regulatory authority. The build of an internal model involves the determination of 
an extreme quantile from the empirical distribution of portfolio. An estimate of this quantile, with 
a 99.5% confidence level, requires a large number of simulations, each taking into account different 
scenarios as: insufficient reserves, unfavourable developments of financial assets, etc. The present 
paper proposes to argue the necessity of the extreme value theory approach in order to estimate 
the risk of loss for the insurance issue, in accordance with European Directive „Solvency II”, from 
the perspective of making prudent decisions for the assessment of insurance capital requirements. 

Keywords: solvency, insurance, capital requirement, extreme value, risk of loss, prudential esti-
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Introduction 

The strong trend towards the convergence of several fields as insurance, banking and capital 
markets, together with the common effort to harmonize the regulations in these fields, in 
the context defined by the IAIS-International Association of Insurance Supervisors, IASB-
International Accounting Standards Board and IAA-International Actuarial Association, 
have imposed the need to adopt a risk based economic approach that will motivate insur-
ance and reinsurance companies to evaluate and adequately manage risks. Harmonization 
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should be improved by establishing specific norms for the evaluation of assets and liabilities 
including technical reserves.

Started in 2001, the European project named Solvency II, that is operational since the 
1st of January 2016 at the level of all EU insurance firms (according to data given by the 
European Insurance and Occupational Pensions Authority, EIOPA 2014a, 2014b), has as 
main objective to regulate the capital requirements in accordance with the risk o loss mag-
nitude, so that the insurance company could avoid solvency for the considered time hori-
zon. Beyond regulations on quantitative requirements (capital adequacy) and the qualita-
tive requirements (financial supervision) new solvency system has proposed to integrate 
the concept of “market discipline”. This last aspect is very important taking into account 
the continued growth of a cross-border business between insurance companies and the 
need (Schoenmaker, Sass 2016) to develop methodologies for reporting data to facilitate 
prudential supervision. 

The new European solvency system is embedding the experience of the most important 
solvability systems from countries as USA, Swiss, Great Britain (Butaci 2014). It is clear 
that the main novelty brought by this project (EIOPA 2014a, 2014b) is a robust prudential 
regime achieved by a better correlation between the (re)insurance company risk exposure 
and solvency capital requirement assigned for risk coverage. From a quantitative point of 
view this is achieved through a better classification of the risks for the standard risk profile 
of the (re)insurance company. It is worth to note that on an insurance market character-
ized y informational asymmetry a better risk classification is increasing the efficiency of 
monitoring (Keith, Arthur 2013).

On the other hand, trying to obtain an optimal protection level can generate for insurers 
pretty great costs (Dionne, Li 2011) and in this sense Solvency II considered the increase 
of the prudential level motivating the companies to fortify their governance system by 
qualitative increase of the internal process of risk management. 

During time, risk management has proved to be efficient in the frame o the governance 
system (Dionne 2013) due to its capacity to reduce costs associated to the management 
of different risks. From this point of view, the standard Solvency II regime integrates the 
benefits of risk diversification, with effects on growth performance and reduction of risk 
exposure (Chen et al. 2014), and also the possibility of replacing predefined parameters 
with the company risk parameters that are more appropriate to the firm own risk profile. 

The risk of losing the entire insurance company portfolio for a certain time horizon 
can be modeled by a random variable. From this point of view, the company capital re-
quirement is a probability measure and in function of this measure it is desirable for the 
insurer to honour in the best possible way commitments he/she made. In other words, the 
probability that the insurer will not cope with the commitments made (the probability of 
ruin), for a given time horizon, has to be very small.

The first theoretical developments in the analysis of the probability of ruin are from 
the beginning of the XX century are due to the well-known Scandinavian actuaries Harald 
Cramér and Filip Lundberg. The notion of probability of ruin started to be widely used in 
financing and insurance at the same time with the development of the modern theory of 
risk measurement. In this theory, the coherent measure of risk conceptualized by Artzner 
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(1999) is a point of reference. The use of the concept of risk measure in financial institu-
tions has been lately frequently discussed in literature and we will like to cite the studies 
Darkiewicz et al. (2003) and Acerbi (2004).

In the field of insurance, based on the theory of the risk measure, a number of ap-
proaches have been developed, for pricing insurance contracts (Partrat, Besson 2005) but 
mainly for determine the capital requirements. These approaches can be found in studies 
developed by different experts of the field (Cummins 2000; Dhaene et al. 2003, 2004 and 
recently in Cummins, Philips 2009 and Bauer, Zanjani 2015).

