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Abstract. Speeding up a project’s duration will definitely increase the cost and decrease the quality. 
The previous literatures were mainly related to project planning and controlling which mainly focus 
on cost-time tradeoff. However, limited researches have been referred to project quality based on 
mathematical methodologies. This paper proposes a tradeoff problem on time-cost-quality per-
formance. A computer-based Pareto multi-objective optimization approach is utilized for solving 
the tradeoff problems. The approach can help searching near the reality Pareto-optimal set while 
not receiving any information on the stakeholders’ preference for time, cost and quality. Based on 
the developed approach, decision-making can become easy according to the sorted non-dominated 
solutions and project preferences. 
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1. Introduction

Each project involves a multidimensional problem (Blaszczyk and Nowak 2009). A project 
should be managed with the consideration of scope, time, cost and quality (Tam et al. 2002). 
Generally, project scope is defined in the contract; time and activity sequences are provided 
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on project scheduling; cost is planned on project budget; and quality is controlled on the base 
of industry criterion. Successful project management should insure project completion in 
time, within budget, and to the project specifications (Babu and Suresh 1996; Ustinovichius 
et al. 2009; Zavadskas et al. 2010). To compress project duration for practical considerate-
ness, it is necessary for stakeholders to consider how to arrange resources and reduce budget. 
Thus, in the existing literatures, many researchers were inclined to pay more attention for 
time-cost tradeoff problems (Law and Chu 1987; Lee 1989; Reda and Carr 1989; Deckro et 
al. 1995; Chua et al. 1997; Li et al. 1999; Leu et al. 2001; Jahan-Shahi et al. 2002; Laslo 2003; 
Wang 2004; Vanhoucke 2005; Abdallah 2007; Senouci and AI-Derham 2008; Blaszczyk and 
Nowak 2009; Ke et al. 2009). Some mathematical and heuristic models had been developed 
for solving these problems. Project quality is seldom considered on purpose with the time-cost 
tradeoff problems. Though in some studies (Khang and Myint 1999; Gardiner and Stewart 
2000; Tareghian and Taheri 2006, 2007), project scheduling with time, cost and quality con-
siderations had been mentioned, researchers did not provide an all-around design among the 
three but bounding one or two variables as constant. This paper develops a multi-objective 
optimization with across-the-board considering time, cost and quality.

The time-cost-quality tradeoff problem is formulated as a kind of multi-objective opti-
mization problem. This paper aims to minimize time, minimize cost and maximize quality 
in managing a project according to some constraint conditions if any.  

In practice, it is often considered to perform a tradeoff among different sub-objectives 
especially for those incompatible sub-objectives in multi-objective problems. Studies on 
multi-objectives have received in close attention tracing back to some literatures (Hwang and 
Yoon 1981; Steuer 1986; Dev 1995; Zavadskas 2008). The solution of multi-objective problem 
is generally named as Pareto optimal solution, which was first put forward by Pareto. The 
early related studies could be found in references (Stadler 1979, 1981). Among them, more 
attention is paid on searching solution by genetic algorithm. The main advantages of using 
genetic algorithm are:

1. capacity which efficiently search complex solution spaces with less possibility getting 
local optimum;

2. randomization which adding a probability mechanism of iterative operation; 
3. suitable for combining with other methods and concurrent operation in computers; 
4. robustness which means the solutions are similar while solving the same problem 

many times.
Thus, this paper develops a time-cost-quality tradeoff framework in view of two points:
1. the existing researches seldom consider time, cost and quality of a project as a whole, 

especially for the situation where stakeholders have not any preference among them; 
2. the existing researches seldom mention to solve a construction problem by Pareto 

multi-objective genetic algorithm. 
Therefore, this paper mainly focuses on the following objectives: 
1. to provide a multi-objective scheme on project time, cost and quality; 
2. to form a multi-objective optimization solution methodology;
3. to supply decision support according to the analysis of simulation results.
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2. Problem descriptions

Generally, project manager should have a good application of knowledge, skills, tools and 
techniques for meeting the need of stakeholders in the construction. The primary purpose 
of this section is to formulate a robust optimization model which aims to resolve time-cost-
quality tradeoff problems. The formulated model mainly refers to minimize time, minimize 
cost and maximize quality of a project according to some constraint conditions if any.

