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Abstract. In this study, we consider the problem of Operational Variable Job Scheduling, also referred 
to as parallel machine scheduling with time windows. The problem is a more general version of the 
Fixed Job Scheduling problem, involving a time window for each job larger than its processing time. 
The objective is to find the optimal subset of the jobs that can be processed. An interesting application 
area lies in Optimal Berth Allocation, which involves the assignment of vessels arriving at the port 
to appropriate berths within their time windows, while maximizing the total profit from the served 
vessels. Eligibility constraints are also taken into consideration. We develop an integer programming 
model for the problem. We show that the problem is NP-hard, and develop a constraint-graph-based 
construction algorithm for generating near-optimal solutions. We use genetic algorithm and other 
improvement algorithms to enhance the solution. Computational experimentation reveals that our 
algorithm generates very high quality solutions in very small computation times.
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1. Introduction

In a typical scheduling problem, jobs represent the tasks that have to be processed, and ma-
chines correspond to the resources processing these tasks. In conventional scheduling, the 
decision-maker has the freedom of determining the starting times of the jobs. Making use 
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of this flexibility, a schedule satisfying certain constraints or optimizing a certain criterion 
can be created. Interval Scheduling (IS) is an area of scheduling, where there is limited or 
no freedom in determining the starting times of jobs, as they are input to the problem. In 
IS, the scheduler faces the decisions of whether or not to accept an incoming job, and what 
resource to allocate to it in a parallel resource environment. Two different objectives may 
be of concern for an IS problem. A tactical IS problem tries to minimize the total cost of 
the resources to process all jobs. Alternatively, the operational IS problem assumes a fixed 
number of resources, and tries to select a subset of jobs for processing in order to maximize 
the total weight.

Fixed Job Scheduling (FJS), a special problem in IS area, is defined in an environment, 
where the tasks are to be processed on a number of resources that are working concurrently. 
In FJS, each job has a predetermined ready time and a deadline, and the processing time 
of the job is exactly equal to the difference between these times. That is, each task should 
start processing just as it arrives, or else it will be lost. The FJS problem has many practical 
applications in manufacturing and service environments, such as maintenance scheduling, 
transportation systems and shift scheduling.

Variable Job Scheduling (VJS), also referred to as parallel machine scheduling with time 
windows, is a generalization of the FJS problem that involves time windows larger than the 
processing times of jobs. In this problem, the decision-maker has some flexibility on determin-
ing the start time of an arriving job, since each job may have some slack time before it should 
start processing. The solution for a tactical VJS problem aims to minimize the total cost or 
number of the machines to process all jobs, while solution for an operational problem seeks 
the optimal subset of the jobs that can be processed with a fixed number of machines.

Although there is a considerable amount of literature on FJS problems, research has often 
been customized to specific applications, and results are rather scattered through literature. A 
study on Tactical Fixed Job Scheduling (TFJS) problem is the Bus Driver Scheduling Problem 
(Fischetti et al. 1987). Their objective is to find a proper set of driver duties at minimum 
cost while satisfying the constraints imposed by company regulations and union contracts. 
TFJS is used as the core model in capacity planning of aircraft maintenance personnel for 
an airline company (Kroon 1990). Their problem is to decide the number of engineers to 
carry out inspections on aircrafts in order to avoid aircraft delays. A later study deals with 
the operational variant of this problem with a given number of maintenance engineers, and 
priorities defined for maintenance activities (Kroon et al. 1995).

Operational Fixed Job Scheduling (OFJS) is studied to model the problem of scheduling 
earth-observing satellites (Wolfe and Sorensen 2000). Orbiting satellites are used to observe 
the earth and transmit data for further processing. The authors define priorities for each 
observation to prevent satellite conflicts, and try to maximize the amount of received data. 
Another contribution to the OFJS literature is the usage of a branch and bound algorithm that 
employs size reduction mechanisms and dominance conditions to solve the OFJS problem 
with spread time constraints (Eliiyi and Azizoglu 2006). In a further study, machine eligibility 
is taken into consideration (Eliiyi and Azizoglu 2008). In this study, the jobs have machine-
dependent weights, i.e. each job may bring different profits depending on the processing 
machine, and some machines are not allowed to process some jobs. Another study uses 
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a branch and bound algorithm for the OFJS problem with non-identical machine speeds 
(Azizoglu and Bekki 2008).

Two survey papers have been published recently (Kovalyov et al. 2007; Kolen et al. 2007). 
The first one presents a general formulation of the FJS Problem, reviews known models and 
algorithms. The second one presents the complexity of various FJS problems and suggests 
appropriate solution algorithms. For more detailed applications and the theory of the FJS 
problem, the reader is referred to these studies.

While FJS is considered extensively in literature, VJS has not gained its deserved atten-
tion. Despite its practical implications in manufacturing and service environments, very few 
researchers have focused on the problem after the pioneering contribution by Gertsbakh 
and Stern (1978). Their study proposes an approximate solution to the tactical VJS problem 
based on the entropy principle of informational smoothing. They use integer programming 
to formulate the tactical VJS problem. The problem does not include any machine or job 
classes (eligibility constraints), and all machines are identical in speed.

Another study uses the OFJS model for planning data transmission of low-orbit Earth 
observing satellites, and claims that the proposed model and algorithms can be adapted to 
solve the operational VJS (OVJS) Problem (Gabrel 1995). The majority of the study deals with 
OFJS. Job weights are identical; the objective is to maximize the number of jobs processed. 
There are machine and job classes, and not every machine is suitable to process every job. 
An incompatibility graph is defined, where a node represents a pair of a job and a machine 
such that the job can be processed by that machine. The maximum independent set in the 
incompatibility graph represents a schedule that maximizes the number of jobs performed. 
The authors develop lower and upper bounds for the OFJS problem. Computational results 
of upper and lower bounds are presented. Extension of the upper bounding procedure to 
OVJS is discussed, but no computational result is presented for the OVJS problem.

