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Abstract. Fuzzy logic handles vague problems in various areas. The fuzzy numbers can represent
either quantitative or qualitative variables. The quantitative fuzzy variables can embody crisp num-
bers, aggregates of historical data or forecasts. The qualitative fuzzy variables may be applied when
dealing with ordinal scales. The MULTIMOORA method (Multiplicative and Multi-Objective Ratio
Analysis) was updated with fuzzy number theory. The MULTIMOORA method consists of three
parts, namely Ratio System, Reference Point and Full Multiplicative Form. Accordingly, each of them
was modified with triangular fuzzy number theory. The fuzzy MULTIMOORA summarizes the
three approaches. The problem remains how to summarize them. It cannot be done by summation
as they are composed of ranks (ordinal). Indeed summation of ranks is against any mathematical
logic. Another method, the Dominance Method, is used to rank the EU Member States according
to their performance in reaching the indicator goals of the Lisbon Strategy 2000-2008. This rank-
ing will group the best performing countries in a Core Group, followed by a Second Group, the
Semi-periphery Group. Group 3, the Periphery Group, will encompass the less performing states.

Keywords: multi-objective optimization, MULTIMOORA, fuzzy number theory, structural
indicators, Lisbon strategy, European Union, dominance, core, semi-periphery, periphery.
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1. Introduction

Multi-Objective Optimization (MOO) methods deal with problems of compromise selec-

tion of the best solutions from the set of available alternatives A = {AI;AZ;' . .;A]-;...;An}
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according to objectives C = {C1 ;Cy5..5C;5...C,, } . Usually neither of the alternatives satisfies
all the objectives therefore satisfactory decision is made instead of optimal one. Roy (1996)
presented the following pattern of MOO problems: 1) a choosing problem - choosing the
best alternative from A ; 2) p sorting problem - classifying alternatives of A into relatively
homogenous groups; 3) y ranking problem - ranking alternatives of A from best to worst;
4) 8 describing problem — describing alternatives of A in terms of their peculiarities and fea-
tures. Hence, during last few decades there were many Multi- Objective methods developed.
Usually MOO techniques are classified into multiple objective decision making (MODM)
and multiple attribute decision making (MADM). While MODM deals with continuous
optimization problems and virtually infinite set of alternatives, MADM methods are aimed
at discrete optimization and finite set of pre-defined alternatives. In this article term MOO
will refer to MADM. The MOO methodology and methods were overviewed by Guitouni
and Martel (1998) and Zavadskas et al. (2008b). Kaplinski (2009) presented an overview of
advances in MOO science.

The MOO procedure usually consists of three basic stages: 1) identification of alternatives;
2) selection of objectives or indicators; 3) the choice of the problem with the appropriate
MOO method (Roy 2005). Whereas the first stage is quite unequivocal the remaining two
could raise some questions. Objectives can encompass non-subjective as well as subjective
attributes (Liang, Wang 1991; Heragu 1997; Chou et al. 2008). Non-subjective indicators
(attributes) are quantitative, e.g., investment costs. Subjective indicators are qualitative such
as stakeholders’ opinions. Therefore, decision making often relies on complex as well as
on vague issues. Zadeh, the Founder of fuzzy logic (1965), proposed employing the fuzzy
set theory as a modeling tool for complex systems that are hard to define exactly in crisp
numbers. Fuzzy logic hence allows coping with vague, imprecise and ambiguous input and
knowledge (Kahraman 2008; Kahraman and Kaya 2010). Linguistic variables expressed in
fuzzy numbers were introduced by Zadeh (1975a, 1975b, 1975¢) and applied in many studies
(Liang 1999; Chen 2000; Chou et al. 2008; Torlak et al. 2011). Grey numbers were also applied
in the decision making branch (Zavadskas et al. 2008a, 2008¢; Lin et al. 2008; Zavadskas et
al. 2010a; Peldschus et al. 2010) when creating MOO methods suitable for fuzzy inputs'.

The question of extending the existing MOO methods to the fuzzy environment is of high
importance. The Analytic Hierarchy Process (AHP) was initially proposed by Saaty (1980)
and extended into fuzzy environment (van Laarhoven, Pedrycz 1983; Leung, Cao 2000). The
simple additive weight (SAW) method (MacCrimmon 1968) was updated with fuzzy numbers
theory and integrated with other decision making techniques (Chou et al. 2008). Technique
for the Order Preference by Similarity to Ideal Solution (TOPSIS) was introduced by Hwang
and Yoon (1981) and updated with fuzzy number theory (Chen 2000; Liu 2009a; Zavadskas
and Antucheviciene 2006). The Method of Complex Proportional Assessment (COPRAS)
(Zavadskas et al. 1994) was improved by applying fuzzy number technique (Zavadskas,
Antuchevicéiené 2007). Zavadskas and Turskis introduced another method ARAS (2010),
extended with grey and triangular fuzzy number (Turskis and Zavadskas 2010a, 2010b).
Liang and Ding (2003) developed fuzzy MOO method based on a-cut concept. Peldschus

! Mukaidono (2001) presents an interesting introduction to fuzzy logic. Zopounidis et al. (2001) with “Fuzzy sets in
Management, Economics and Marketing” are perhaps nearer to the topic of this article.
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and Zavadskas (2005) applied fuzzy game theory in multiple objective evaluation. Hence,
updating MOO methods with fuzzy number theory is important.

Brauers and Zavadskas (2006) introduced Multi-Objective Optimization by Ratio Analysis
(MOORA) on basis of previous research by Brauers (2004). In 2010 these authors developed
this method further which became MULTIMOORA (MOORA plus the full multiplica-
tive form). Numerous examples of application of these methods are present (Brauers et al.
2007, 2008, 2010; Brauers and Ginevicius 2009, 2010; Brauers and Zavadskas 2009a, 2009b;
Balezentis and Balezentis 2010; BaleZentis et al. 2010; Chakraborty 2010). However MULTI-
MOORA has not been updated with fuzzy numbers theory yet. This article deals with the issue
of updating MULTIMOORA method with triangular fuzzy number theory and applying the
fuzzy MULTIMOORA in international comparison of the European Union Member States.

The article is therefore organized in the following way. Section 2 deals with fuzzy set
theory. The following Section 3 focuses on MULTIMOORA method. The proposed fuzzy
MULTIMOORA method is described in Section 4. Section 5 undertakes a numerical exam-
ple where the European Union (EU) Member States are compared on a basis of structural
indicators and the new method. The data covers the period of 2000-2008. Section 6 makes
a distinction between cardinal and ordinal scales in MULTIMOORA. Section 7 brings the
application of the Multi-Objective Optimization on the European Union Member States
based on MULTIMOORA.

2. The fuzzy set theory and triangular fuzzy numbers

Fuzzy sets and fuzzy logic are powerful mathematical tools for modeling uncertain systems.
A fuzzy set is an extension of a crisp set. Crisp sets only allow full membership or non-
membership, while fuzzy sets allow partial membership. The theoretical fundaments of fuzzy
set theory are overviewed by Chen (2000).

In a universe of discourse X, a fuzzy subset A of X is defined with a membership function
K (x) which maps each element x € X to a real number in the interval [0; 1]. The function
value of p 7 (x) resembles the grade of membership of xin A. The higher the value of p (x),
the higher the degree of membership of x in A (Keufmann and Gupta 1991). Noteworthy,
in this study any variable with tilde will denote a fuzzy number.