2.1. Minimizing project time

For each construction activity in a project, it is assumed that it has a normal completion 
time and a crash completion time. The present objective is try to reduce the project time. It 
is described as follows:

 1
Min T T

N
total i

i=
= ∑ , (1)

 S. t.  T ( ) T T ( )crash i normali i≤ ≤ , (2)

where Ti  is the feasible duration of activity i; T ( )crash i  the crash duration of activity i  expected 
to complete in the least time; and  T ( )normal i  the normal duration of activity i  expected to 
complete at the least cost. 

Equation (2) defines the lower limit and the upper limit for every activity time.

2.2. Minimizing project cost

Expediting the time of a project will no doubt increase the cost which is attributed to the 
cost improvement of every activity. For each activity, cost is comparatively relative to time. 
If getting abundance of original data is easy, the possible best choice to gain the relation 
between cost and time is to perform a curve fitting by statistical softwares. The previous 
literatures mainly mentioned two models: a linear model (Law and Chu 1987; Babu and 
Suresh 1996; Khang and Myint 1999; Laslo 2003; Senouci and AI-Derham 2008; Ke et al. 
2009) and a quadratic model (Reda and Carr 1989; Deckro et al. 1995; Li et al. 1999). More 
researchers used the linear model between time and cost, possibly because the linear model 
is easy to deal with. In this paper, considering the economic concept of marginally increasing 
or decreasing productivity (or utility) for different levels of input, the latter is chosen. The 
detailed models are represented as:

 1
Min C C(T )

N
total i

i=
= ∑ , (3)

 S.t.  2C(T ) (T )i i i ia b= + , (4)

 C(T ( )) C(T ) C(T ( ))normal i crashi i≤ ≤ , (5)

where C(T )i  is the feasible cost of activity i; C(T ( ))crash i  the crash cost of activity i  during the 
crash duration; and C(T ( ))normal i  the normal cost of activity i  during the normal duration. 
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The relation between cost and time of each activity is clearly defined in Equation (4). Thus, 
it is quite convenient to get constant values, ia  and ib , which are given by:

 
2 2

C(T ( )) C(T ( ))
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crash normal

i
crash normal

i i
a

i i

−
=

−
,

 

2 2

i 2 2
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(T ( )) (T ( ))
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−
=

−
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and Equation (5) defines the lower limit and the upper limit for every activity cost. 

2.3. Maximizing project quality 

Apparently, crashing the time of a project will definitely reduce project quality (Zeng et al. 
2005, 2007). Similar the relation between cost and time of each activity, the relation between 
quality and time of each activity should be gained by fitting the original data based on sta-
tistical analysis. Most of the previous literatures mainly provided the linear model (Babu 
and Suresh 1996; Khang and Myint 1999; Tareghian and Taheri 2006, 2007). It is not an 
exception for this paper in adopting the linear model on the relation between quality and 
time. The total objective in the section is to maximize the project quality. Considering the 
quality level has a value between 0 and 1, arithmetic mean, geometric mean and the mini-
mum of the individual activity quality are often chosen as objective functions for measuring 
project quality. Babu and Suresh (1996) used the three different ways as experiments and 
concluded that the three trends observed are similar without major differences. Tareghian 
and Taheri (2006) used arithmetic mean of every activity quality as a criterion for evaluating 
project quality. Tareghian and Taheri (2007) thought that geometric mean is a good option 
because it can deal with situations where quality of individual activity is dispersed. Though 
in this paper, arithmetic mean of each activity quality is chosen as an optimized objective, 
the methodology presented will not restrict its wide applications to other assumptions. The 
choice of arithmetic mean is mainly defined according to data characteristics. Geometric 
mean is seldom affected by an extreme value, thus it is suitable for calculating the dynamic 
mean value. But arithmetic mean can reflect the effect of extreme value. The detailed models 
are shown as follows:

 1

1Max Q Q(T )
N

total i
iN =

= ∑ ,  (6)

 Or , (6)*

 Or , (6)**

 S.t. iQ(T ) (T )i i im n= + , (7)

 Q(T ( )) Q(T ) Q(T ( ))crash i normali i≤ ≤ , (8)
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where Q(T )i  is the feasible quality of activity i; Q(T ( ))crash i  the crash quality of activity i dur-
ing the crash duration; and Q(T ( ))normal i  the normal quality of activity i  during the normal 
duration. By utilizing Equation (7), im  and in  can be calculated by:
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i i
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i i
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Equation (8) defines the lower limit and the upper limit for every activity quality.

