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Abstract. The linear programming technique for multidimensional analysis of preference, known 
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However, uncertainty is an indubitable property of decision making problems. In this paper, a new 
version of LINMAP-G is proposed where the decision maker’s judgments are expressed as grey 
numbers. Like original LINMAP method, the grey ideal solution and attributes weight vector is 
determined and alternatives are ranked according to their weighted distance from determined ideal 
point. Application of the proposed method is illustrated in two numerical examples.
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1. Introduction

Decision makers always seek a criterion to appraise their decisions. In this context, decision-
making methods arise when decision maker simultaneously envisages various criteria for 
evaluating his or her decisions favorite (Kuo et al. 2008). Such a problem is the subject of 
multiple criteria decision making (MCDM) methods (Zavadskas, Turskis 2011; Peng et al. 
2011; Kou et al. 2012). This class is further divided into multi objective decision making 
(MODM) and multi attribute decision making (MADM) (Climaco 1997). A formalized 
definition of MADM problems can be stated as follows.

Let we have a nonempty and finite set of decision alternatives, i.e. 1 2, , , mA A A , and there 
are a finite set of goals, attributes or criteria, i.e. 1 2, , , nC C C , according to which the desirability 
of an alternative is to be judged. The aim of MADM is to determine the optimal alternative 
with the highest degree of desirability with respect to all relevant goals (Zimmerman 1987). 
An optimal alternative in MADM problems can be defined as an alternative A* that has the 
highest value in all decision-making criteria. Usually, MADM problems do not have an op-
timal solution in practice and current methods seek an alternative with the highest degree of 
satisfaction for decision makers. In last decades, MADM techniques have a wide application 
in different areas that concern with selection.

Multi attribute decision making methods require decision makers judgments and evalu-
ations about alternatives performance regard to multiple attributes. These judgments are a 
subject of uncertainty. Indeed, decision makers do not have complete information about 
alternatives or their conditions regard to a certain attribute. Therefore, it will be so difficult 
for them to express their evaluations based on exact numbers. Hence, uncertainty contexts 
are widely applied in MADM problems.

Fuzzy set theory (FST) was developed by Zadeh (Zadeh 1965) as a generalized form of 
the classical set theory that assigns a membership degree to each element of a given set in 
a universe. FST is one of the well-known paradigms in studying systems with uncertainty. 
Bellman and Zadeh (Bellman, Zadeh 1970) have introduced the concept of decision making 
under fuzzy environment. Afterward, MADM techniques have been extended under fuzzy 
environment (Aouam et al. 2003; Yazdani et al. 2011; Xu 2004; Li, Yang 2004; Wang, Chuu 
2004; Hu et al. 2004; Antucheviciene et al. 2011; Kersuliene, Turskis 2011; Brauers et al. 2011; 
Fouladgar et al. 2011; Balezentis, Balezentis 2011).

Another paradigm of uncertainty is developed such that the crisp numbers are sub-
stituted with grey numbers (Deng 1982). Interval numbers also have a wide application 
in decision making field with TOPSIS (Chen, Tzeng 2004; Jahanshahloo et al. 2006; Lin 
et al. 2008; Zavadskas et al. 2010a; Tsaur 2011; Yue 2011), with PROMETHEE (Le Teno, 
Mareschal 1998), with ELECTRE (Vahdani et al. 2010; Özcan et al. 2011), with COPRAS-G 
(Zavadskas et al. 2010b; Hashemkhani Zolfani et al. 2011), with ARAS-G (Turskis, Zavadskas 
2010; Zavadskas et al. 2010c), with SAW-G (Zavadskas et al. 2010a), with MOORA (Stanu-
jkic et al. 2012). An interval number can be considered as a number whose exact value is 
unknown, but a range within which the value lies is known (Moore 1966).