As to our best knowledge, there are only 2 studies focusing on OVJS (Rojanasoonthon 
et al. 2003; Rojanasoonthon and Bard 2005). Both consider the problem for a satellite sys-
tem. The authors provide many interesting application areas for the problem. In both studies 
there are 2 different job priorities, where high priority jobs are infinitely more important 
than low priority jobs. Jobs have sequence-dependent setups, different classes and multiple 
time windows. Sequence-dependent setup structure requires the problem to be formulated 
like a Vehicle Routing problem. The authors develop a greedy randomized adaptive search 
procedure (GRASP) for the problem. Two concepts, backward and forward slacks, are used in 
the execution of GRASP. The definitions are very similar to the concepts of earliest start and 
latest start in project scheduling. GRASP is made up of 2 phases. In the first phase a restricted 
candidate list is formed. A solution randomly selected from this list is the starting solution 
of the second phase, where neighbourhood search is carried out to find a local optimum. 
The entire procedure is repeated many times. The computational results reveal that GRASP 
provides the best results when the first phase yields results close to the local optimum.

In a VJS problem, the machines can be identical or different, and jobs may be grouped into 
different classes in terms of size or priority. Each machine can process one or more classes of 
jobs. A job cannot be assigned to a machine that is not eligible for its class, and this makes 
up the eligibility constraint. In this study, the OVJS problem is considered with machine-
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dependent weight definitions for handling eligibility. An interesting application of the OVJS 
problem with eligibility constraints is the Berth Allocation Problem (BAP), the most crucial 
daily activity in port management, which emerged as a critical issue in the last decades (Murty 
et al. 2005). BAP affects the efficiency of all subsequent activities in port management. Each 
day, a number of ships with certain intervals of standby times arrive at the port and are ei-
ther unloaded or loaded for commercial purposes. The aim is to maximize the total number 
or profit of the ships served, so that the port, as a whole, is better-off in economical terms. 
This requires optimal allocation of appropriate berths to the ships, and the problem can be 
modeled as an OVJS problem, where ships correspond to jobs to be processed and berths 
correspond to machines. Eligibility constraints are required since the ships differ in size and 
draft, and each class of ships has to be served on a suitable berth for its class.

There are many studies in BAP literature (Imai et al. 2001; Cordeau et al. 2005; Imai et al. 
2007). In all studies, it is assumed that a ship arriving at the port waits to be berthed until 
an appropriate berth becomes available. To the best of our knowledge, none of the studies 
in BAP literature consider the fact that a ship may depart without being processed if the 
waiting time is too long, especially if it will visit several ports. Long waiting times may also 
cause the ship owner firms to switch to nearby ports in the long term. Either way, a loss of 
profit is expected if a ship is waited too long without processing.

Such a case exists in the Port of Izmir, the most important container port in Turkey 
(800.000 TEU in 2006) located at the far west of Anatolia on the intersection point of heavy 
traffic. Due to its strategic location in the Aegean Sea, the port is an ideal node for import/
export between Europe and Asia. The waiting times of the ships (before they are berthed) 
are considerably high in this port. In January and February of 2008, waiting times for 41% of 
the incoming ships are realized in 1–2 days, which is regarded as a very high value (Biricik 
2008). Related to this fact, the port has started to lose its importance. The daily cost of wait-
ing ships in Izmir Port is estimated as $300 000. This figure is an estimate of the total short 
and long term costs realized as a result of long waiting times. Hence, it is obvious that there 
is a standby time (an upper bound on the waiting time) for each incoming ship, after which 
the ship owner may switch to other ports either in the short term or in the long one. In this 
respect, our model also has an economic impact for such ports as the Port of Izmir.

For reasons explained above, our study fills important gaps in both BAP and VJS literature. 
Many other application areas for the OVJS problem includes similar assignment-type prob-
lems from both manufacturing and service environments, such as reservation systems, the 
scheduling of cars in a car repair service, the assignment of aircrafts to the gates of an airport, 
or assignment of holiday bungalows to campers. In the next section, the OVJS problem is 
defined and the mathematical model is formulated. Section 3 presents the development of a 
randomized constraint-graph-based heuristic. In order to improve the quality of the heuris-
tic solution, a genetic algorithm and other improvement algorithms are developed, and the 
specifics are presented in the 4th section. Results of the computational experimentation are 
provided in Section 5. Finally, conclusions and future research issues are noted.
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2. The operational variable job scheduling problem

The working time of a machine encloses all the time windows that the machine operates on 
a single day. We divide a day into time intervals, and the planning horizon extends to the 
next day, as will be explained later.

There are I  jobs to be processed on K unrelated machines working simultaneously. Given 
job i, the arrival time is denoted by ai, and the job can wait until the time bi to start processing. 
If the job is not assigned to any machine until bi, it leaves the system without being processed. 
The processing time and the weight of job i on machine k is pi and wik, respectively. We make 
the following assumptions throughout the study:

– All numerical data, ai, bi, pi, and wik are non-negative integers and are known with 
certainty.

– Preemption is not allowed, a job can only be processed in one machine without any 
interruption.