The 2009/138/EC Solvency II Directive stated that the capital requirements have to be 
determined by a standard formula or by an internal model built by the company and ap-
proved by the regulatory authority. In accordance with article 101 of the Solvency II direc-
tive, the standard formula for determining the capital requirements is using the measure 
Value-at-Risk.

The Value-at-risk(VaR) measure is based from a mathematical point of view on the 
Harry Markowitz (Markowitz 1952, 1959) efficient portfolio theory. The new European 
solvency system is using this method mainly for simplicity reasons, this being only a quar-
tile with a confidence level of 99.5%. It is known that the VaR measure does not verify the 
subaditivity propriety and then it cannot integrate very well the diversification effect on 
the risk of loss reduction, and also cannot integrate the loss severity above the confidence 
level (Acerbi, Tasche 2001).

Insurance companies will be able to use other risk measures like Tail Value-at-Risk, 
that offer the advantage of a better solvency capital allocation when developing internal 
solvency models. 

The internal model, designed taking into account all the variables that can influence the 
solvency of the company, will allow the simulation of the financial situation of the company 
for a one year horizon and will also offer a measure of the capital requirements needed in 
order to avoid with a 99.5 % probability the company ruin one year later. 

The building of such a model requires determining an extreme quantile from the em-
pirical distribution of the portfolio. In order to obtain an estimation of this quantile, with 
a 99.5% confidence level, we need to perform a great number of simulations, each simula-
tion considering a different scenario, as for example: insufficient provision, unfavorable 
evolution of the financial assets. Basically, in order to evaluate such a quantile we will 
use techniques specific to the extreme value theory, theory that as been developed in the 
early ’70 by Pickands (1975) and Hill (1975), and by Smith (1987), Dekkers and Haan 
(1989). These results have been soon applied to financing and insurance by Embrechts 
et al. (1997). The need to adopt a methodology based on the theory of rare events can 
be justified (Kunreuther 2015) from the perspective of long-term economic thinking that 
characterize insurance.

This paper examines from a quantitative point of view the prudencial level captured by 
the standard formula for determination of the solvency capital requirements as it is intro-
duced by the Solvency II directive. We have also tried to offer a quantitative argument in 
favor of the use of the extreme value theory for settin te prudential level. In order to achieve 
our goal we have built a hypothetical investment portfolio and the quantitative research 
was done on this portfolio.
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1.Theoretical aspects concerning the extreme quantile

Applying risk measures in the field of insurance asks for different approaches comparing to 
banking issues. Banks will always have sufficient statistical data for computing, by example 
the VaR for a time horizon of 10 days as it is the banking regulation. 

In the case of insurance companies, the time horizon for determining the solvency 
requirements is, in accordance with Solvency II directive, of 250 days and in this case the 
available statistical data will not be sufficient.

In Figure 1 we can see that the value at risk VaR is moving to the extreme values of the 
loss distribution as the time horizon is increasing. In this situation in order to determine 
the value at risk we have to use techniques or adjusting the loss distribution, for example 
the theory of extreme values. 

1.1. Limit law for the maximum

Let X1, …, Xn be a sample of random variables (for example damages claimed by the in-
sured for a specific time horizon), independent and with the same distribution function 
F. We will consider also the order statistics associated to the variables: X1:n, X2:n, …, Xn:n. 
With these order statistics we can define the minimum and the maximum of the sample 
of random variables:

 { } { }≤ ≤ ≤1 n 1:n 2:n n:n 1 nmin X ,…,X =X X … X =max X ,…,X .

The distribution function for the order statistics Xi:n is given by (Denuit, Charpentier 
2005: 410). 
 ( )≤ ∑

n
j j n–j

i:n i:n n
j=1

F (x) = Pr X x = C F(x) 1– F(x)( ) ( ) .   (1)

Based on (1) we can deduce the distribution functions for the extreme values, i.e.

Fig. 1. Representation of the measure VaR in dependence of trust threshold and time horizon
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1:nF (x)=1– 1– F(x)  ( ) and  

 
n

n:n (F (x)= F( ))X .

The distribution function of the maximum value is explicitly determined by the distri-
bution function of the random variables X1, …, Xn. This shape of the distribution func-
tion of the maximum is not very useful when we want to determine the probability of rare 
events occurrence. 

To show this aspect we will first define the upper boundary of the definition set of the 
function F as:

 { }∈ ≤ ∞Fx =sup x R/F(x)<1 .

Once the boundary xF defined, we have two situations: 

            →∞ →∞
≤ n

F n:nn n
i) for any ( ) x<x  we have lim Pr X x = lim F(x)( ) =0;

 →∞ →∞
≥ ∞ ≤ n

F F n:nn n
ii) for any x x ,  x <  we have lim ( ) (Pr X x = lim F( ))x =1.