The Linear Programming Technique for Multidimensional Analysis of Preference (LINMAP) 
was developed by Srinivasan and Schocker (Srinivasan, Shocker 1973) as one of the MADM tech-
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niques that determines the preference order among a set of alternatives by determination of 
weight vector w and positive ideal solution (PIS) vector. However, the LINMAP can only deal 
with MADM problems in crisp environments. Xia et al. (Xia et al. 2006) developed LINMAP 
method for MADM problems under fuzzy environment. Li and Sun (Li, Sun 2007) developed 
LINMAP method for MADM problems with linguistic variables and incomplete preference 
information. Li (2008) also developed this method under intuitionistic fuzzy environment. 
Considering the simplicity and clearness of grey numbers in expressing the uncertainty and 
lack of knowledge, in this paper, a LINMAP method is extended with grey data. The rest of 
the paper is organized as follows: Section 2 briefly introduces the grey numbers and their 
operations. MADM problems with grey data are expressed in section 3. The extended grey 
LINMAP model and proposed decision process is introduced in section 4. The proposed 
method is illustrated with an example in section 5. Finally, the paper is concluded in section 6.

2. Grey numbers

As stated in previous section, a grey number can be indicated as a range. In fact, a number x is 
called an grey number when its exact value is unknown and only it is known that ,x x x 

 ∈ , 
where x  is the lower bound and x  is the upper bound, such that x x . Arithmetic operations 
on interval numbers are introduced by Moore (Moore 1966). If ,x x x 

 =  and ,y y y 
 =  

are two grey numbers, then:
 ,x y x y x y 

 + = + + , (1)

 ,x y x y x y 
 − = − − , (2)

 ( ) ( )min , , , ,max , , ,x y x y xy x y xy x y xy x y xy× =  
  

, (3)

 
1 1, ,x y x x
y y

 
÷ = ×    

 
. (4)

The center, xC, and width, xW of a grey number x are defined as follows (Ishibuchi, Tanaka 
1990):
 ( )1

2Cx x x= + ,  (5)

 ( )1
2Wx x x= − .  (6)

3. Grey MADM problem definition

Consider an MADM problem that consist evaluation of a set of m alternatives regard to a set 
of n attributes. In classic form, ratings of alternatives regard to attributes are stated with crisp 
data. However in many situations, and due to uncertainty or lack of knowledge, the crispness 
of ratings is an unfair assumption. Therefore, suppose that the ratings values are expressed 
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in form of grey numbers. If 1 2, , , mA A A  are m possible alternatives and 1 2, , , nC C C  cri-
teria over which alternatives performance are measured, and ,ij ijijx x x ∈   is the rating of 
alternative iA , with respect to criterion jC , then a grey MADM problem can be concisely 
defined in a decision matrix as follows.

1C 2C  nC

1A 1111,x x   1212 ,x x    11 , nnx x  

2A 2121,x x   2222 ,x x    22 , nnx x  
    

mA 11, mmx x   22 , mmx x    , mnmnx x  

In addition, the weigh vector of criteria is defined as ( )1 2, , , nW w w w=   that jw  is the 
importance weight of criterion j. The problem here is to rank the alternative set’s elements.

4. Grey LINMAP

In this section, the proposed method of LINMAP-G (Srinivasan, Shocker 1973; Hwang, Yoon 
1981) with grey data is developed. It is noted that the LINMAP-G method seeks a positive 
ideal solution (PIS) and a weight vector w that minimizes the distance of a set of preference 
relations among alternatives that are expressed priori by decision makers from unknown PIS.

4.1. Normalization of Grey decision matrix

An intrinsic aspect of MADM problems is that different attributes have different dimensions 
that make their comparison impossible. Therefore, an initial step before the decision making 
process, is to normalize the grey decision matrix, defined in previous section. Different pro-
cedures are introduced to normalize grey decision matrix. In this paper the method proposed 
in Jahanshahloo et al. (Jahanshahloo et al. 2006) is applied by modifications. If attribute j is 
as profit (maximization) type, its normalized values are calculated as:

 
2 22 2

1 1

, .ij ij
ij m m

ij ijij ij
i i

x x
n

x x x x
= =

 
 
 