We assume T time intervals that are equal in length. It is the set of jobs available for 
processing in time interval t, and Ti is the set of time intervals for job i. That is,

 I i a t b p tt i i i= ≤ + − ≥{ }| , ,1

 T a b pi i i i= + −{ },..., .1

We define binary decision variables xitk and yik as follows:

x
t i

itk =
1, 	if	time	interval	 	of	job	 	is	processed	on	machinee	
0,	otherwise

k



y
i k

ik =




1, 	if	job	 	is	assigned	to	machine	
0,	otherwise

Constraints of the model are listed below:
– If a job is assigned, every time interval of the job should be assigned:

 x p y i I k Kitk
t Ti

i ik
∈
∑ = = =, ,..., , ,..., .1 1  (1)

– A job can be assigned to at most one machine:

 y i Iik
k

K
≤ =

=
∑ 1 1

1
, ,..., .  (2)

– For each time interval, any machine available in that interval can process at most one 
job:

 x t T k Kitk
i It∈
∑ ≤ = =1 1 1, ,..., , ,..., .  (3)

– If a job is assigned, each time interval of the job should be assigned consecutively:
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– Integrality constraints for job-machine assignments:

 x y i I k K t Titk ik∈{ } ∈{ } = = = −0 1 0 1 1 1 1 1, , , ,..., , ,..., , ,..., .  (5)

The objective function requires the maximization of the total weight of the jobs proc-
essed:
 Maximize w yik ik

k

K

i

I

==
∑∑

11
. (6)

We handle eligibility using machine-dependent weight definitions as in Eliiyi and Azi-
zoglu (2008), where a weight of –1 is assigned if a job cannot be processed on a machine, 
and inappropriate assignments are avoided by the objective function. Namely, we define the 
weight wik of the job i, when assigned on machine k as follows:

w
w k i

ik
i=
, ,	if	machine	 	is	eligible	to	process	job	

1,	otherwwise.




The defined OVJS problem reduces to the OFJS problem with general weights, when ai = 
bi, ∀i. The OFJS problem with general weights is shown to be NP-hard in the strong sense by 
Eliiyi and Azizoglu (2008). Hence, so is our problem. As in the case of the berth allocation 
example, the problem is an operational one, which has to be solved daily or even hourly in 
some cases, and practical solution procedures are necessary. For this reason, we develop a 
constraint-graph-based heuristic exploiting the structural characteristics of the problem. In 
the next section, we define the specifics of our heuristic.

3. RCGA: a randomized constraint-graph-based algorithm

Since the OVJS problem with general weight definitions is NP-hard in the strong sense, a 
heuristic algorithm called the Randomized Constraint-Graph-Based Algorithm (RCGA) 
is developed for generating near-optimal solutions. We explain the details of RCGA in this 
section.

Assuming all jobs are scheduled to a single machine, which will most probably lead to 
infeasibility, the colliding time windows (overlaps) between any two jobs is defined as a con-
straint (stress) on those jobs. The structure can be shown in a constraint satisfaction graph, 
where nodes represent the jobs, an edge represents the constraint existing between any two 
jobs, and the weights associated with the edges correspond to the number of overlapping 
time intervals between jobs, i.e. the length of an overlap. The degree of a node (total weight 
of emanating edges from that node) determines the total constraint on that job.

Unlike the FJS problem where the starting times of the jobs are fixed, the overlaps in a VJS 
problem may change depending on the starting times of the jobs. That is, there is no single 
constraint graph representation for the problem as the starting time of a job may vary between 
its ai and bi. For this reason, we generate 3 representative constraint graphs by assigning the 
jobs on their arrival times (ai), on their standby limits (bi), and a random time between ai 
and bi. The total degree of a node is calculated using these graphs to obtain a single value 
for each job. After that, the degree is divided by the original weight (wi) of the job, since the 

–
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objective function tries to maximize the total weight of the assigned jobs. Then, based on a 
least-constraint-variable approach, the jobs are scheduled to the machines in non-decreasing 
order of their adjusted degrees. Hence, the algorithm encourages low-overlap and/or high-
weight jobs to be assigned first.

We assume 2 job and machine classes: small and large. The eligibility structure is assumed 
to be nested; small machines can only process small jobs, while large machines can handle 
both classes of jobs. This assumption is consistent with a BAP example, where large ships (in 
size or draft) can only be served by large or deeper berths, but small ships can be assigned 
to any berth. While RCGA is designed for this eligibility structure, it can easily be adapted 
for different structures, as well.

This structure creates the need to solve the problem in 2 stages: we first develop constraint 
graphs for small jobs and try to assign them giving priority to small machines. A set of jobs 
that could not be assigned in this step are combined with the set of large jobs, and further 
constraint graphs and assignments are made. An unassigned job is assigned on the first 
available eligible machine at this stage. After the order in which the jobs will be considered is 
determined, the next question is how and when to assign each job. The following 4 methods 
are proposed for this purpose:

1. Assign the next job to the earliest time available in the interval [ai, bi].
2. Assign the next job to the latest time available in the interval [ai, bi].
3. Generate a random integer r in the interval [ai, bi]. Assign the next job to the earliest 

time available in the interval [r, bi].
4. Generate a random integer r in the interval [ai, bi]. Assign the next job to the latest time 

available in the interval [r, bi].
To incorporate randomization into the algorithm, one of the above 4 methods is selected 

randomly, and the next job is assigned with the selected method. The pseudo code of the 
RCGA algorithm is presented in Fig. 1. The whole algorithm is executed repeatedly, and the 
best solution is stored.

We demonstrate the execution of the algorithm with an example. For this purpose, a 
berth allocation problem with 10 ships and 3 berths (1 small, 2 large) is considered. Problem 
parameters are given in Table 1. Figures in bold 
characters belong to large ships. As it was stated 
before, ships belonging to the small class, which 
can be processed by both classes of berths, are 
considered first. Here, the goal is to assign small 
ships to small berths as much as possible, since large 
ships cannot be assigned to small berths. If there 
are more than two job and machine classes in the 
problem, the adaptation of the algorithm should 
start with the least capable machine class and its 
corresponding job class, and then move towards 
more capable classes.