These two situations show us the essential motivation of the development of the as-
ymptotic theory of extreme values. We can see that for values that are not greater than the 
upper boundary, the probability of a rare (unwanted) event occurrence is zero, while in the 
case of values greater this boundary the occurrence of a rare event is certain. This is why 
the distribution function of the maximum Fn:n(x) = (F(X))n cannot describe the behaviour 
of the extreme values starting with a specific threshold, and we need to determine an as-
ymptotic limit for the maximum.

In order to determine an asymptotic distribution law for the maximum we can ask 
ourselves if there is not, as in the case of the sum of the variables, a law of large numbers 
or a central limit theorem valid in the case of the maximum. In other words, if conveniently 
normalizing the variable Xn:n, can we find a law of the limit of the maximum?

We will look for normalization constants an ∈ R şi bn > 0 so that: 

 

 
≤ → →∞ 

 

n:n n n
n n

n

X – a
Pr x =F a + b x G(x), când ) n( ,

b

where G(.) is the distribution function of the limit law for the maximum.
The answer for our questions is given by the Fisher-Tippet-Gnedenko theorem (or the 

extreme value theorem) that is a general result in extreme value theory regarding asymptotic 
distribution of extreme order statistics. According to this theorem the distribution func-
tion, G(.), of the limit law for the maximum is of the same type (two distribution functions 
F1 and F2 are of the same type if there are the constants a ∈ R and b > 0 so that F1(x) = 
F2(a + bx), x ∈ R) with one of the following three laws of probabilities defined b their 
distribution functions:

(i) ( ) ( )ξξ ≥ ξ
ξ

–1/
1

1G x =exp –(1+ x) , for x –  and > 0;

(ii) ( ) ( ) ∈ ξ2G x =exp –exp(–x) ,  for x R and = 0;
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(iii) ( ξξ ≤ ξ
ξ

–1/
3

1G x = exp –(1+ x) , for x –  and < 0.

The distribution laws G1(x > 0), G2(x = 0) and G3(x < 0) correspond to the Fréchet, 
Gumbel and Weibull distribution laws. Depending of its form, the distribution function 
G(.) is in the (max) domain of attraction of Fréchet (G1), Gumbel (G2) or Weibull (G3). 

For the three domain of maximum attraction we can exemplify with the following dis-
tribution laws used in the modelling of extreme events in insurance: 

 – Chi2 Student, Pareto from the attraction domain of Fréchet (G1) (laws with heavy 
tails); 

 – Normal, Lognormal, Exponential, Gamma and Weibull from the attraction domain 
of Gumbel (G2) (laws with exponential decreasing tails); 

 – Beta and Uniform from the attraction domain of Weibull (G3) (laws with tails with 
a terminal point). 

1.2. The limit law of excesses over a given threshold

Another method for analyzing extreme values is the methods of excesses over a given 
threshold. This method has been introduced by Pickands (1975) and is known POT (Peaks 
Over Threshold). 

Let be a real number u sufficiently great, define as threshold. The methods of excesses 
over a given threshold consist in approximating the distribution of the random variable X 
for those values that exceed the threshold u. In other words, we will study the behaviour 
of the law of the conditioned variable X – u, knowing that X > u. The distribution function 
of the law of excesses over a give threshold is defined as follows:

 Fu(y) = P(X – u < y/X > u).

According to Pickands-Balkema-de Haari theorem, this distribution function corre-
sponds to the Pareto generalized distribution law (GPD – Generalized Pareto Distribution) 
defined as follows: 

Definition 2.1. Generalized Pareto Distribution(GPD) 
Let Hx,β be a distribution function defined by

 

− ξ

ξ β

   − + ξ ξ ≠  β = 
  − − ξ =  β 

1/

,

x1 1 ,   daca 0
H (x) ,

x1 exp ,        daca 0

for x ≥ 0, if x ≥ 0, respective ≤ ≤ − ξ
ξ
10 x , if < 0. This function correspond to the Pareto 

generalized law with parameters x, β.
The set of random variables that have this distribution law is named GDP(x, β). In 

function of the values of the parameters (x, β), the GPD law can belong to all three domain 
of maximum attraction mentioned before. 
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2. Extreme quantile estimation

2.1. Empirical estimation

In insurance, the evaluation of extreme risk implies the study of the events with rare prob-
ability of realization. In this case rare events can be associated to the extreme quantile of 
high order (99%, 99.9%, 99.99%,...). The statistics of order Xk:n, k ∈ {1, …, n} is a natural 
estimator of the n – (k – 1) greater value in the loss sequence and we can say that we have 
a natural estimation of the quantile of order p ∈ (0;1), F–1(p), given b the value:

 += + − −p n*:n n* 1:n n*:nq̂ X (pn n*)(X X ) ,

where n* is the entire part of the product pn.