=  
 + + 
 

∑ ∑
 (7)

Otherwise, if attribute j is as cost (minimization) type, its normalized values are calcu-
lated as:

 
2 22 2

1 1

1 ,1ij ij
ij m m

ij ijij ij
i i

xx
n

x x x x
= =

 
 
 

= − − . 
 + + 
 

∑ ∑
 (8)
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4.2. Grey LINMAP modeling process

The main idea of LINMAP-G method is to determine an unknown PIS vector, like 
( )1 2, , , nPIS A x x x∗ ∗ ∗ ∗= =  , where ,i iix x x∗∗ ∗ =   

. Then, the best alternative is chosen as the 
nearest one to this PIS vector. A note here is to define the distance between two grey vectors.

If ( )1 2, , ,i i i inA x x x=   and ( )1 2, , , nA x x x∗ ∗ ∗ ∗=   are two grey vectors, and ( )1 2, , , nW w w w=   
is a weight vector, the weighted grey numbers Euclidean distance is defined as follows:

 ( ) ( )
2 2

1

n

i j ij jij j
j

d w x x x x∗ ∗

=

 
= − + − . 

 
∑  (9)

Now, the variable 2
i is d=  is defined. Suppose that decision maker specified an order 

relations set between alternatives as Ω , where each ( ),k l ∈Ω  means that decision maker 
preferred alternative kA  to alternative lA .

For a given PIS and weight vector w, alternative kA  is closer to PIS than alternative lA  , 
if k ls s≤ . In this case, the ranking obtained by (w, PIS) is consistent with decision maker’s 
preference. Otherwise, if k ls s  then the ranking obtained by (w, PIS) is inconsistent with 
decision maker’s preference.

The inconsistency between alternatives kA  and lA  ranking based on ks  and ls  with 
preference relations that are determined by decision maker is measured by an inconsistency 
index ( )l ks s −

− :

 ( ) 0
k l k l

l k
k l

s s if s s
s s

if s s
− −− = . ≤



 (10)

In fact, the alternatives kA  and lA  ranking is consistent with decision maker’s prefer-
ences if k ls s≤  and ( )l ks s −

−  will be equal to zero. Otherwise, if k ls s  the rankings are not 
consistent and their inconsistency will be equal to ( )l k k ls s s s−

− = − . Therefore:

 ( ) ( )max 0,l k k ls s s s−
− = − .  (11)

Now, the total inconsistency index is defined as follows:

 ( )
( )

( )
( ), ,

max 0,k l k l
k j k j

I s s s s−

∈Ω ∈Ω
= − = − .∑ ∑  (12)

Similarly, the consistency index is defined as follows:

 ( ) 0
l k k l

l k
k l

s s if s s
s s

if s s
+ − ≤− = .

 

 (13)

Eq. (13) can be written as follows:

 ( ) ( )max 0,l k l ks s s s+
− = − .  (14)

Therefore, total consistency index is defined as follows:

 ( )
( )

( )
( ), ,

max 0,l k l k
k l k l

C s s s s+

∈Ω ∈Ω
= − = − .∑ ∑  (15)
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Note that whether lk ss ≤  or lk ss  , the following relation is hold:

 ( ) ( )l k l k l ks s s s s s+ −
− − − = − .  (16)

The grey LINMAP-G model to determine the PIS ( )1 2, , , nA x x x∗ ∗ ∗ ∗=   and weight vector 
( )1 2, , , nW w w w=   can be constructed as follows:

 . .
1,2, ,j

Max C
S T C B h
w j n

− ≥           
≥ ε = ,

 (17)

where, h is a constant that is determined by decision maker. Also, 0ε  is a sufficiently 
small real value that guarantees that obtained weights are greater than zero. The objective of 
model (17) is to maximize the consistency index C, while it will be greater than I at least as 
pre-determined value of h.

Using Eq. (15) and (16), the model (17) is translated to:

 

( )
( )

( )
( )

,

,

max 0,

. .