Table 1. Parameters for the example

Ship i ai bi pi wi

1 12 15 8 17
2 15 23 6 33
3 6 17 10 12
4 11 17 6 24
5 6 20 7 26
6 3 8 11 35
7 2 5 12 17
8 4 5 5 9
9 7 20 15 14

10 9 19 5 26
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We demonstrate an iteration of RCGA. Note that each iteration may result in a different 
feasible solution as the algorithm has random components. After a predetermined number of 
repetitions, the best solution is output. At the first stage, the time overlaps between the ships 
are determined. For this purpose, all ships are assigned on their arrival times (ai), on their 
standby limits (bi), and a random time between ai and bi. Corresponding overlaps for small 
ships on a 24-hour timeline are shown in Fig. 2, where each row represents a single ship’s 
assignment on the time axis. Note that all 3 assignments in Fig. 2 are infeasible for a single 
berth due to overlaps. The lengths of the overlaps between job pairs are used in forming the 
constraint graphs. The constraint matrices and the corresponding constraint graphs for each 
assignment in Fig. 2 are presented in Fig. 3.

The degree of a ship is calculated as follows: The degrees on each assignment of that ship 
are summed, then the sum is divided by the weight of the ship. The resulting adjusted degrees 
for the small ship class are shown below using numbers in Fig. 3:

degree(Ship 1) = (14+11+14) / 17 = 2.29

Fig. 1. The pseudo code of the RCGA algorithm
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(a) Assignment I

(b) Assignment II

(c) Assignment III

Fig. 2. Overlaps of small ships when ships are assigned at (a) on their arrival times, (b) on their 
standby limits, and (c) on random times between arrival times and standby limits

degree(Ship 3) = (24+13+17) / 12 = 4.50
degree(Ship 7) = (22+7+15) / 17 = 2.58
degree(Ship 8) = (10+5+6) / 9 = 2.33
degree(Ship 9) = (26+10+8) / 14 = 3.14

Based on the results, the assignment order of the small ships is the following: Ship 1, 
Ship 8, Ship 7, Ship 9 and Ship 3. Note that there is only one small berth in the example. 
The assignment is made by selecting among the 4 methods randomly. For demonstration 
purposes, assume that method (1) is selected for Ship 1; that is, try to assign the ship to the 
earliest time available in the interval [a1, b1]. As Ship 1 is the first ship to be assigned, the 

Ship 8

Ship 7

Ship 3

Ship 9

Ship 1

Timeline

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 2423

Ship 7

Ship 8
Ship 3

Ship 9

Ship 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

Timeline

Timeline

Ship 3
Ship 1

Ship 9
Ship 8

Ship 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 2423 25 26 2827 29 30 31



254  D. T. Eliiyi et al. Operational variable job scheduling with...

berth is empty and Ship 1 is assigned on a1 = 12. The berth becomes occupied in the interval 
(12, 20). Next, let’s assume method (2) is picked randomly for Ship 8, i.e. the latest assign-
ment possible. After assigning Ship 8 on b8 = 5, the berth is occupied between [5, 10) and 
[12, 20). For Ship 7, assume that method (3) is selected, i.e. the ship will be assigned to the 
earliest time after a random point r in [a7, b7]. Let r = 3, which is in [2, 5]. Checking for the 
availability of the berth during the time intervals [3, 15), [4, 16) and [5, 17), we see overlaps 
with previously assigned ships. Thus, Ship 7 cannot be assigned and left for the reconsidera-
tion with the large ships.

Now assume that method (1) is picked for Ship 9. Considering time windows 7 to 19 yields 
overlaps, but the berth is idle on time window b9 = 20. The assignment is then made, and the 
berth becomes occupied at intervals (5, 10), [12, 20) and [20, 35). One can easily examine 
the example and observe that Ship 3 cannot be assigned. The resulting assignments are il-
lustrated in Fig. 4.

	 (a)	Assignment I

Ship 1 Ship 3 Ship 7 Ship 8 Ship 9

Ship 1 – 4 2 0 8
Ship 3 4 – 8 3 9
Ship 7 2 8 – 5 7
Ship 8 0 3 5 - 2
Ship 9 8 9 7 2 –
Sum 14 24 22 10 26

 (b) Assignment II

Ship 1 Ship 3 Ship 7 Ship 8 Ship 9

Ship 1 - 6 2 0 3
Ship 3 6 – 0 0 7
Ship 7 2 0 – 5 0
Ship 8 0 0 5 – 0
Ship 9 3 7 0 0 –
Sum 11 13 7 5 10

 (c) Assignment III

Ship 1 Ship 3 Ship 7 Ship 8 Ship 9

Ship 1 – 6 3 0 5
Ship 3 6 – 7 1 3
Ship 7 3 7 – 5 0
Ship 8 0 1 5 – 0
Ship 9 5 3 0 0 –
Sum 14 17 15 6 8

Fig. 3. Constraint matrices and corresponding constraint graphs for the assignments in Fig. 2
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Next, the algorithm moves on to the larger ship class. The same steps will be followed 
for the ship set, which is composed of the large ships and the small ships that could not be 
assigned in the first phase. Therefore, the ship set to be considered in the second phase in-
cludes ships 2, 3, 4, 5, 6, 7, and 10. As the execution is identical, the details are skipped. An 
exemplary final assignment for the large berths is illustrated in Fig. 5.

In the next section, improvement algorithms developed for enhancing the solution gener-
ated by RCGA are presented in detail.

Ship 8 Ship 9Ship 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

Timeline

35

Fig. 4. Assignments of small ships to the small berth, obtained from one execution of RCGA

Large berth I

Large berth II

Fig. 5. Assignments for the 2 large berths obtained from one execution of RCGA

Timeline

Ship 5Ship 4

Timeline

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 2423

Ship 2Ship 6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

4. Improvement algorithms

We propose 3 improvement algorithms to be executed after RCGA for enhancing the solution 
quality. The first one is a genetic algorithm, details of which are provided in Section 4.1. The 
second algorithm tries to swap 2 jobs between machines. The algorithm performs a swap only 
if an unscheduled job can be inserted into the schedule after the swap, hence resulting in a 
better objective function value. The third improvement algorithm tries to shift the starting 
times of the jobs, in search of the possible insertion of an unscheduled job.
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4.1. Genetic algorithm

Genetic algorithms (Goldberg 1989) are search and optimization algorithms, which are 
inspired by the rules of natural evolution. A population of candidate solutions is coded by 
genes, and an optimal solution is searched via creating new chromosomes by crossover and 
mutation. Genetic algorithm (GA) was used to solve the tactical FJS problem by Santos, 
Zhong (2001), where each gene contains information about assignments of the jobs to the 
machines. However, due to the more complex nature of the OVJS problem, starting time of 
a job is another decision in our study.