3. Pareto optimization design

The specific objective used in the paper is to optimize time-cost-quality tradeoff, which is 
formulated as a multi-objective optimization problem. To search for an optimal tradeoff 
among time, cost and quality, an improved non-dominated sorting genetic algorithm (NSGA) 
is designed for implementing the multi-objective optimization. The primary reason using 
evolutionary algorithm is its ability to find Pareto-optimal solution at each simulation run. 
Up to now, for a multi-objective optimization problem, it is quite difficult to find a single 
solution for simultaneously optimizing all objectives. The best option is to gain a large number 
of solutions lying on or near the Pareto-optimal front. The previous theories and methods 
related to the NSGA have been analyzed and discussed in details (Goldberg 1989; Fonseca 
and Fleming 1993; Srinivas and Deb 1995). Thereafter, with the ceaseless improvement in 
more useful operators, the NSGA has got better promotion, especially for the appearance of 
NSGAII advanced by Deb et al. (2002). Meanwhile, the NSGA has also gained wide varieties 
of applications to multidisciplinary aspects (Inamdar et al. 2004; Kuriakose and Shunmugam 
2005; Kumar et al. 2006). 

To find a diverse set of solutions and in converging near the reality Pareto-optimal set, 
the designed procedure with improved NSGA is explained with the following main phases: 

Phase 1 – Initialization:
1. Parameters initialization on optimization model: set the number of objectives; set the 

number of constraints if any; and set the number of independent variables.
2. Parameters initialization on project, including: set the number of activities N  in the 

whole project; input time Tcrash , cost Ccrash and quality Qcrash  for crashing an activ-
ity; input normal time Tnormal , normal cost Cnormal and normal quality Qnormal of 
every activity; define precedence relationship if any.

3. Parameters initialization on genetic algorithm: set the size of population N pop ; set 
the number of generations NGen ; set the probability of crossover operation pc ; set 
the probability of mutation pm ; and create a random parent population P(t)  (t 0)=  
of size N pop  based on the problem range and constraints if any.

Phase 2 – Forming Pareto front based on domination relation:
Time T, cost C, and quality Q  for every solution are computed in P(t) according to 

equations (1), (3) and (6). Then the population P(t) is sorted based on non-domination 
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algorithm into each front F(t) in criterion space. The detailed description can be gained 
in the study of Deb et al. (2002). Individuals in first front are given a fitness value of 1 and 
individuals in second are assigned fitness value as 2 and so on. The first front is also called 
Pareto front which will include the best solutions.

Phase 3 – Calculating crowding distance and defining partially ordered set:
When the non-dominated sort is completed, a quick sort is used for sorting the population 

based on every objective chosen. The crowding distance between two individuals in different 
fronts can then be calculated. Considering that the boundary points in a front are always 
selected, it is assigned infinite distance (Deb et al. 2002). The crowding distance of the other 
points in the sorted list except for the boundary values can be shown as: 

 

3 max min
, 1 1

1
I ( ( )) / ( )i distance i k i k k k

k
I f I f f f+ −

=
= ⋅ − ⋅ −∑ ,

where 1i kI f+ ⋅  denotes the k -th objective function value of the ( 1)i + th individual, and 
1i kI f− ⋅  the k th objective function value of the ( 1)i − th individual; max

kf  and min
kf  the 

maximum and minimum values of the k th objective function. 
After completing the crowding distance, it is formed a partially ordered set as described 

by Deb et al. (2002). Those individuals in the fronts with small serial numbers are considered 
first into the population when they are in different fronts; while the serial numbers of the 
fronts are the same, the individuals with larger crowding distance will be a priority.