2.2. Parametric estimator

In order to build a parametric estimator we have to adjust the loss distribution by a known 
distribution law or to use a combination of known parametric laws based on the available 
data history (Planchet, Thérond 2007: 106). It is known that if θ̂  is an estimator obtained 
by the maximum likelihood estimation of q the parameter of the loss distribution, then 
−
θ

1
ˆF̂ (p) is a maximum likelihood estimator of the −

θ
1F (p) quantile.

2.3. GPD estimator

Using Pickands-Balkema-de Haari results we can estimate (Denuit, Charpentier 2005: 439) 
the extreme quantile qp of order (p) defined by the equation:

 F(qp) = p, cu 1 – p ≤ 1/n,

where n is the sample size.
Usually this kind of quantile is beyond the maximum value observed Xn:n. For this 

reason to determine it we use techniques specific to the theory of extreme value. For a 
threshold sufficiently high up, the distribution Fu of the values greater than up can be ap-
proximated by a generalized Pareto distribution (GPD). Based on this adjustment, we can 
calculate the extreme quantile from (2):

 

î̂

p p
u

ˆ n(1 p)q̂ u 1 ,ˆ N

− ξ −  = −  β   
  (2)

where Nu is the number of values greater than the threshold up , and ξ̂  and β̂  are the 
estimates of the parameters of the distribution law GPD.

For example, if we chose a threshold up = Xn–k:n (the quantile Xn–k:n can be of order 
99%) in order to estimate one of the quantile that is greater than this threshold, the number 
of values greater than the threshold is Nu = k, and (2) becomes:

 

−ξ

−

 ξ −  = + −  β   

ˆ

p n k:n

ˆ n(1 p)q̂ X 1ˆ k
,

where k > n(1 – p).
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In practice, we can determine the estimators for the GPD distribution law parameters, 
ξ̂  and β̂, by different methods as the maximum likelihood (MLE), probability weighted 
moment (PWM) (Hosking, Wallis 1987), the Hill methods, the generalized Hill method 
(HillG), etc.

In using the GDP for quantile estimation we have the problem of choosing the thresh-
old up. The threshold has to be sufficiently great to allow a good approximation though 
the GPD estimator, but it must not be too close to the quantile qp we are estimating, for 
not affecting the estimation accuracy. 

2.4. Hill estimator

If the loss repartition function belongs to the Fréchet (G1) maximum attraction domain, 
i.e. x > 0, then the extreme quantile of order (p) can also be estimated (Denuit, Charpentier 
2005: 441) by: 

 

−ξ

−
 = − 
 

H
ˆ

H
p n k:n

nq̂ X (1 p)
k

,

where Xn–k:n is the threshold and (k) is the number of values that passes the threshold.

3. Prudent estimation decisions

In this section we are analyzing the need of applying specific techniques of the theory of 
extreme value to estimation of extreme quantiles.

We have built (Table 1) a hypothetical investment portofolio, that preserves the weight 
balanced between bonds and shares, specific especially to investment programs like unit-
linked that insurance companies are frequently deploying after the conclusion of life insur-
ance policies. This kind of portfolio can be characterized as being moderate loss risk expo-
sure portfolios. Data history is of T = 4 years (1000 days), covering the period 1.01.2006 – 
31.12.2009. This time interval has been chosen so that it integrates in a better way the 
negative effects of the recent financial crisis on the evolution of the financial assets. 

After the evaluation of the risk of loss for an investment it is expected for the risk ex-
posure to be correlated with the margin capital allocated to cover the potential loss when 
risk is real. In the following we can see that the potential loss can be better covered when 
the risk exposure is determined using techniques specific to be extreme values theory.

In other words, this analysis was aimed to established if the current solvency Solvency II 
is closer, or not, to the insured concerning the prudential loss risk estimation. The more the 
loss risk will be better covered for the insured, the more the estimation will be prudent. In 
(Courbage et al. 2013) there is a more detailed presentation of the concept of prudentiality 
and its acceptability in the domain of insurance. 

We must not forget that the approach of the capital allocation correlated with the risk of 
loss is a very complex one remaining an open problem for the researchers of the financial 
domain. From a principled point of view, when a regulating authority wants to improve 
the prudential control regime, as in the case of the development of Solvency II system, it is 
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expected that this will happen through the integration in the computing methodology of 
the capital solvency requirements of the most prudent approaches, even if these are more 
complex and in consequence more difficult to implement. 