A fuzzy number A is described as a subset of real number whose membership function
p; (x) is a continuous mapping from the real line R to a closed interval [0; 1], which has
the following characteristics: 1) p;(x)=0, for all x € (-o0;a]U[c;00); 2) pj(x) is strictly
increasing in [a; b] and strictly decreasing in [d; c]; 3) pz (x) =1, for all x €[b;d], where a,
b, d, and c are real numbers, and —0<a<b<d<c<ow. When b = d a fuzzy number A is
called a triangular fuzzy number (Fig. 1) represented by a triplet (a,b,¢).

Triangular fuzzy numbers will therefore be used in this study to characterize the alterna-
tives. The membership function p ;(x) is thus defined as:
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Fig. 1. Membership function of a triangular fuzzy number A =(a,b,c).
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In addition, the parameters a, b, and c in (1) can be considered as indicating respectively
the smallest possible value, the most promising value, and the largest possible value that
describe a fuzzy event (Torlak et al. 2011).

Let A and B be two positive fuzzy numbers (Liang, Ding 2003). Hence, the main algebraic
operations of any two positive fuzzy numbers A = (a,b,c) and B=(d,e, f) canbe defined in
the following way (Zavadskas, Antucheviciené 2007):

1. Addition @ :

A@E=(a,b,c)69(d,e,f)=(a+d,b+e,c+f). 2)
2. Subtraction ©:

AOB=(a,bc)O(de f)=(a—f,b—ec—d). (3)
3. Multiplication ®:

A®B=(a,b,c)®(d,e, f)=(axd,bxe,cx f) (4)
4. Division ©:

AQ®B=(a,b,c)0(d.e, f)=(a\ f,b\e,cxd). (5)

The vertex method will be applied to measure the distance between two fuzzy numbers.
Let A=(a,b,c) and B= (d,e, f) be two triangular fuzzy numbers. Then, the vertex method
can be applied to measure the distance between these two fuzzy numbers:

d(A,B)=\/§[(a—d)2+(b—e)2+(c—f)2]. (6)
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Fuzzy numbers can be applied in two ways when forming the response matrix of alter-
natives on objectives. First, fuzzy numbers can represent the values of linguistic variables
(Zadeh 1975a, 1975b, 1975¢) when deciding either on the importance of criteria or perform-
ing qualitative evaluation of alternatives. For the latter purpose Chen (2000) describes the
following fuzzy numbers identifying values of linguistic variables from scale Very poor to
Very good: Very poor - (0, 0, 1); Poor - (0, 1, 3); Medium poor - (1, 3, 5); Fair - (3, 5, 7);
Medium good - (5,7, 9); Good - (7, 9, 10); Very good - (9, 10, 10). Second, the fuzzy num-
bers can represent monetary (quantitative) terms. It can be done either through direct input
of certain fuzzy numbers into the response matrix or by aggregation of raw data (e. g. time
series). For example, if there are costs “approximately equal to $200” estimated, the sum can
be represented by triangular fuzzy number (190, 200, 210). Moreover, the fuzzy numbers can
embody expected rate of growth. For example, if there is level of unemployment of 5 per cent
with expected growth of 10 per cent, a triangular fuzzy number (5, 5.5, 6.1) can summarize
these characteristics. As for time series data, a fuzzy number can represent the dynamics of
certain indicator during past ¢ periods:

1/t

m;n{ap}, f[lap ,m;lx{ap} , (7)

where a,, represents the value of certain indicator during period p (p=1,2,....t ).

The results of comparison of alternatives based on fuzzy numbers are also expressed in
fuzzy numbers. The fuzzy numbers therefore need to be converted into crisp ones in order to
identify the most promising alternative. There are four defuzzification methods commonly
employed: (i) the centered method (or centre of area — COA); (ii) the Mean-of-maximum
(MOM); (iii) the a-cut method; and (iv) the signed distance method (Zhao and Govind
1991; Yao and Wu 2000). In this study the COA method will be applied to obtain the Best
Non-fuzzy Performance (BNP) value:

(c—a)+(b—a)

BNP; =——————+a, (8)
where a, b and ¢ are respectively the lower, modal, and upper values of fuzzy number
A=(a,b,c)* (Triantaphyllou 2000; Zavadskas and Antucheviciene 2006). Moreover, the
robustness as well as precision of multi-criteria optimization can be improved by applying
either intuitionist fuzzy numbers (Zhang, Liu 2010) or two-tuple linguistic representation

(Liu 2009b).
3. The MULTIMOORA method
As already said earlier, Multi-Objective Optimization by Ratio Analysis (MOORA) method

was introduced by Brauers and Zavadskas (2006) on the basis of previous research (Brauers
2004). Brauers, Zavadskas (2010) and Brauers, Ginevicius (2010) extended the method and

2 Mode is the measurement with the maximum frequency if there is one. As there is only a lower limit and an upper
limit the average of both is taken.
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in this way it became more robust as MULTIMOORA (MOORA plus the full multiplicative
form). These methods have been applied in numerous studies (Brauers et al. 2007, 2010; Brau-
ers, Ginevicius 2009; Brauers, Zavadskas 2009a, 2009b; Brauers, Ginevicius 2010; BaleZentis et
al. 2010) focused on regional studies, international comparisons and investment management.

MOORA method begins with matrix X where its elements x; denote i™ alternative of
" objective (i =1,2,---,m and j=1,2,---,n ). MOORA method consists of two parts: the ratio
system and the reference point approach. MacCrimmon (1968) defines two stages of weight-
ing, namely normalization and voting on significance of objectives. The issue of weighting
is discussed by Brauers, Zavadskas (2010); Zavadskas et al. (2010b), while the problem of
normalization is analyzed by Brauers (2007) and Turskis et al. (2009). The MULTIMOORA
method includes internal normalization and treats originally all the objectives equally im-
portant. In principle all stakeholders interested in the issue only could give more importance
to an objective. Therefore they could either multiply the dimensionless number representing
the response on an objective with a significance coeflicient or they could decide beforehand
to split an objective into different sub-objectives (Brauers, Ginevicius 2009).

The Ratio System of MOORA. Ratio system defines data normalization by comparing
alternative of an objective to all values of the objective:

. Xij

n (9)

where x; denotes i alternative of j™ objective (in this case j structural indicator of
i state). Usually these numbers belong to the interval [-1; 1]. These indicators are
added (if desirable value of indicator is maxima) or subtracted (if desirable value is
minima) and summary index of state is derived in this way:

* g * u *
Yi :inj_ > X, (10)

j=1 j=g+1

where g =1,---,n denotes number of objectives to be maximized. Then every ratio is given
the rank: the higher the index, the higher the rank.