Phase 4 – Genetic operation: 
Genetic algorithm (GA) is a procedure for searching the optimized objective functions 

by the principles of natural genetics and natural selection. The main operation is related to 
selection, crossover and mutation.

First, a binary tournament selection operator is used in this procedure for updating 
population P(t). The selection criterion is now based on partial ordering relation which has 
been mentioned in the context.

Then, a simulated binary crossover operator (Deb and Agrawal 1995; Beyer and Deb 
2001) is adopted for forming the population Q(t). The operation is basically based on the 
principle of a single point crossover operator on binary strings. The children solutions can 
be calculated as below:

 
,

 
,

where i,c gen  is the child solution, ,i genP the selected parent ( i 1,2= ) and genβ  a random 
variable with the distribution of the following form:

 

1
1

1
1

(2 ) 0 0.5,
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c

c

gen
u if u

u if u

η +

−
η +


 ≤ ≤β = 

 − >
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u can be obtained from a random variable with the range between 0  and 1 , and cη  the 
constant crossover distribution index. The detailed procedure can be seen from Appendix 1.

Finally a polynomial mutation operator (Deb and Agrawal 1995; Raghuwanshi and Kakde 
2004) is applied for creating the population Q (t) ′ . In this operation, the children solutions 
can be calculated as below:

 genc ( )upper lower
gen gen gen genP P P= + − δ ,

where cgen  is the child solution, genP  the selected parent who has the upper bound upper
genP

and the lower bound lower
genP , and genδ  can be obtained from a polynomial distribution, that is,

 

1
1

1
1

(2 ) 1 0 0.5,

1 (2(1 )) 0.5,

m

m

gen gen
gen

gen gen

r if r

r if r

η +

−
η +


 − ≤ ≤δ = 

 − − >

where genr  is a random number, (0,1)genr ∈ ; and mη  the constant mutation distribution 
index. The detailed can be obtained from Appendix 2.

Once end criterion is not satisfied, the iteration process with Phases 2 to 4 is kept on or 
the operation is stopped and the results needed are output. The whole repeated process has 
the ability of keeping the trend of speciation without any loss of good solutions if being found 
and the individuals will converge at an optimal area at the last generation.

Genetic algorithm does not adopt at the beginning of arithmetic until the second genera-
tion operates. The designed procedure with improved NSGA is shown in Fig. 1.

4. Illustrative examples and simulation results

In this section, the propositional technique in Section 3 and the problem description in Section 
2 are evaluated from a particular example problem. The example presented by Li et al. (1999) 
is used to illustrate the optimization approach. Considering that the quality of a project may 
be an affected factor, the example has been modified and listed in Table 1. 

The objective functions mention the three aspects stated in Equations (1), (3) and (6). The 
functions will form the criterion space {T ,C ,Q }total total total . Considering the specific problem 
itself in this study, that is, existing in a functional relationship between cost and time, and 
between quality and time, constraints can be reduced to the least. The constraints are shown 
in the referred Equations which includes N 11=  (the number of activities) in equations. The 
total 11 independent variables are relative to time constitute the decision space 1 2{T ,T , ,T }N . 
A population size of 40 is chosen with crossover probability of 0.9 and mutation probability 
of 0.1. And the crossover distribution index cη  and the mutation distribution index mη  
are set to be 10. Especially program package written in the “C” has been implemented on a 
personal computer with Intel® Atom™ CPU N270. All simulations are completed in less than 1 
minute. After the 100th generation, the Pareto optimal solutions in decision space are shown 
in Appendix 3. The 3D non-dominated Pareto optimal fronts after the 1st, 5th, 10th, 20th, 50th, 
and 100th are shown in Figures 2–6 and 7 respectively.
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From Figs 2 to 7, it can be seen that 14 Pareto optimal solutions are obtained after the 1st 
generation, 31 after the 5th generation, 32 after the 10th generation, 40 after the 20th genera-
tion, and then keep 40 invariable in the next generation. In the 1st generation, about 35% 
Pareto optimal solutions can be gained. Up to the 20th generation, the percentage of Pareto 
optimal solutions has been improved to 100%. It means with the increase in the number of 
generation, the dominated solutions are continually eliminated and replaced by better solu-
tions and the optimal speciation is formed.