The standard formula in Solvency II for calculating SCR for all (re)insurance companies 
that are not interested in implementing an internal model is built starting with the hypoth-
esis that the loss distributions are normal (Sandsrtöm 2006: 214–216).

Table 1. Stucture of the hypotetical portfolio

Nr.crt Type of bonds Cod ISIN Maturity Buying value in Euro 
30.12.2009 

1 Government  
bonds – Netherland NL0000102242 15.07.2015 102.795

2 Government  
bonds – France FR0010163543 25.04.2015 104.505

3 Government  
bonds – France FR0010216481 25.10.2015 102.53

4 Government  
bonds – Belgium BE0000973033 04.06.2013 103.51

5 Shares BNP PARIBAS-FR0000131104 55.56
6 Shares AXA- FR0000120628 16.595
7 Shares MOBISTAR- BE0003735496 48.0775
8 Shares DANONE- FR0000120644 42.3875

Portofolio Value = 576 euro

Based on the data of the hypothetic portfolio described in Table 1 we have tested the 
normality of the empirical loss. In parallel we have analyzed using the Anderson-Darling 
test the possibility of including the empirical loss distribution in one of the three domains 
of maximum attraction specific to the study of extreme values. We compared the VaR esti-
mations (corresponding to the hypothesis of normality) with VaR estimations adjusted to 
the laws of the attraction domains significant from the statistical point of view. 

In this sense, after rejecting the normality of the empirical distribution of loss, we have 
analyzed by the Anderson-Darling test if we can include the empirical distribution of loss 
in one of the three maximum domains of attraction specifics to the study of extreme values. 
At the end we have estimated the 99.5% extreme quantile using the parametric estimator 
and also the GDP estimator. 

The results of this analysis are shown in Figure 2, Tables 2 and 3.
From Figure 1 we can see that the loss empirical distribution is not a normal one. Also, 

the estimation of the 99.5% quantile by adjusting the loss distribution with a normal one 
will determine a relative approximation error of about 24%. This result could justify the 
estimation of the value at risk by the empiric estimator. Only this is not always desirable 
for it is known that in general an empiric estimator tends to underestimate the risk of loss. 
A more robust way would be to adjust the loss empirical distribution by one of the known 
laws of parameterization of the extreme value distribution.
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Table 2. Anderson-Darling test results

Attraction domain Theoretical distribution Test result

Fréchet (G1) 

Chi2 Accepted

Student Rejected

Pareto Rejected

Gumbel (G2) 

Normal Rejected

Lognormal Rejected

Exponential Accepted
Gamma Accepted
Weibull Accepted

Weibull (G3)
Uniform Rejected

Beta Rejected

Table 3. Estimation of 99.5% quantile with the parametric estimator

Adjusting distribution Value at Risk (VaR)
Normal 6.7464

Chi2 10.5966 
Exponential 9.7357

Gamma 9.2088
Weibull 9.2699

As we can see from Table 2, by applying Anderson-Darling test to assess conformity 
of the loss distribution to familiar theoretical distributions, at a 5% significance level, we 
can conclude that the loss empirical distribution can be adjusted by one of the following 
distribution laws: Chi2, Exponential, Gamma, or Weibull.

Applying the parametric estimator for determining the extreme quantile we will obtain 
the results from Table 3. From these results we can see that the insurer will take the most 

Fig. 2. Testing the normality of the historical sample
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prudent decision if he/she will use the parametric estimation adjusted the Chi2 distribution 
law. This result was expected as the Chi2 law belongs to the Fréchet (G1) maximum domain 
of attraction, domain that is characterized as one of attraction for laws that have heavy tails. 

By applying the GPD estimator, with parameters (x ,β) estimated by Hill and HillG (Hill 
Generalized) methods, in order to determine the 99.5% extreme quantile, we obtain the 
result: VaR(HillG)=9.8262, VaR(Hill)=9.8351. This estimation is also a prudent estimation 
decision.

Conclusions

It is certain that a prudential solvency regime should find the optimal poise between regula-
tion and deregulation or between quantitative and qualitative prudential. 

Following our study we can conclude that the prudential level from the Solvency II 
standard formula is under the level of risk exposure of an insurance company that, for ex-
ample, will decide to invest in the hypothetic portfolio we have randomly created. We have 
also conclude that a more realistic manner to express the prudential level in the Solvency II 
standard formula would be the theory of extreme values, theory that offers to the insurer 
more alternatives for choosing a high realistic prudential level, adjusting Fréchet (G1) law 
(in our case Chi2), or to choose a low realistic prudential level, using the adjusted Gumbel 
(G 2) law (in our case Gamma or Weibull).
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