The Reference Point of MOORA. Reference point approach is based on the Ratio System.
The Maximal Objective Reference Point (vector) is found according to ratios found in for-
mula (9). The j'" coordinate of the reference point can be described as r= maxx;- in case
of maximization. Every coordinate of this vector represents maxima or minima of certain
objective (indicator). Then every element of normalized responses matrix is recalculated
and final rank is given according to deviation from the reference point and the Min-Max
Metric of Tchebycheft:

P Tj _xijU- 11)

The Full Multiplicative Form and MULTIMOORA. Brauers and Zavadskas (2010) proposed
MOORA to be updated by the Full Multiplicative Form method embodying maximization
as well as minimization of purely multiplicative utility function. Overall utility of the i
alternative can be expressed as dimensionless number:

min [max
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U=

g

where A; =Hxij, i=1,2,---,m denotes the product of objectives of the i alternative to
j=1

be maximized with g=1,---,n being the number of objectives (structural indicators) to be

n
maximized andwhere B; = H x;; denotes the product of objectives of the i™ alternative to
j=g+1
be minimized with 7 — g being the number of objectives (indicators) to be minimized. Thus
MULTIMOORA summarizes MOORA (i.e. Ratio System and Reference point) and the Full
Multiplicative Form. Ameliorated Nominal Group and Delphi techniques can also be used
to reduce remaining subjectivity (Brauers and Zavadskas 2010).

4. The fuzzy MULTIMOORA method

The fuzzy MULTIMOORA begins with response matrix X with fcij = (xijl,xijz,xiﬁ) being
the i alternative of the j objective (i =1,2,---,m and j=1,2,---,n).

4.1. The fuzzy Ratio System

The Ratio System defines normalization of the fuzzy numbers X;; resulting in matrix of
dimensionless numbers. The normalization is performed by comparing appropriate values

of fuzzy numbers:

X X X

&‘ _ (x)(' x)(' x)(' ) _ ijl
g i X2 X3 | = \/

m ’ m ’ m
2 W2 (2%
i=1 i=1 i=1

The normalization is followed by computation of summarizing ratios y; for each i
alternative. The normalized ratios are added or subtracted according to formulas (2) or (3)

respectively: & noo
i =250 2 %, (149
U gt

ij2 ij3

Vi, j (13)

where g=1,2,...,n stands for number of indicators to be maximized. Then each ratio

¥; =(¥i1»¥i2»¥i3) is de-fuzzified by applying Eq. 8:

iz —yi)+ i —yin) Ty
3

where BNP, denotes the best non-fuzzy performance value of the i" alternative. Consequently,

the alternatives with higher BNP values are attributed with higher ranks.

(15)

BNP, =

4.2. The fuzzy Reference Point

The fuzzy Reference Point approach is based on the fuzzy Ratio System. The Maximal Ob-
jective Reference Point (vector) 7 is found according to ratios found in formula (13). The
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jth coordinate of the reference point resembles the fuzzy maxima or minima of j criterion

X7, where
X7 = (maxxljl,maxx,ﬂ,maxxlﬁj j<g
(16)
X7 = (mmxlﬂ,mmxl]z,mmxlﬁ) ji>g.
Then every element of normalized responses matrix is recalculated and final rank is
given according to deviation from the reference point (Eq. 6) and the Min-Max Metric of

Tchebycheft:

mm(max d(r le ] 17)
J

4.3. The fuzzy Full Multiplicative Form

Overall utility of the i alternative can be expressed as dimensionless number by employing
Eq. 5: S
U,=A; 0B, (18)

- g

where A; =(4;1,4;5,4;3) :Hxij , i=1,2,---,m denotes the product of objectives of the
1

" alternative to be maximized with g =1,--,n being the number of objectives (structural

indicators) to be maximized and where E’i =(B;;,B;,,B;3) = ﬁ fc,-j denotes the product of
j=g+1

objectives of the i alternative to be minimized with n—g being the number of objectives

(indicators) to be minimized. Formula (4) is applied when computing these variables. Since

overall utility U; is fuzzy number, Eq. 8 has to be used to rank the alternatives. The higher

the BNP, the higher the rank of certain alternative.
Thus fuzzy MULTIMOORA summarizes fuzzy MOORA (i. e. fuzzy Ratio System and
fuzzy Reference Point) and the fuzzy Full Multiplicative Form.

5. A comparison of the European Union Member States according to fuzzy
MULTIMOORA

The fuzzy MULTIMOORA was applied when comparing EU Member States. Empirical
analysis of EU Member States’ efforts in seeking Lisbon goals began with definition of system
of structural indicators (Table 1). The system consists of 12 indicators from the shortlist of
structural indicators. Directions of optimization were also attributed to each of the indicator.
For example, rising level of unemployment has negative economic and social consequences
(Martinkus et al. 2009; Korpysa 2010) therefore it should be minimized.

The indicators are measured in different dimensions. The volume index of GDP per
capita in Purchasing Power Standards (PPS) is expressed in relation to the European Union
(EU-27) average set to equal 100. If the index of a country is higher than 100, this country’s
level of GDP per head is higher than the EU average and vice versa. Labor productivity per
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person employed is measured as GDP in PPS per person employed relative to EU-27 average
(EU-27 = 100). The employment rate is calculated by dividing the number of persons aged 15
to 64 in employment by the total population of the same age group. The employment rate of
older workers is calculated by dividing the number of persons aged 55 to 64 in employment
by the total population of the same age group. The indicator Youth education attainment level
is defined as the percentage of young people aged 20-24 years having attained at least upper
secondary education attainment level. Gross domestic expenditure on R&D is expressed as
a percentage of GDP. Business investment is defined as total gross fixed capital formation
expressed as a percentage of GDP, for the private sector. Comparative price levels are the
ratio between Purchasing power parities and market exchange rate for each country shown
in relation to the EU average (EU-27=100). The share of persons with an equivalised dispos-
able income below the risk-of-poverty threshold, which is set at 60% of the national median
equivalised disposable income (after social transfers) is resembled by At-risk-of-poverty rate
indicator. Long-term unemployment rate is number of persons that have been unemployed
for more than 12 months expressed as the percentage of total labor force. Greenhouse gas
emissions indicator presents annual total emissions (CO2 equivalents) in relation to “Kyoto
base year”. In general the base year is 1990 for the non-fluorinated gases and 1995 for the
fluorinated gases. Gross inland consumption of energy divided by GDP (kilogram of oil
equivalent per 1000 Euro) results in the Energy intensity of the economy indicator. However,
the application of MULTIMOORA method enables to summarize all these indicators ex-
pressed in different dimensions.

Table 1. System of structural indicators used in analysis of EU Member States’ development during
2000-2008

Structural indicators Desirable values

I. General economic background

GDP per capita in PPS (EU-27 = 100) Max
2 Labor productivity per person employed Max
II. Employment
3 Employment rate Max
4 Employment rate of older workers Max
III. Innovation and research
Youth education attainment level Max
Gross domestic expenditure on R&D Max

IV. Economic reform

Business investment Max
Comparative price levels Min

V. Social cohesion
9 At-risk-of-poverty rate Min
10 Long-term unemployment rate Min

VI. Environment

11 Greenhouse gas emissions Min

12 Energy intensity of the economy Min
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Data covering these indicators and the period 2000-2008 were obtained from EURO-
STAT Structural Indicators database and are available from the authors upon request. Due to
limited data availability three time points were chosen for analysis, namely years 2000, 2004
and 2008. The data therefore cover 27 Member States, 3 years and 12 structural indicators,
972 observations in total.