Create all fronts F(t)  Calculate crowding Sort based on 
partially ordered set  

Form the 1st  generation  P(t+1) of size 
Npop, next population  P(t) = P(t+1)

Calculate time, cost, and quality for 
every solution P(t) of size Npop  

Start  

Set parameters for 
project and genetic 

operation  

Generate rando m 
solutions P(t) (t  = 0) of size 

Npop 

Create o�spring solutions Q(t) of size 
Npop by binary tournament selection 

and simulated binary crossover on P(t)  

Create o�spring solutions Q ’(t)  of size 
Npop by polynomial mutation on Q(t)  

Create a combined population 
 

R(t) = P(t)UQ’(t)of size N2*pop  

Calculate time, cost, and quality for 
every solution R(t) of size N2*pop 

Create all fronts F(t)  

Calculate crowding distance  

Sort based on partially ordered set  

Form next generation P(t+1) of size Npop 

Last
generation

NGen? 

Next generation t  = t+1, next 
population P(t)  = P(t+1) 

End 

No

Yes 

Fig. 1. A Pareto optimization framework for time-cost-quality problems
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From Figure 7, it is shown how the distribution for 40 non-dominated points in the 
criterion space after the 100th generation will be formed. In Appendix 3, corresponding to 
these points of the criterion space shown in Figure 7, there are 40 efficient points in decision 
space which shows how to rationally arrange the time of every activity.

Table 1. Example of time-cost-quality data from a project

Activity ( )i
Crash Point Normal Point

T( )i C( )i Q( )i T( )i C( )i Q( )i

1. Substructure 30 6752.10 0.9 60 6432.20 1

2. Superstructure 300 4197.00 0.7 450 2842.00 1

3. Carpenter joinery 12 2358.18 0.8 30 2335.95 1

4. Window glazing, metal works 36 10538.24 0.8 66 10398.44 1

5. Tiling 39 15716.85 0.7 69 15701.35 1

6. Painting 39 1971.42 0.7 69 1964.82 1

7. Plumbing and drainage 60 6831.20 0.3 102 6776.74 1

8. Electrical installations 9 11637.42 0.75 36 11625.70 1

9. Lift 15 6746.85 0.4 42 6744.78 1

10. Fire service installation 18 1091.32 0.5 45 1090.29 1

11. Preliminaries 18 8789.79 0.9 42 8782.17 1

Fig. 2. 3D Pareto optimal front after the 1st generation
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In this paper, solving the existing problems is based on the assumption of nothing in 
particular preference on time, cost and quality. In real life for making decision, it is usually 
demanded to choose the definite solution for a specified problem. Thus, three assumptions 
on stakeholders’ preferences will be demonstrated for providing an optimal decision. Table 2 
shows Pareto optimal solutions sorted according to three different preferences. 

Fig. 3. 3D Pareto optimal front after the 5th generation

Fig. 4. 3D Pareto optimal front after the 10th generation
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From Table 2, it is revealed that if time or quality is much more worth of concern, the so-
lution 2S  is preferred, the corresponding solution (see Appendix 3) is assigning the duration 
31.42, 300.13, 13.25, 36.08, 39.01, 39.06, 60.14, 9.63, 15.29, 18.03 and 18.07 for activities A1, 

Fig. 5. 3D Pareto optimal front after the 20th generation

Fig. 6. 3D Pareto optimal front after the 50th generation
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Fig. 7. 3D Pareto optimal front after the 100th generation