An initial population made up of n chromosomes is necessary to start the procedure. Each 
chromosome represents a feasible solution to the problem, and each gene of the chromosome 
corresponds to a job. The quality of the solution represented by a chromosome is evaluated 
by its fitness metric. Fitness of a chromosome is the sum of the weights of assigned jobs in 
that chromosome. The goal of the algorithm is to maximize the fitness value. After an initial 
population is formed by selecting pairs of chromosomes (parents) according to a criterion 
(selection process), crossover operations are performed and 2 new chromosomes (offspring 
or children) are generated. The offspring are mutated with a certain probability and inserted 
into the new population. The procedure is repeated for a prespecified number of iterations.

4.1.1.  Representation

Each chromosome is a list of size I, where each index contains job assignment information 
including the assigned machine (k), the starting time interval (t) and the variable weight (w) 
for a job i on machine k. Below is the representation of a chromosome c. The assignment 
information is represented as a list with angle brackets. Each index (assignment information 
for each job) is referred using square bracket notation.

c x xI= }{ 1,..., ,  

c x
w t k t i

i  =
, , 	if	interval	 	of	job	 	is	assigned	to	machinee	

0,	otherwise
k

i I




= 1,..., .

The dot (.) notation is used to refer to the attributes <w, t, k> of each index of the chromo-
some. We store the weight information of a job wik to handle eligibility. The fitness of a chro-
mosome is calculated as the total weight of jobs assigned at time interval t on machine k:

 f c c x wi ik
i

I
( ) . .=  

=
∑

1
 (7)

4.1.2.  Selection

In each iteration of the algorithm, parents for the crossover operation are selected in the 
following manner. The population is sorted in a non-increasing order of the fitness metric. 
Crossover Probability (CP) is the probability that a chromosome will reproduce. Each indi-
vidual of the population is directly passed on to the next iteration with (1-CP) probability. 
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This portion is assumed to include the individuals that are unable to reproduce. The algorithm 
therefore has a memory; it does not forget all the information stored in a previous iteration. 
Next, the rest of the population that is subject to crossover is partitioned into 4 equal groups, 
where the first group represents the fittest chromosomes and the last group represents the 
worst. The parents are picked with a bias towards better groups, with probabilities 0.4, 0.3, 
0.2 and 0.1, respectively. Hence, while fitter chromosomes are favoured with the expectation 
to produce fitter offspring, the possibility that 2 unfit parents may produce a good offspring 
is not totally discarded. Value of CP is subject to experimentation.

4.1.3.  Crossover

Assume that 2 parents (c1 and c2) are selected for crossover. For this operation, initially a 
clone of c1 is created as offspring c. Then, for each gene on c, the corresponding genes on c2 
are examined. A heuristic function is developed for this purpose, which computes the dif-
ference between the weight of the first job (gene) of c and the maximum-weight overlapping 
job in c2. So, the gain or loss of assigning the job at that time interval is estimated. With this 
crossover function, if a job is not assigned in any parent, it won’t be assigned in the child. 
If a job is assigned in one or both of the parents, the assignment maximizing the heuristic 
function is preferred. The function can be expressed as follows:

 
h c x c x c x w c x w ai a i a a   ( ) =   −  { } =, . max . ,2 2 1,	where	 ...., .

. .

I c x t

c x t c x k c x

i

a i a

∧  

  ∧   = 

	

overlaps	with	 2 2 . .k
 (8)

For each parent pair, a second crossover operation is performed in the reverse order of 
genes. In the end, 2 new chromosomes are obtained.

4.1.4.  Mutation

Each newly generated gene is subject to mutation with a predetermined Mutation Probability 
(MP). Mutation aims to prevent being stuck at local maxima by jumping to different points in 
the solution space. Two types of mutations are equally likely to occur. The first type randomly 
picks an unassigned job i and a machine k. Next, the least-cost-interval for the job in [ai, bi] 
is computed based on the sum of the jobs weights that have to be removed from schedule for 
job i to be assigned on machine k. The job is then scheduled in its least-cost-interval remov-
ing all overlapping jobs. The second type of mutation randomly picks a scheduled job and 
simply removes it from the schedule. Our mutation scheme tries to favour good mutations 
by minimizing the cost of mutation, while not totally discarding the option of removing a 
job from schedule. The value of MP is subject to experimentation.

GA can also be used as a construction algorithm for the OVJS problem. For this purpose, 
an initial population is generated randomly, and GA is run for a prespecified number of it-
erations. In Section 5.2, we provide the results of the computational experimentation, when 
our GA is used for both construction and improvement purposes.
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4.2.  Swap & Insert

The idea of the second improvement algorithm is the following: two jobs that are assigned 
on different machines of the same class can swap machines if there is no resulting overlap 
on any machine. Doing so, it may be possible to open up a space on any of the machines and 
insert one or more unscheduled jobs into the schedule. The objective function is improved as 
a result of the insertion. The algorithm performs the best swap & insert move, and continues 
until there are no possible moves.

Another example is shown in Fig. 6, where 2 different schedules for 2 machines of the 
same class are presented. Each row represents the assignment of jobs on a particular machine. 
Job 5, which can be processed by this class of machines, having parameters a5 = 5, b5 = 7 and 
p5 = 5, is out of schedule in Fig. 6(a), since it overlaps with Job 2 or 3 on the first machine and 
Job 1 on the second machine. Note that Job 1 and Job 3 can swap machines without disturbing 
any other job in schedule. After the swap, the second machine is now available for inserting 
Job 5 as depicted in Fig. 6 (b). The objective function is thus improved by an amount w5.