The initial data (Annex A, Table A1) were aggregated by employing Eq. 8. Minimal val-
ues, geometric means and maximum values (denoted as min, average and max respectively
in Table A2, Annex A) were obtained for each indicator thus creating the fuzzy response
matrix X (Table A2) containing 324 fuzzy numbers. The data were internally normalized
by applying Eq. 13: each response Xijk > k =1,2,3, was divided by respective ratio prefented
in the last row of Table A2 (Annex A). Hence the fuzzy normalized response matrix X" was
formed (Table A3, Annex A).

Aggregation of normalized fuzzy ratios was performed according to Eq. 14. In this way
the summarizing fuzzy ratios y; = ( Vi Vias yi}) were obtained and de-fuzzified by apply-
ing Eq. 15: . . X .

BNP, =(J’i3_}’i1)‘;(yi2_)’il)+y;1‘ (19)

BNP expressed in crisp numbers enabled to attribute each EU Member State with ap-
propriate rank (Table A4, Annex A).

The fuzzy Reference Point relies on ratios retrieved by fuzzy Ratio System. Table A5a
(Annex A) presents the coordinates of fuzzy vector 7, which were obtained by applying Eq.
16. Afterwards, the countries were ranked according Eq. 17 (Table A5b, Annex A). Since the
distances were expressed in crisp numbers, no de-fuzziness was necessary.

Finally, the fuzzy Full Multiplicative Form was applied according to Eq. 18. Computation
of fuzzy products A; and B, was a prerequisite for further calculations (Eq. 4, 5). Since U, is
also a fuzzy number, Eq. 8 was applied to transform it into a crisp one (Annex B, Table B1).
MULTIMOORA should summarize ranks from the Ratio System, Reference Point, and the
Full Multiplicative Form.

6. Cardinal and ordinal scales in MULTIMOORA

Does there not exist a problem when MULTIMOORA has to totalize ranks from the Ratio
System, Reference Point and the Full Multiplicative Form? Indeed adding up of ranks, ranks
mean an ordinal scale (1, 2", 3" etc.) signifies a return to a cardinal operation (1 + 2 +
3 +...). Is this allowed?

The answer is “no” following the Noble prize Winner Arrow:

6. 1. The impossibility theorem of arrow

“Obviously, a cardinal utility implies an ordinal preference but not vice versa” (Arrow 1974).

6. 2. The rank correlation method

The method of correlation of ranks consists of totalizing ranks. Rank correlation was intro-
duced first by psychologists such as Spearman (1904, 1906 and 1910) and later taken over
by the statistician Kendall in 1948. He argues (Kendall 1948): “we shall often operate with
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these numbers as if they were the cardinals of ordinary arithmetic, adding them, subtracting
them and even multiplying them”, but he never gives a proof of this statement. In his later
work this statement is dropped (Kendall and Gibbons 1990).

In ordinal ranking 3 is farther away from 1 than 2 from 1, but Kendal (1948) goes too
far (Table 2).

Table 2. Ordinal versus cardinal: comparing the price of one commodity

Ordinal Cardinal
1
2
3
4
A 5 6.03$
6 6.02%
7 6.01$
B 8 6%

For Kendal B is far away from A as it has 7 ranks before and A only 4, whereas it is not
true cardinally.

In addition a supplemental notion, the statistical term of Correlation, is introduced.
Suppose the statistical universe is just represented by two experts, for us it could be two
methods. If they both rank in a same order different items to reach a certain goal, it is said
that the correlation is perfect. However, perfect correlation is a rather exceptional situation.
The problem is then posited: how in other situations correlation is measured. Therefore, the
following Spearmanss coefficient is used (Kendall 1948: 8):

2
D 20

:1— 5
P N(N?-1)

where D stands for the difference between paired ranks, and N for the number of items ranked.

According to this formula, perfect correlation yields the coeflicient of one. An acceptable
correlation reaches the coefficient of one as much as possible. No correlation at all yields a
coeflicient of zero. If the series are exactly in reverse order, there will be a negative correlation
of minus one, as shown in the following example (Table 3).

Table 3. Negative rank order correlations

Items Expert 1 Expert 2 D D?
1 1 7 -6 36
2 2 6 -4 16
3 3 5 -2 4
4 4 4 0 0
5 5 3 2 4
6 6 2 4 16
7 7 1 6 36
z 112
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This table shows that the sum of ranks in the case of an ordinal scale has no sense. Cor-
relation leads to: p = 1-6x112/(7(49 - 1)) = -1. However, as addition of ranks is not allowed
also a subtraction, the difference D, is not permitted.

Most people will better understand the ordinal problem by the way of a qualitative scale, e. g.:

1* very good;
2" moderate;
3" very bad.
But equally one could say:
1% very good;
2™ good;
3 more or less good;
4" moderate;
5" more or less low;
6™ low;
7% very low.
How is the first 24 comparable with the second 27, etc.

6.3. Arbitrary methods to go from an ordinal scale to a cardinal scale

1. Arithmetical Progression: 1, 2, 3,4, 5, ...

The ordinal scale 5 gets 1 cardinal point with all variations possible e.g. an additional
point 1, etc.

The ordinal scale 4 gets 2 cardinal points etc.

The best one in the ordinal scale gets the most cardinal points in an arithmetical progression.

2. A Geometric Progression: 1, 2, 4, 8, 16, ...

3. The Fundamental Scale of Saaty (1987): 1, 3, 5,7, 9.

4. The Normal Scale of Lootsma (1987):

e =1

el =2.7;

e?=74;

e*=20.1...

5. The Stretched Scale of Lootsma (1987):
e = 1;

e’ =7.4;

e* = 54.6;

e®=4034 ...

6. The Point of View of the Psychologists (Miller 1956):

Ordinal Scales: 1,2, 3,4, 5,6, 7.

After 7 an individual would no more know the cardinal significance compared to the
previous 7 ones.

In fact infinite variations are possible. All stress an acceleration or a dis-acceleration proc-
ess but are not aware of a possible trend break. The full multiplicative method with its huge
numbers illustrates the best this trend break as shown in next Table 4.
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Table 4. Ranking of Scenarios for the Belgian Regions by the Full-Multiplicative Method at the Year 1996

1 Scenario IX Optimal Economic Policy in Wallonia and Brussels 203,267

Optimal Economic Policy in Wallonia and Brussels even

2 Scenario X agreeing on the Partition of the National Public Debt 196,306

Scenario VII Flanders asks for the Partition of the National Public Debt 164,515
4 Scenario VIII  No Solidarity at all 158,881
5 Scenario 1T Unfavorable Growth Rate for Flanders 90
6 Scenario IV an Unfavorable Grow.rt.h Rate for Flapders and .at that moment 37

asks also for the Partition of the National Public Debt

7 Scenario 11T Partition of the National Public Debt 54
8  Scenario I the Average Belgian 51
o Scoariy  preee Bl o s compenion londers sk 0
10 Scenario O Status Quo 43
11 Scenario VI Flanders asks for the Partition of the National Public Debt 42

Source: Brauers, Ginevicius 2010.

With the usual Arithmetical Progression: 1, 2, 3, 4, 5, ... the distance from the rank 4 to
5 would be the same as from 3 to 4 which is certainly not the case here. In addition all the
other progressions fail to discover a trend break too.

Summarizing all these statements the following axioms are proposed.