Table 2. Pareto optimal solutions sorted according to preferences

Time Cost Quality

S2 S1 S2
S18 S13 S18
S8 S16 S8

S11 S20 S11
S17 S22 S17
S38 S31 S38
S30 S36 S30
S29 S21 S12
S12 S10 S19
S7 S4 S29

S19 S9 S40
S40 S5 S7
S25 S6 S23
S33 S39 S14
S35 S37 S3
S23 S27 S35
S15 S32 S15
S3 S28 S25

S14 S34 S33
S24 S24 S26
S26 S26 S24
S28 S14 S32
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A2, A3, A4, A5, A6, A7, A8, A9, A10 and A11 respectively; if cost is quite important for the 
stakeholders, 1S  is a good option, the corresponding solution (see Appendix 3) is assigning 
the duration 59.99, 449.99, 28.93, 65.83, 47.86, 48.32, 96.47, 9.00, 15.62, 18.07 and 18.09 for 
activities A1, A2, A3, A4, A5, A6, A7, A8, A9, A10 and A11 respectively. From the calcula-
tion results of crowding distance, it is not difficult to find that 1S  and 2S  are just boundary 
points with infinite crowding distance. Thus, once the stakeholders’ preference is explicit, 
the solution points are often found on the border. In fact, Table 2 supplies a decision scheme 
among the tradeoff on time, cost and quality. According to the illustrative sample, the deci-
sion schemes on preference of time and quality are almost the same, this does not mean that 
will be the same for all samples. 

5. Conclusion

Speeding up a project’s duration will definitely increase the cost and decrease the quality. 
In this paper, a suggestion was provided that time, cost and quality should be taken into a 
whole consideration. To solve time-cost-quality tradeoff problems in construction, a Pareto 
multi-objective optimization approach was developed. A series of Pareto optimal solutions 
was gained from the approach. It was showed no difference if no preferences on time, cost 
and quality for the stakeholders are selected. If the stakeholders have definite preference on 
time, cost and quality, it can quickly make decision according to the sorted specific factors 
from the approach. It was noted that the stakeholders can provide guidelines on how to ar-
range time, cost and quality of every activity in the project. On the other hand, because of 

Time Cost Quality

S34 S3 S28
S32 S15 S34
S27 S23 S27
S37 S35 S37
S39 S33 S39
S6 S25 S6
S5 S40 S5
S9 S19 S9
S4 S7 S4

S10 S12 S10
S21 S29 S21
S31 S30 S31
S36 S38 S36
S22 S17 S22
S20 S11 S20
S16 S8 S16
S13 S18 S13
S1 S2 S1

The end of Table 2
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the wide popularity in using computers, the whole solution procedures can expediently be 
integrated to some project management or virtual construction softwares. Visualization in 
making decision can also be realized by designing user-interface.
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Appendix 1

/* Procedure for real variable simulated binary crossover */
//pc is crossover probability
//eps is an extreme small positive number
// parent is designated as the parent population
//child is specified as child population
// P[j] means the j-th decision variable
//ymin means the minimum in decision variable P[j]
//ymax means the maximum in decision variable P[j]

generate a random number with the range between 0 and 1: rand_1
if (rand_1 <= pc)
{
   for each i, i is the serial number of decision variables

            if (rand_1<=0.5)
            {
                if (fabs(parent1.P[i]-parent2.P[i]) > eps)
                {
                    if (parent1.P[i] < parent2.P[i]) 
                    {
                        y1 = parent1.P[i];
                        y2 = parent2.P[i];
                    }
                    else
                    {
                        y1 = parent2.P[i];
                        y2 = parent1.P[i];
                    }
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      generate a random number with the range between 0 and 1: rand_2
                    if (rand _2<= 0.5)
                    {
                      value=2*rand_2; 
                      betagen = pow (value,(1.0/(eta_c+1.0)));

c1 = 0.5*((y1+y2)-betagen*(y2-y1));
c2 = 0.5*((y1+y2)+betagen*(y2-y1));

                    }
                    else
                    {

value=1/(2-2*rand_2); 
                      betagen = pow (value,(1.0/(eta_c+1.0)));

c1 = 0.5*((y1+y2)-betagen*(y2-y1));
c2 = 0.5*((y1+y2)+betagen*(y2-y1));

                    }
                    
                    if (c1<ymin) then c1=ymin;
                    if (c2<ymin) then c2=ymin;
                    if (c1>ymax) then c1=ymax;
                    if (c2>ymax) then c2=ymax;

generate a random number with the range between 0 and 1: rand_3
                    if (rand_3<=0.5)
                    {
                        child1.C[i] = c2;
                        child2.C[i] = c1;
                    }
                    else
                    {
                        child1.C[i] = c1;
                        child2.C[i] = c2;
                    }
                }
                else
                {
                    child1.C[i] = parent1.P[i];
                    child2.C[i] = parent2.P[i];
                }
            }
            else
            {
                child1.C[i] = parent1.P[i];
                child2.C[i] = parent2.P[i];
            }
        end for i 
   }
    else