4.3.  Shift & Insert

The goal of the third improvement algorithm is to shift the starting time of scheduled jobs 
for creating a space that may allow the insertion of an unscheduled job. For this purpose, 
the algorithm considers each machine separately. For each pair of consecutively scheduled 
jobs on a machine, say job i and job j, the method tries to shift all jobs assigned before job i 
(including job i) backward to their arrival times, and shift all jobs that are assigned after job 
j (including job j) forward up to their standby limits. This is done in an attempt to form an 
available time interval between jobs i and j. Among the unscheduled jobs, candidates for the 

Fig. 6. Example for demonstrating the execution of the Swap & Insert algorithm

(a) Before Swap & Insert

Job 4Job 3

Timeline

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 2423

Job 1
Job 2

(b) After Swap & Insert

Timeline

Job 5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Job 2 Job 1
Job 3 Job 4
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new time space are checked for selecting the job with the best insertion performance. The 
algorithm continues until no insertion is possible.

An example is shown in Fig. 7. Consider the machine in Fig. 7(a) processing jobs 1 and 
4. Assume that Job 1 has a1 = 5, and Job 4 has b4 = 18. Job 6, which can be processed on this 
class of machines, having parameters a6 = 13, b6 = 14 and p6 = 3, is currently out of schedule, 
since it overlaps with Job 3 on one machine and Job 1 on the other. Job 1 can be shifted back 
up to time 5, but Job 4 cannot be shifted forward as it is already scheduled on b4. As a result of 
the shift, the machine becomes available for Job 6 to be inserted at time 13 or 14, as depicted 
in Fig. 7(b), and the objective function is improved by an amount w6.

5. Computational experimentation

In order to evaluate the performance of our algorithms, an experimental study is carried out. 
We give the details of the experimental design in section 5.1, and discuss the results in 5.2.

5.1.  Experiment design

In order to make our computational study represent a practical situation, the experiment is 
designed in accordance with the statistics obtained from the Izmir Port authority. The port 
adopts a 24-hour workday, as three 8-hour shifts. The berths are categorized in 2 classes, 
as are the incoming ships. The weight of a ship is correlated with the number of containers 
loaded/unloaded.

Random test problems are generated accordingly for 10, 20, 30 and 40 jobs and 2, 3 and 
4 machines. The port has a fixed number of berths. However, the effect of the number of 

Fig. 7. Example for demonstrating the execution of the Shift & Insert algorithm

(a) Before Shift & Insert

Job 4Job 3

Timeline

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 2423

Job 1
Job 2

(b) After Shift & Insert

Timeline

Job 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Job 2 Job 3
Job 6 Job 4
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machines on the performance of the algorithms also needs to be investigated. Hence, the 
data is generated for different problem sizes. Arrival times and standby limits are distributed 
uniformly between [0, 24], processing times are distributed uniformly between [5, 15], and 
the weights are distributed uniformly between [5, 10]. There are 2 job and machine classes, 
small and large. We assume that the machines are divided equally between the two classes. 
But in the 3-machine instances, one machine is assumed to be small and the other two 
larger. Small machines cannot process jobs with weights greater than 7.5, the midpoint of 
the weight range [5, 10].

All algorithms are coded in C# programming language using MS Visual Studio 2005, 
built on .NET 2.0 Framework. Solution performances are measured on a PC with 1.70 GHz 
Intel Pentium M processor, 592 MHz FSB and 512 MB RAM. The optimum solutions of the 
problem instances are found using LINGO 8.0 Unlimited Edition with MIP Solver. The same 
PC hardware configuration is used for LINGO runs.

5.2.  Computational results

A pilot experimentation is performed initially in order to observe the performance of the 
GA, when it is used as a construction algorithm for our problem. This initial experiment also 
reveals the best setting for algorithmic parameters for the GA.

For this purpose, 72 different levels are set for the algorithmic parameters, with popula-
tion sizes 160, 320 and 600, iteration numbers 150, 300, 500 and 1000, mutation probabilities 
(MP) 0.5 and 1.0, and crossover probabilities (CP) 0.9, 0.8, and 0.5. The initial population is 
generated randomly. The computation times and the quality of the resulting lower bounds 
are compared. Table 2 presents the best 4 parameter settings that yield minimum gaps and 
shortest average times after the pilot runs.

Table 2. Best levels of parameters observed in the pilot experimentation

GA # Population Size # of Iterations MP CP

1 600 1000 1 0.9
2 160 1000 1 0.9
3 600 1000 0.5 0.8
4 600 150 0.5 0.8

The pilot experiments also reveal that the procedures Swap & Insert and Shift & Insert 
take practically no time but they are very useful in terms of improving solution quality. There-
fore both algorithms are executed after each GA to come up with better solutions. Table 3 
presents the performance of the GA with the above parameter settings. Problem instances 
are identified by their number of jobs and machines, i.e. 10/2 represents a problem with 
10 jobs and 2 machines. The column heading “GA1+ Imp.” indicates the execution of GA1, 
Swap & Insert and Shift & Insert in a sequential manner. Average gap columns represent the 
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percentage gaps between the lower bounds found by GA and the optimum objective func-
tion value, computed as:

 Optimum OBJ GA
Optimum

− ( ) . 

In cases where optimal solutions cannot be obtained, the best feasible solutions up to that 
moment, found by LINGO, are used in average gap computations.

Table 3. Performance of GA as a construction algorithm

Problem

LINGO 
(Optimum) GA1+ Imp. GA2+ Imp. GA3+ Imp. GA4+ Imp.