6.4. Axioms on Ordinal and Cardinal Scales

1. A deduction of an Ordinal Scale, a ranking, from cardinal data is always possible.
2. An Ordinal Scale can never produce a series of cardinal numbers.
3. An Ordinal Scale of a certain kind, a ranking, can be translated in an ordinal scale of
another kind.
In application of axiom 3 we shall translate the rankings of three methods of MULTI-
MOORA into an other ordinal scale based on Dominance, being Dominated, Transitivity
and Equability.

6.5. Dominance, being Dominated, Transitiveness and Equability

The three methods of MULTIMOORA are assumed to have the same importance. Stakehold-
ers, or their representatives like experts, may give a different importance in an ordinal ranking
but this is not the case with the three methods of MULTIMOORA. These three methods
represent all existing methods in multi-objective optimization with dimensionless measures
and consequently all the three have the same important significance.

Dominance’

Absolute Dominance means that an alternative, solution or project dominates in rank-
ing all other alternatives, solutions or projects which are all being dominated. This absolute
dominance shows as rankings for MULTIMOORA: (1-1-1).

® Brauers and Zavadskas (2011) developed the theory of Dominance for the first time in January 2011.
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General Dominance in two of the three methods is of the form witha <b < ¢ <d:

(d-a-a) is generally dominating (c-b-b);

(a—d-a) is generally dominating (b-c-b);

(a—a-d) is generally dominating (b-b-c);

and further transitiveness plays fully.

Transitiveness. If a dominates b and b dominates ¢ than also a will dominate c.

Overall Dominance of one alternative on another: (a-a-a) overall dominating
(b-b-b), see Table 5.

Equability

Absolute Equability has the form: (e-e—e) for 2 alternatives.

Partial Equability of 2 on 3 exists e. g. (5-e-7) and (6-e-3).

A distinction can be made if a classification shows equability but one of the two alterna-
tives belongs to a higher classified group.

Circular Reasoning

Despite all distinctions in classification some contradictions remain possible in a kind of
Circular Reasoning. In such a case the same ranking is given.

Table 5. European Member States overall dominating other European Member States

Overall dominating Overall being dominated
Germany (8-8-3) France (10-10-4)
Ireland (9-11-5) Spain (14-13-6)

Lithuania (21-21-25) Malta (23-22-26)

Slovakia (26-26-16) Bulgaria (27-27-23)

7. Application on the Multi-Objective Optimization of the European Union Member
States based on MULTIMOORA

All Member States were assigned either of three roles in the European world-system. Best
performing states with ranks from 1 to 9 were considered as Core states (Group 1), those
possessing ranks 10-18 — as Semi-Peripheral states (Group 2), and those with ranks 19-27 -
as Peripheral States (Group 3). It should be noted that all European states are unequivocally
semi-peripheral at least in the total world-system, thus the given classification is only valid
in the context of the European world-system (for the global world-system see for instance:
Clark 2010).
Beside the general characteristics given above additional remarks have to be made for
application on the European situation:
— We have to repeat again that with ranking by dominance the application remains in
the ordinal sphere.
- We have to repeat again that the three methods have the same importance.
- Due to limited data availability and to limit the number of calculations only the years
2000, 2004 and 2008 were selected. In that way the response matrix was already com-
posed of 972 elements.
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- Also the choice of the years 2000, 2004 and 2008 has an historical meaning. In 2000 the
European Union was only composed of 15 countries, the so—called EU-15: the original
countries (1957) BENELUX (Belgium, Netherlands, Luxemburg), France, Germany
and Italy; UK, Ireland and Denmark (1973); Greece (1981); Spain and Portugal (1986).

On May 1, 2004 the EU extended with 10 members: Poland, Lithuania, Latvia, Estonia,

Slovenia, Slovakia, Czech Republic, Hungary, Cyprus and Malta. Consequently these countries
were not member in 2000, a half time in 2004 and full time in 2008. Nevertheless their data
are also assembled for 2000 and 2004.

On January 1, 2007 Romania and Bulgaria joined the Union meaning that they were not

present in 2000 and 2004. Nevertheless their data are also used for 2000 and 2004.

- No Equability in ranking was found between the EU members.

- No Absolute Dominance was present in the three methods.

- General Dominance: Sweden with (1-5-7) dominates Luxemburg (2-2-19) and further
all the others by transitiveness.

Table 6 and Annex D show the final results for the European Member States on basis of

Dominance.

Table 6. MOO Ranking on basis of 12 Structural Indicators for the 27 Member States of the EU

Ranking Member States with MULTIMOORA Rankings

Core (Group 1)

1 Sweden (1-5-7)

2 Luxemburg (2-2-19)

3 Finland (4-9-1)

4 Austria (5-3-9)

5 Netherlands (6-1-14)

6 Denmark (3-4-18)

7 Belgium (11-6-2)

8 UK (7-7-15)

9 Germany (8-8-3)
Semi-Periphery (Group 2)

10 France (10-10-4)

11 Ireland (9-11-5)

12 Spain (14-13-6)

13 Italy (16-12-8)

14 Slovenia (12-14-12)

15 Portugal (17-15-11)

16 Czech (13-16-17)

17 Greece (22-17-10)

18 Estonia (19-19-13)

Periphery (Group 3)
19 Cyprus (15-24-20)

20 Hungary (18-18-21)
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End of Table 6
Periphery (Group 3)
21 Poland (24-20-22)
22 Lithuania (21-21-25)
23 Malta (23-22-26)
24 Latvia (20-23-27)
25 Romania (25-25-24)
26 Slovakia (26-26-16)
27 Bulgaria (27-27-23)

For details see: Annex C.

The application of a theory of Dominance to solve the ordinal problem was successful. If
the transition from cardinal to ordinal is possible but from ordinal to cardinal not then the
solution has to be found in the transition from one ordinal system to another one. Let us
hope that in this way the old discussion between cardinal and ordinal is solved once for all.

Given the recession of 2009 a trend break occurred which was certainly fatal for Ireland,
Greece, Portugal and even perhaps for the UK. Standarde»Poor’s gives a credit rating of BB+
to Greece, which means classifying its government bonds as “junk” paper. Before March
2009 Ireland had the highest rating of AAA but since then it went down over AA+ , AA,
AA-, A+ to A. Portugal has even A —. Of course this is only a single indicator. Bur the rating
offices take into account many criteria*. Probably Ireland, Portugal and Greece will have to
substitute Group 2 (Semi Periphery) by Group 3 (Periphery). One can even wonder if UK
can stay in Group 1. Consequently similar research on the year 2009 would be very useful.

8. Conclusion

Fuzzy logic handles vague problems in various areas. Fuzzy numbers can represent either
quantitative or qualitative variables. The quantitative fuzzy variables can embody crisp num-
bers, aggregates of historical data (i.e. time series) or forecasts. The qualitative fuzzy variables
may be applied when dealing with ordinal scales. The MULTIMOORA method was therefore
updated with fuzzy number theory. Vertex method was used when measuring the distances
between fuzzy numbers. Centre of area method was applied for defuzzification.