 39Technological and Economic Development of Economy, 2011, 17(1): 22–41

    {
        for each i=0, i is the serial number of the decision variables
        {
            child1.C[i] = parent1.P[i];
            child2.C[i] = parent2.P[i];
        } end for i
    }   

Appendix 2

/* Procedure for real polynomial mutation of an individual */
//pm is mutation probability
// parent is designated as the parent population
// P[j] means the j-th decision variable
// ymin means the minimum in decision variables P[j] 
// ymax means the maximum in decision variables P[j]

generate a random number with the range between 0 and 1: rand_1
for each j, j is the serial number of decision variables

        if (rand_1 <= pm)    
        {
            y = parent.P[j];
            mut_pow = 1.0/(eta_m+1.0);

generate a random number with the range between 0 and 1: rand_2
            if (rand_2 <= 0.5)
            {
                val = 2.0*rand_2;
                deltagen = pow(val,mut_pow) – 1.0;
            }
            else
            {
                val =1/(2.0*(1.0-rand));
                deltagen = 1.0 – (pow(val,mut_pow));
            }
            y = y + deltagen*(ymax-ymin);
            if (y<ymin) then y = ymin
            if (y>ymax) then y = ymax
            parent.P[j] = y;
        } end for j
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Appendix 3

The following table shows Pareto optimal solutions in decision space {T1, T1,..., TN} after 
100th generation.

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11
S1 59.99 449.99 28.93 65.83 47.86 48.32 96.47 9.00 15.62 18.07 18.09 
S2 31.42 300.13 13.25 36.08 39.01 39.06 60.14 9.63 15.29 18.03 18.07 
S3 34.03 432.58 13.20 36.02 39.12 39.42 60.63 9.91 15.02 18.94 19.28 
S4 59.94 449.91 29.93 65.93 45.54 41.87 61.39 9.20 15.62 18.09 18.09 
S5 59.18 450.00 12.98 65.99 39.09 39.01 70.15 9.01 15.00 18.01 19.36 
S6 59.99 449.99 13.03 64.58 39.67 39.00 61.38 9.20 15.01 18.08 18.10 
S7 59.51 323.01 13.33 36.20 39.14 39.38 65.87 9.93 15.06 19.23 19.52 
S8 34.03 316.91 13.25 37.07 39.04 39.01 60.63 9.91 15.16 18.06 18.07 
S9 59.94 449.92 29.67 65.99 39.07 39.30 61.40 9.20 15.03 18.08 18.10 