CPU Time Avg. Gap CPU Time Avg. Gap CPU Time Avg. Gap CPU Time Avg. Gap CPU Time

10 / 2 26.50 0.00 238.46 0.00 27.29 0.00 224.85 0.01 34.03
10 / 3 293.00 0.00 287.02 0.03 27.74 0.00 227.85 0.05 34.37
10 / 4 204.10 0.01 287.37 0.02 27.86 0.01 227.33 0.03 34.47
20 / 2 268.20 0.02 322.95 0.05 36.49 0.02 261.54 0.06 39.62
20 / 3 3687.50 5 0.01 326.98 0.09 37.65 0.01 261.41 0.10 39.89
20 / 4 4140.80 1 –0.02 331.20 0.07 38.08 –0.02 263.52 0.06 40.50
30 / 2 1449.80 7 0.07 358.40 0.08 47.42 0.07 294.12 0.07 44.49
30 / 3 4486.60 2 0.04 361.82 0.08 48.60 0.05 291.09 0.06 44.55
30 / 4 7200 10 0.05 369.29 0.07 50.90 0.05 296.15 0.05 45.75
40 / 2 3730.00 5 0.07 400.28 0.07 50.02 0.07 333.47 0.10 50.44
40 / 3 4261.90 3 0.09 404.28 0.11 61.19 0.10 327.85 0.09 50.83
40 / 4 7200 10 0.08 401.23 0.09 60.82 0.07 325.98 0.08 50.58

– All CPU times are in seconds.
– The superscripts denote the number of the instances (out of 10) that could not be solved within 

2 hours of computation time.

As expected, Table 3 reveals that the average computation time decreases as popula-
tion size and number of iterations decrease. It can be seen that the population size and the 
number of iterations affect the result more than the mutation probability and the crossover 
probability, as GA1 cannot compete with GA2, which only differ in population size. This is 
also true between GA3 and GA4 due to the difference in number of iterations. There is a 
trade-off between the quality of the result and time needed. It seems that for small problem 
sizes, LINGO outperforms GA, as it terminates upon finding the optimal solution but GA 
runs for a predetermined number of iterations. As the problem size increases, LINGO fails to 
terminate even within 2 hours, while GA finds good solutions in much smaller times. Note 
that for the 20/4 setting, GA1 and GA3 found better solutions than the best lower bound 
found by LINGO, resulting in negative gap values. One might question why GA3 performs 
worse than GA4 on the 40/3 setting, since they have identical parameters, except the number 
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of iterations. This is because in one or more instances of this set, although an assignment with 
a worse lower bound is obtained with GA4, the improvement algorithms reach an objective 
function value that is even higher than the one obtained by GA3 in 1000 iterations.

Solution times do not vary among different instances when GA is used as a construction 
algorithm, since a prespecified number of iterations are run with a given population size. 
Note that a 20/3 instance is a moderate size instance for the problem, as it can be seen from 
the optimal solution time. The CPU time of any GA for this instance is much less than that 
of LINGO. As a trial, a 30/3 instance is allowed to run on LINGO until the optimal solution 
is found. The solution is found in approximately 13 hours, while the slowest GA provides a 
solution in only 6 min. The maximum gap is only about 0.13 for this trial instance.

Next, the performance of RCGA is evaluated. Among the four GAs presented in Table 2 
and 3, GA3 with MP = 0.5 and CP = 0.8 is selected as the improvement algorithm since it 
dominates GA2 and GA4 in terms of solution quality, and GA1 in terms of computation 
time. RCGA is executed as explained in Section 3. Improvement algorithms Swap & Insert 
and Shift & Insert are executed as well, as they improve the solution with no time cost at all. 
Table 4 presents the average gaps and CPU times when RCGA is run for 600 repetitions, 
when GA3 is executed as an improvement algorithm after RCGA600, and when RCGA is 
run for 10 000 repetitions.

Table 4. Performance of RCGA

Problem

LINGO 
(Optimum) RCGA600 + Imp. RCGA600 + GA3 + Imp. RCGA10000 + Imp.

CPU Time Avg. Gap CPU Time Avg. Gap CPU Time Avg. Gap CPU Time

10 / 2 26.50 0.01 0.34 0.00 225.87 0.00 5.69
10 / 3 293.00 0.01 0.33 0.00 227.88 0.00 5.66
10 / 4 204.10 0.01 0.29 0.01 228.20 0.01 5.52
20 / 2 268.20 0.03 0.69 0.02 262.48 0.03 12.04
20 / 3 3687.50 5 0.01 0.74 0.01 262.38 0.01 13.84
20 / 4 4140.80 1 –0.02 0.78 –0.02 264.63 –0.04 16.10
30 / 2 1449.80 7 0.02 1.08 0.01 295.57 0.01 18.36
30 / 3 4486.60 2 –0.03 1.24 –0.03 292.39 –0.04 23.96
30 / 4 7200 10 –0.06 1.43 –0.06 296.99 –0.07 29.85
40 / 2 3730.00 5 0.00 1.64 0.00 334.12 0.00 27.69
40 / 3 4261.90 3 –0.01 1.95 –0.02 329.53 –0.03 38.08
40 / 4 7200 10 –0.03 2.05 –0.03 324.12 –0.05 44.05

– All CPU times are in seconds.
– The superscripts denote the number of the instances (out of 10) that could not be solved 

within 2 h of computation time.

As summarized in Table 4, RCGA performs superbly even with a small number of 
repetitions. The computation times for “RCGA600 + Imp.” are simply negligible, and the 
solution qualities are outstanding. For problem sizes larger than 20/4, the algorithm finds 
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better solutions than LINGO in almost all cases. When the performance of “RCGA10000 + 
Imp.” is examined, it is obvious that the solution quality improves as the number of repeti-
tions is increased, and the solution times are still less than 1 minute. This means that the 
randomization in the algorithm pays off. An increase in the number of repetitions leads to 
better solutions as they help avoiding local optima. For 4-machine instances, the solutions 
found by RCGA10000, in very small computation times are on the average 5.4% better than 
those found by LINGO. Hence, the algorithm has an excellent performance for the OVJS 
problem with eligibility constraints.