The MULTIMOORA method consists of three parts, namely Ratio System, Reference
Point and Full Multiplicative Form. Accordingly, each of them was modified and thus updated
with triangular fuzzy number theory. The fuzzy Ratio System defines internal normalization,
aggregation of criteria into single ratios and defuzzification. The fuzzy Reference Point ap-
proach relies on definition of the Maximal Objective Reference Point as well as measurement
of distances between certain coordinates of the Reference Point and every alternative accord-
ing to vertex method. The fuzzy Full Multiplicative Form embodies maximization of a purely
multiplicative utility function and defuzzification. The fuzzy MULTIMOORA summarizes
these three approaches under the form of three sets of ranking, which means: of an ordinal

* Vertrouwen in Ierland slinkt met de dag, De Tijd, November 25, 2010. These figures are considered as confidential,
but the newspaper takes the responsibility of publication.
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order. At that moment the problem is set: what to do with these three sets of rankings. With
small responses matrices no problems did arrive. The solution was mostly easy to see. For
large matrices it is much more complicated.

At that occasion three Axioms on Ordinal and Cardinal Scales are proposed:

1. A deduction of an Ordinal Scale, a ranking, from cardinal data is always possible.

2. An Ordinal Scale can never produce a series of cardinal numbers.

3. An Ordinal Scale of a certain kind, a ranking, can be translated in an ordinal scale of

another kind.

In application of axiom 3 the rankings of the three methods of MULTIMOORA were
translated into an other ordinal scale based on Dominance, being Dominated, Transitivity
and Equability.

The three methods of MULTIMOORA are assumed to have the same importance. These
three methods represent all existing methods with dimensionless measures in multi-objective
optimization and all the three have an important significance.

Fuzzy MULTIMOORA ranked the EU Member States in three groups based on the cited
domination principles and according to their performance in reaching the goals of the Lisbon
Strategy 2000-2008. As table 6 suggests, the best performing countries (Group 1) are Sweden,
Luxemburg Finland, Austria, the Netherlands Denmark Belgium, UK and Germany. Group
2 consists of, France, Ireland, Spain, Italy, Slovenia, Portugal, Czech Republic, Greece, and
Estonia. Group 3 encompasses the less performing states, namely Cyprus, Hungary, Poland,
Lithuania, Malta, Latvia, Romania, Slovakia and Bulgaria. The three groups are called succes-
sively: Core, Semi-Periphery and Periphery in comparison with what is done on world level.

Given the recession of 2009 a trend break occurred which was certainly fatal for Ireland,
Greece, Portugal and even perhaps for the UK. Consequently new research on 2010 would
be very useful. Nevertheless no link has to be made with the period from before 2010. The
changes are too profound.
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Table A4. The final results of the fuzzy Ratio System (RS) of MOORA

—x
Vi
States . . . BNP. Rank (RS)
il Vin Vi3 !
BE 0.616 0.534 0.435 0.528 11
BG -0.581 -0.378 -0.129 -0.363 27
CZ 0.408 0.403 0.429 0.413 13
DK 0.915 0.879 0.843 0.879 3
DE 0.697 0.650 0.565 0.638 8
EE 0.091 0.203 0.358 0.217 19
IE 0.642 0.607 0.569 0.606 9
EL 0.227 0.146 0.061 0.145 22
ES 0.341 0.326 0.317 0.328 14
FR 0.641 0.562 0.450 0.551 10
IT 0.315 0.283 0.234 0.277 16
CY 0.290 0.275 0.288 0.285 15
LV 0.036 0.217 0.372 0.208 20
LT 0.033 0.184 0.353 0.190 21
LU 0.998 0.995 0.984 0.992 2
HU 0.253 0.238 0.182 0.224 18
MT 0.044 0.034 0.015 0.031 23
NL 0.791 0.764 0.712 0.756 6
AT 0.829 0.802 0.781 0.804
PL -0.141 -0.035 0.085 -0.030 24
PT 0.291 0.244 0.256 0.264 17
RO -0.175 -0.055 0.069 -0.054 25
SI 0.467 0.459 0.456 0.460 12
SK -0.128 -0.134 -0.061 -0.108 26
FI 0.865 0.846 0.804 0.838 4
SE 1.137 1.067 1.007 1.071 1

UK 0.762 0.701 0.631 0.698 7
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Table A5. The fuzzy Reference Point (RP) of MOORA

Ab5a - Maximal Objective Reference Point:

285

j 1 2 3 4 5 6

Ye T Tia T T Tia T T Tia T T Tia T T Tia T T 7.

L P E R D A £ ) S A & B | S VA £ B | S P £ j2 j3
; 0.465 0.468 0.477 0.349 0.344 0.335 0.234 0.230 0.225 0.327 0.307 0.280 0.228 0.226 0.224 0.449 0.428 0.405
j 7 8 9 10 11 12

rjl rjz rj3 rjl rjz rj3 7’]-1 rjz rj3 rjl sz rj3 7’]-1 rjz rj3 7’]-1 rjz 7j3
; 0.251 0.244 0.249 0.086 0.091 0.100 0.108 0.112 0.116 0.039 0.042 0.043 0.076 0.079 0.081 0.057 0.051 0.045

A5b - Distances of responses from the reference point d(f’] ,3?:]- ):

i 1 2 3 4 5 6 7 8 9 10 11 12 maxd I({E;l)‘
BE 0.251 0.084 0.047 0.171 0.027 0.205 0.054 0.132 0.059 0.164 0.108 0.053 0.251 6
BG 0.408 0.276 0.062 0.169 0.035 0.369 0.077 0.000 0.100 0.250 0.038 0.485 0485 27
CZ 0.336 0.210 0.034 0.119 0.005 0.274 0.035 0.034 0.000 0.125 0.063 0.230 0.336 16
DK 0.242 0.133 0.000 0.044 0.048 0.142 0.067 0.194 0.022 0.000 0.105 0.000 0.242 4
DE 0.258 0.130 0.028 0.108 0.047 0.133 0.071 0.129 0.041 0.202 0.076 0.024 0.258 8
EE 0369 0.234 0.037 0.069 0.031 0.325 0.006 0.048 0.123 0.148 0.012 0.271 0.369 19
IE 0.223 0.083 0.031 0.084 0.020 0.281 0.062 0.163 0.111 0.056 0.158 0.007 0.281 11
EL 0.308 0.148 0.053 0.122 0.029 0.361 0.072 0.095 0.136 0.214 0.158 0.037 0.361 17
ES 0.288 0.139 0.050 0.121 0.074 0.300 0.014 0.097 0.122 0.120 0.191 0.038 0.300 13
FR 0.268 0.100 0.040 0.152 0.026 0.184 0.077 0.136 0.066 0.143 0.106 0.031 0.268 10
IT 0272 0.112 0.062 0.167 0.049 0.298 0.067 0.122 0.117 0.188 0.128 0.018 0.298 12
CY 0.303 0.174 0.026 0.072 0.030 0.388 0.098 0.097 0.080 0.002 0.271 0.055 0.388 24
LV 0386 0.252 0.044 0.104 0.036 0.370 0.017 0.041 0.139 0.181 0.000 0.124 0.386 23
LT 0.380 0.240 0.046 0.099 0.023 0.347 0.066 0.029 0.120 0.169 0.006 0.182 0.380 21
LU 0.000 0.000 0.042 0.170 0.045 0.237 0.082 0.137 0.045 0.009 0.091 0.029 0.237 2
HU 0.362 0.215 0.061 0.185 0.023 0.325 0.058 0.031 0.038 0.130 0.071 0.158 0.362 18
MT 0.326 0.162 0.066 0.171 0.112 0.382 0.133 0.067 0.065 0.136 0.182 0.045 0.382 22
NL 0.231 0.118 0.007 0.106 0.046 0.226 0.078 0.125 0.023 0.018 0.114 0.035 0.231 1
AT 0.239 0.110 0.021 0.155 0.019 0.166 0.034 0.126 0.042 0.020 0.131 0.017 0.239 3
PL 0376 0.226 0.065 0.176 0.007 0.358 0.072 0.035 0.109 0.252 0.087 0.154 0.376 20
PT 0.327 0.201 0.026 0.076 0.108 0.307 0.031 0.088 0.131 0.093 0.185 0.040 0.327 15
RO 0.409 0.273 0.050 0.115 0.040 0.375 0.055 0.014 0.131 0.139 0.036 0.304 0.409 25