S10 59.93 450.00 12.98 65.99 39.01 39.41 89.24 9.01 15.00 18.01 19.46 
S11 33.91 322.70 13.18 36.16 39.04 39.38 61.36 9.90 15.05 18.06 18.07 
S12 59.58 316.91 15.97 37.07 39.01 39.20 60.18 9.78 15.16 19.07 21.50 
S13 59.99 449.99 28.42 65.47 39.29 48.32 96.52 9.00 15.65 18.24 18.09 
S14 31.62 449.95 12.13 36.00 39.13 39.02 60.84 9.06 15.09 18.27 18.19 
S15 59.93 391.56 12.09 38.13 39.33 39.41 61.32 9.08 15.08 18.52 19.30 
S16 59.86 449.98 29.26 63.99 39.04 39.26 100.78 9.20 15.16 18.08 18.05 
S17 57.86 301.65 13.28 36.09 39.02 39.06 61.81 9.08 15.61 18.03 18.07 
S18 31.42 304.98 13.25 37.45 39.84 39.06 60.14 9.03 15.29 18.47 18.07 
S19 59.83 345.95 12.62 36.22 39.04 39.64 60.81 9.45 15.72 18.48 18.01 
S20 59.93 449.98 13.11 65.99 39.00 39.01 100.57 13.45 17.10 18.08 20.47 
S21 59.93 450.00 13.11 65.99 41.56 39.40 91.08 9.01 15.00 18.01 18.02 
S22 59.93 449.98 12.98 65.99 39.00 39.41 100.57 13.45 15.01 18.08 19.38 
S23 59.93 391.56 12.09 36.00 39.33 39.41 61.32 9.08 15.08 18.52 19.30 
S24 59.47 430.37 12.98 36.00 39.00 39.01 61.24 9.11 15.80 18.09 18.10 
S25 59.94 369.12 12.60 36.00 46.16 39.41 61.39 9.08 15.08 18.53 19.30 
S26 59.47 430.27 12.98 36.00 39.08 39.01 61.24 9.11 15.77 18.01 18.23 
S27 59.99 449.99 13.04 38.30 41.30 39.17 61.38 9.20 16.27 18.00 18.09 
S28 59.16 443.83 13.06 36.18 39.10 39.02 61.40 10.11 15.28 18.47 18.04 
S29 59.95 302.34 13.06 40.56 39.13 42.65 61.98 9.09 16.65 18.70 19.39 
S30 59.95 302.44 13.06 36.14 39.02 42.65 60.08 9.09 16.65 18.68 18.07 
S31 59.93 450.00 15.99 65.99 39.00 39.66 95.13 9.07 15.17 18.97 19.41 
S32 59.96 447.44 12.98 37.03 39.09 39.01 60.65 9.01 15.20 18.09 18.10 
S33 59.94 377.00 13.26 37.19 39.06 39.69 64.94 9.03 15.27 18.94 18.00 
S34 59.16 443.83 13.06 36.18 39.10 39.02 61.40 10.11 15.28 18.47 18.04 
S35 59.97 378.71 13.06 43.86 39.14 39.05 60.83 9.01 15.03 18.28 18.07 
S36 59.93 450.00 15.99 65.99 39.00 39.66 95.13 9.07 15.17 18.97 19.41 
S37 59.93 450.00 15.79 42.45 39.03 39.67 61.34 9.07 15.18 18.94 19.54 
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A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11
S38 58.92 300.77 13.25 36.96 39.02 39.06 61.99 9.89 15.68 18.03 18.12 
S39 59.25 446.59 13.04 62.49 39.28 39.01 61.38 9.13 15.03 18.08 18.10 
S40 59.95 349.86 13.06 40.56 39.67 39.16 61.44 9.21 15.00 18.62 18.17 

Note: A means activity, and S means solution; A1– Substructure; A2 – Superstructure; A3 – Carpenter joinery; A4 – 
Window glazing, metal works; A5 – Tiling; A6 – Painting; A7 – Plumbing and drainage; A8 – Electrical; A9 – Lift; 
A10 – Fire service installation; and A11 – Preliminaries.

PARETO DAUGIATIKSLIS OPTIMIZAVIMO METODAS KOMPROMISINEI LAIKO, 
IŠLAIDŲ IR KOKYBĖS PROBLEMAI SPRĘSTI

X. Diao, H. Li, S. Zeng, V. WY Tam, H. Guo

Santrauka. Projektų eigos skubinimas neabejotinai padidina išlaidas ir sumažina kokybę. Ankstesni 
tyrimai daugiausiai buvo susiję su projektų planavimu ir kontrole, kuriuose daugiausiai dėmesio skiriama 
išlaidų ir laiko kompromisui. Tačiau tik nedaugelyje tyrimų buvo matematiškai nagrinėjama projekto 
kokybė. Šiame straipsnyje formuluojama laiko, išlaidų ir kokybės kompromiso problema. Jai spręsti 
sukurtas kompiuterizuotas Pareto daugiatikslio optimizavimo metodas. Pareto metodas gali pagelbėti 
ieškant geriausio sprendinio netgi neturint informacijos apie suinteresuotų šalių pirmenybę laiko, išlaidų 
ir kokybės atžvilgiu. Toks metodas palengvina sprendimų priėmimo procesą.

Reikšminiai žodžiai: laikas, išlaidos ir kokybė, kompromisas, Pareto optimalumo aibė, projektų val-
dymas, genetinis algoritmas.
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