When GA3 is used as an improvement algorithm after RCGA600, the solution times 
are affected, however the average gaps do not seem to improve significantly. Therefore, one 
can say that the increase in the computation time is not justified by the increase in solution 
quality. One reason for this is clearly the excellent performance of RCGA; it may very well 
be the case that most of the instances are solved to optimality by the algorithm, hence GA3 
has very little left to improve.

For observing the effects of the number of machines on the performance of the algorithms 
better, additional runs are made with 10 and 20 jobs and 6 and 8 machines. The results of 
these runs are presented in Table 5. The instances for these problems are also consistent with 
the small set of real data obtained from the Port of Izmir. The port has 10 berths, serving 10 
to 20 ships arriving daily. Berth allocation is currently made manually by the port authority, 
and no explicit mathematical method is used.

Table 5. Effect of the number of machines on algorithm performance

Problem

LINGO 
(Optimum) RCGA600 + Imp. RCGA600 + GA3 + Imp. RCGA10000 + Imp.

CPU Time Avg. Gap CPU Time Avg. Gap CPU Time Avg. Gap CPU Time

10 / 2 26.5 0.01 0.33 0.00 224.85 0.00 5.69
10 / 4 204.1 0.01 0.29 0.01 226.85 0.01 5.52
10 / 6 44.9 0.00 0.29 0.00 227.33 0.00 5.09
10 / 8 375.9 0.00 0.32 0.00 236.48 0.00 5.50
20 / 2 268.2 0.03 0.70 0.02 261.54 0.03 12.04
20 / 4 4140.80 1 –0.02 0.78 –0.02 263.52 –0.04 16.10
20 / 6 4113.20 2 –0.60 0.83 –0.60 271.85 –0.60 14.27
20 / 8 7200 10 –15.71 0.87 –15.71 276.60 –16.21 14.46

– All CPU times are in seconds.
– The superscripts denote the number of the instances (out of 10) that could not be solved 

within 2 h of computation time.

The table reveals that, as the number of machines increases, the negative gap increases as 
well. This means that the number of machines greatly affects the quality of the lower bound 
found by the optimization software within the 2-hour limit. On the other hand, such an ef-
fect is not observed on the performance of RCGA, hence the gaps increase in favour of our 
algorithm as the problem size increases. Note that most of the instances with 20 jobs and 
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4, 6 and 8 machines cannot be solved optimally by LINGO. The average gap between the 
RCGA with 10,000 iterations and the solution found by the software is about – 16.21% for 
the largest instances, which is quite high, especially when computation times are considered. 
It seems that the outstanding performance of the RCGA also holds for instances with more 
number of machines.

Consistent with the results observed in Table 4, although the GA makes small improve-
ments on some of the solutions, it does not prove to be effective as an improvement algorithm 
considering the extra computation times.

6. Conclusion

In this study, the Operational Variable Job Scheduling Problem with eligibility constraints 
is considered through. Among many other practical applications, the Berth Allocation 
Problem is an interesting application area of the problem. Our study therefore contributes 
to both areas. We show that the problem is NP-hard, and propose several construction and 
improvement algorithms.

A computational experiment is designed for observing the performance of the developed 
algorithms. The proposed genetic algorithm performs very well as a construction algorithm 
for the problem. The two improvement algorithms prove also very useful in improving the 
solution quality in practically no time, hence both are utilized after the initial feasible solu-
tions are found.

The results also reveal that our Randomized Constraint-Graph-Based Algorithm (RCGA), 
which exploits special structural characteristics of the problem, outperforms GA as a con-
struction algorithm in both solution time and quality. Together with the improvement algo-
rithms, RCGA performs extremely well even for large instances of the problem, producing 
very good solutions in negligible computation times. GA does not seem effective when used 
as an improvement algorithm after RCGA. However, it may prove useful in larger instances 
of the problem.

As the computational experiment reveals, our RCGA algorithm can be used for finding 
near-optimal solutions to the berth allocation problem. The performance of the algorithm 
does not deteriorate as the number of berths or ships increase. Since it takes very little time, 
the algorithm can be run daily or even more frequently. It can also serve many other applica-
tion areas of the problem, such as the assignment of gates to incoming aircrafts in an airport. 
For different application areas, some extra considerations may also prove useful, such as shifts 
or availability constraints for the machines.
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KINTAMOS TRUKMĖS DARBŲ PLANAVIMAS ĮVERTINANT TINKAMUMO  
APRIBOJIMUS: ATSITIKTINIŲ APRIBOJIMŲ GRAFINIS METODAS

D. T. Eliiyi, A. G. Korkmaz, A. E. Çiçek

Santrauka

Nagrinėjama nepastovių darbų planavimo problema, susijusi su mašinų darbo planavimu laiko tarpais. 
Ši problema yra bendresnė fiksuotų darbų planavimo problemos versija, kai laiko tarpai ilgesni už darbų 
trukmę. Siekiama rasti optimalų atliekamų darbų poaibį. Geras pavyzdys yra optimali laivų priežiūra 
prieplaukoje, kai laivai prisišvartuoja laiko tarpais, taip maksimizuodami iš laivų gaunamą pelną. Taip 
pat įvertinami tinkamumo ribojimai. Problemai spręsti sukurtas sveikųjų skaičių programavimo modelis. 
Sukurtas apribojimų ir kreivių pavidalo algoritmas, gebantis generuoti apytikslius sprendinius. Jiems 
patikslinti naudojamas genetinis algoritmas ir kiti korekciniai algoritmai. Kompiuteriniai eksperimentai 
atskleidė, kad sukurtieji algoritmai generuoja labai tikslius sprendinius per labai trumpą laiko tarpą.

Reikšminiai žodžiai: kintamos trukmės darbų planavimas, tinkamumo ribojimai, optimali laivų prie-
žiūra, genetinis algoritmas, apribojimų išpildymas, apribojimų kreivė.
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