SI 0.315 0.184 0.034 0.183 0.009 0.253 0.020 0.070 0.033 0.107 0.129 0.081 0.315 14
SK 0.361 0.209 0.053 0.179 0.000 0.364 0.022 0.028 0.038 0.433 0.050 0.258 0.433 26
FI 0.259 0.118 0.024 0.089 0.017 0.021 0.072 0.166 0.037 0.056 0.123 0.061 0.259 9
SE 0.243 0.118 0.011 0.000 0.018 0.000 0.095 0.162 0.014 0.019 0.099 0.027 0.243 5
UK 0.253 0.122 0.016 0.060 0.038 0.221 0.098 0.138 0.117 0.026 0.083 0.010 0.253 7
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Annex B. The fuzzy Full Multiplicative Form and fuzzy MULTIMOORA

Table B1. The fuzzy Full Multiplicative Form (MF)

' ' ' Rank
State A, A, A; By B, By U U U_. BNP (MEF)

BE 6.33E+10 8.84E+10 1.26E+11 81229192 1.21E+08 1.65E+08 382.6751 733.2964 1.02E+19 3.41E+18 2

BG 3.98E+08 1.43E+09 5.41E+09 87525501 2.87E+08 8.61E+08 0.461969 4.977532 4.74E+17 1.58E+17 23

CZ 2.05E+10 3.47E+10 5.99E+10 32240603 80841425 1.59E+08 129.3744 429.2268 1.93E+18 6.44E+17 17

DK 1.41E+11 1.96E+11 2.71E+11 6216945 12792050 22284777 6346.014 15315.89 1.68E+18 5.61E+17 18

DE  87E+10 1.22E+11 1.88E+11 46374847 72006311 1.23E+08 707.2274 1693.321 8.71E+18 2.9E+18 3

EE  6.15E+09 1.8E+10 5.35E+10 44436590 1.55E+08 4E+08 15.38156 116.3191 2.38E+18 7.92E+17 13

IE  7.57E+10 1.18E+11 1.83E+11 37000885 55552085 76034200 995.5973 2122.429 6.76E+18 2.25E+18 5

EL  1.25E+10 1.77E+10 2.33E+10 1.25E+08 2.04E+08 3.01E+08 41.58832 86.78519 2.91E+18 9.69E+17 10

ES  255E+10 4.22E+10 6.98E+10 72131495 1.46E+08 2.55E+08 100.1222 289.2566 5.03E+18 1.68E+18 6

FR  6.46E+10 8.91E+10 1.18E+11 64165873 88772369 1.19E+08 540.4122 1003.993 7.59E+18 2.53E+18 4

IT  2.18E+10 3.22E+10 4.97E+10 81222166 1.28E+08 2.12E+08 102.5437 250.9532 4.04E+18 1.35E+18 8

CY 53E+09 1.09E+10 2.6E+10 24336703 49704816 81494291 65.04372 218.485 6.32E+17 2.11E+17 20

LV 227E+09 5.6E+09 1.44E+10 20061080 78102282 2.87E+08 7.879871 71.63826 2.9E+17 9.66E+16 27

LT 3.04E+09 8.08E+09 1.89E+10 17473448 92256740 2.99E+08 10.14279 87.61634 3.3E+17 1.1E+17 25

LU 131E+11 1.73E+11 2.32E+11 7108890 19116414 47732500 2735.72 9052.587 1.65E+18 5.5E+17 19

HU 471E+09 8.74E+09 1.37E+10 44043797 77979617 1.31E+08 3594482 112.1021 6.04E+17 2.01E+17 21

MT  11E+09 2.69E+09 5.39E+09 60852740 1E+08 1.67E+08 6.612322 26.76281 3.28E+17 1.09E+17 26

NL 7.37E+10 1.12E+11 1.64E+11 14066815 22088363 36808511 2002.01 5065.027 2.3E+18 7.67E+17 14

AT 941E+10 1.39E+11 2.41E+11 15588698 21769174 33230329 2832.278 6391.682 3.75E+18 1.25E+18 9

PL  2.62E+09 4.66E+09 8.12E+09 66834784 2.26E+08 6.22E+08 4.21494 20.67204 5.43E+17 1.81E+17 22

PT 1.19E+10 1.94E+10 4.09E+10 62643874 1.21E+08 1.95E+08 61.22833 160.627 2.56E+18 8.54E+17 11

RO  5.61E+08 1.94E+09 7.88E+09 59996905 1.49E+08 4.01E+08 1.397506 13.02349 4.73E+17 1.58E+17 24

SI  2.29E+10 3.8E+10 6.38E+10 39929745 80673819 1.43E+08 159.785 471.6043 2.55E+18 8.49E+17 12

SK 3.36E+09 7.5E+09 2.04E+10 1.1E+08 2.89E+08 6.03E+08 5.56885 25.96284 2.24E+18 7.47E+17 16

FI  1.69E+11 2.38E+11 3.35E+11 34102820 69290315 1.39E+08 1219.223 3437.218 1.14E+19 3.81E+18 1

SE  2.78E+11 3.41E+11 4.15E+11 9840525 23355097 39945657 6960.107 14579.86 4.08E+18 1.36E+18 7

UK 8.52E+10 1.09E+11 1.37E+11 16670117 27764214 40198084 2120.383 3916.003 2.29E+18 7.62E+17 15
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Annex C. Summary table for the three Methods of Fuzzy MULTIMOORA

Table C1. Final ranks of a fuzzy MULTIMOORA for EU member states (2000-2004-2008)

Ranks Group
. Rank
The The Fuzzy Final rank Group Correc- Correc-
State Fuzzy The Fuzzy Full Sum by Sum by tionby tion
Ratio  Reference Multiplicative MULTL- g 0 pomi- DY
Point MOORA Domi-
System Form nance

nance
Austria 5 3 9 17 3 1 4 -
Belgium 11 6 2 19 5 1 7 -
Bulgaria 27 27 23 77 27 3 - -
Cyprus 15 24 20 59 20 3 19 -
Czech Republic 13 16 17 46 16 2 - -
Denmark 3 4 18 25 10 2 6 1
Estonia 19 19 13 51 18 2 - -
Finland 4 9 1 14 2 1 3 -
France 10 10 4 24 8 1 10 -
Germany 8 8 3 19 4 1 9 -
Greece 22 17 10 49 17 2 - -
Hungary 18 18 21 57 19 3 20 -
Ireland 9 11 5 25 9 1 11 2
Italy 16 12 8 36 13 2 - -
Latvia 20 23 27 70 24 3 - -
Lithuania 21 21 25 67 22 3 - -
Luxembourg 2 2 19 23 7 1 2 -
Malta 23 22 26 71 25 3 23 -
Netherlands 6 1 14 21 6 1 5 -
Poland 24 20 22 66 21 3 - -
Portugal 17 15 11 43 15 2 - -
Romania 25 25 24 74 26 3 25 -
Slovakia 26 26 16 68 23 3 26 -
Slovenia 12 14 12 38 14 2 - -
Spain 14 13 6 33 12 2 - -
Sweden 1 5 7 13 1 1 - -
United Kingdom 7 7 15 29 11 2 8 1

Annex D. Theory of Dominance, Domination and Transitivity

1. Principles

1. Staying in the ordinal sphere with ranking by dominance.

2. The three methods have the same importance.

3. Overall dominance is ranked on the first place. Will seldom occur.

4. Three groups are considered: Core (in principle first 9), Semi-Periphery (next 9), Pe-
riphery (last 9). If countries are ex-aequo but a country is Semi-Periphery or Periphery
in one of the methods then it is inferior to the other country.

2. Ranking

Overall dominance in the three methods is not present.
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I. Core

1. General dominance in two of the three methods: Sweden (1-5-7)

- Dominates Luxemburg (2-2-19) in: 1) Ratio System; Dominated in Reference
Point.

2) Multiplicative Form.
- Dominates Austria (5-3-9) in: 1) Ratio System; Dominated in Reference

Point.
2) Multiplicative Form.
- Dominates Finland (4-9-1) in: 1) Ratio System; Dominated in Multiplicative
Form.
2) Reference Point.
— Dominates all the others in 2 methods

2. Dominance in two of the three methods: Luxemburg (2-2-19)

3. Dominance in two of the three methods: Finland (4-9-1) dominated by Luxemburg.
Dominates Austria in 2 methods.

4. Austria (5-3-9) 2 x dominated by Finland.
5. Netherlands (6-1-14) 2 x dominated by Austria.
6. Denmark (3-4-18) 2 x dominated by the Netherlands.
7. Belgium (11-6-2) 2 x dominated by Denmark.
8. UK (7-7-15) 2 x dominated by Belgium.
9. Germany (8-8-3) 2 x dominated by UK.
II. Semi-Periphery

10. France (10-10-4) overall dominated by Germany.
11. Ireland (9-11-5) 2 x dominated by France.
12. Spain (14-13-6) overall dominated by Ireland.
13. Italy (16-12-8) 2 x dominated by Spain.
14. Slovenia (12-14-12) 2 x dominated by Italy.
15. Portugal (17-15-11) 2 x dominated by Slovenia.
16. Czech (13-16-17) 2 x dominated by Portugal.
17. Greece (22-17-10) 2 x dominated by Czech Republic.
18. Estonia (19-19-13) 2 x dominated by Greece.
III. Periphery

19. Cyprus (15-24-20) 2 x dominated by Estonia.
20. Hungary (18-18-21) 2 x dominated by Cyprus.
21. Poland (24-20-22) 2 x dominated by Hungary.
22. Lithuania (21-21-25) 2 x dominated by Poland.
23. Malta (23-22-26) overall dominated by Lithuania.
24. Latvia (20-23-27) 2 x dominated by Malta.
25. Romania (25-25-24) 2 x dominated by Latvia.
26. Slovakia (26-26-16) 2 x dominated by Romania.

27. Bulgaria (27-27-23) overall dominated by Slovakia.
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NERAISKIUJU SKAICIU TEORIJA PAPILDYTAS MULTIMOORA METODAS EUROPOS
SAJUNGOS VALSTYBIU NARIU ISSIVYSTYMO VERTINIMUI

W. K. M. Brauers, A. Balezentis, T. BaleZentis

Santrauka. Neraiskioji logika padeda jvertinti ir spresti neapibréztas problemas jvairiose srityse. Neraiskieji
skaiciai gali i8reiksti tiek kiekybinius, tiek kokybinius kintamuosius. Kiekybiniai neraigkieji kintamieji
gali apimti tradicinius realiuosius skaicius, susintetintus istorinius duomenis (laiko eilutes) ar progno-
zuojamas tendencijas. Kokybiniai neraiskieji kintamieji gali buti naudojami dirbant su rangy skalémis
(lingvistiniai kintamieji). Taigi daugiakriterinio vertinimo metody praplétimas neraiskiyjy skaiciy aibiy
teorija yra svarbus klausimas. MULTIMOORA metodas buvo papildytas neraiskiyjy skai¢iy teorija.
Vir$anés metodas pritaikytas skai¢iuojant atstumus tarp neapibréztyjy skaiciy. Ploto centro metodas
pritaikytas konvertuojant neraiskiuosius skai¢ius j realiuosius. MULTIMOORA metodg sudaro trys
dalys: santykiy sistema, atskaitos taskas ir pilnoji sandaugos forma. Kiekviena dalis buvo modifikuota
papildant ja treciojo laipsnio neraiskiaisiais skaiciais. Neraiskioji santykiy sistema apima vidinj norma-
lizavima, kriterijy apibendrinimg ir konvertavima j apibréZtuosius skaicius. Neraiskioji atskaitos tagko
sistema remiasi atskaitos tagko (vektoriaus) nustatymu ir kiekvienos alternatyvos atstumo iki jo matavimu
taikant vir§inés metoda. Neraiskioji pilnoji sandaugos forma sujungia grynosios multiplikatyvinés nau-
dingumo funkcijos maksimizavimg ir konvertavima j realiuosius skaic¢ius. Neraiskusis MULTIMOORA
metodas apibendrina $iuos tris poziurius. Straipsnyje i§spresta rangy apibendrinimo problema, iSkylanti
apibendrinant keliais daugiakriterinio optimizavimo metodais gautus rangus. Siam tikslui pasiilyta ir
pritaikyta dominavimo teorija, apibudinanti jvairias alternatyvy palyginimo procediiras remiantis skir-
tingais tos pacios alternatyvos rangais. ES valstybiy nariy pazanga jgyvendinant Lisabonos strategijos
tikslus 2000-2008 m. jvertinta taikant neraiskyjj MULTIMOORA metoda ir dominavimo teorijg. Analizés
rezultatai rodo, kad pirmauja Svedija, Liuksemburgas, Suomija, Austrija, Nyderlandai, Danija, Belgija,
Jungtiné Karalysté ir Vokietija. Antrajai grupei priklauso Prancuzija, Airija, Ispanija, Italija, Slovénija,
Portugalija, Cekija, Graikija ir Estija. Labiausiai atsilieka Vengrija, Kipras, Lenkija, Lietuva, Slovakija,
Latvija, Malta, Rumunija ir Bulgarija.

Reik$miniai ZodZiai: daugiakriterinis optimizavimas, MOORA, MULTIMOORA, struktariniai rodik-
liai, Lisabonos strategija, strateginis valdymas, Europos Sajunga, darnus vystymas, neraiskieji skaiciai,
tre¢iojo laipsnio skaiciai, dominavimo teorija, tranzityvumas.
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