1,2, ,

l k
k l

l k
k l

j

Max s s

S T s s h

w j n

∈Ω

∈Ω

−

− ≥        

≥ ε = .

∑

∑



 (18)

The variable klλ  is introduced as follows:

 ( )max 0,kl l ks sλ = − .  (19)

For each pair ( ),k l ∈Ω  the following relations are hold:

 0klλ ≥ ,  (20)
and
 kl l ks sλ ≥ − .  (21)

Substituting Eq. (19) – (21), the model (18) is transformed to the following model:

 

( )
( )

( )
( )
( )

,

,
. . 0

0 ,

0 ,
1,2, ,

kl
k l

k l
k l

k l kl

kl

j

Max

S T h s s

s s k l

k l
w j n

∈Ω

∈Ω

λ ,

+ − ≤ ,

− + λ ≥ ∀ ∈Ω,

λ ≥ ∀ ∈Ω,

≥ ε = .

∑

∑



 (22)

The final LINMAP-G model is achieved by acquisition of a corresponding relation for 
k ls s− . Using Eq. (9) and the definition of variable is , this relation is obtained as follows:

 ( ) ( ) ( ) ( )
2 22 2

1 1

n n

k l j kj j j lj jkj j lj j
j j

s s w x x x x w x x x x∗ ∗∗ ∗

= =

   
− = − + − − − + − .   

   
∑ ∑  
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The extended form of the above equation after calculation of squares and factorization 
is as follows:

 
( ) ( )

( )

2 22 2

1 1

1

2

2

n n

k l j kj lj jkj lj j lj kj
j j

n

j j lj kj
j

s s w x x x x w x x x

w x x x

∗

= =

∗

=

 − = + − − + −  

+ − .

∑ ∑

∑

 (23)

The model (22) is now transformed into the following model, which is called grey 
LINMAP-G model.

 

( )

( )
( )

( )
( )

( )
( )

( ) ( )

( ) ( )

( )

,

2 22 2

1 , 1 ,

1 ,

2 22 2

1 1

1

. . 2

2 0

2

2 0 ,

0 ,
1,2, ,

kl
k l

n n

j kj ljkj lj j lj kj
j k l j k l

n

j lj kj
j k l

n n

j kj ljkj lj j lj kj
j j

n

j lj kj kl
j

kl

jj

Max

S T h w x x x x v x x

v x x

w x x x x v x x

v x x k l

k l
v v j

∈Ω

= ∈Ω = ∈Ω

= ∈Ω

= =

=

λ ,

+ + − − + −

+ − ≤ ,

 + − − + −  

+ − + λ ≥ ∀ ∈Ω,

λ ≥ ∀ ∈Ω,

≤ =

∑

∑ ∑ ∑ ∑

∑ ∑

∑ ∑

∑



1,2, ,j

n

w j n

,

≥ ε = ,

 (24)

where,
 jj jv w x∗= ,  (25)

and
 j j jv w x∗= .  (26)

Note that constraints 1,2, ,jjv v j n≤ =   are added to guarantee the grey property of 
obtained PIS. By solving the model (24), the optimal values of jv , jv  and jw are determined. 
Then, the PIS solution ( )1 2, , , nA x x x∗ ∗ ∗ ∗=   and weight vector ( )1 2, , , nW w w w=   are deter-
mined. The optimal weights of attributes can be determined after normalization of weight 
vector W. Finally, the ranking of alternatives are specified by calculation of is  variables for 
all alternatives and ascending sort of these values.

Figure 1 shows an algorithm about the decision making process with LINMAP-G method. 
It is possible that decision maker has some viewpoints regard to weight vector, such that he/
she do not want none of the attribute’s weights be greater than other’s weights. This set of 
constraints can be added to model as , , 1,2, , ,kj k j kju w w l k j n k j≤ ≤ = ≠ .
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5. Numerical example

In this section, two numerical examples are solved by proposed LINMAP-G decision mak-
ing process.

5.1. Ranking of constructing projects

The first study is done on a relatively small instance. This example is about a company that 
wants to rank its target market sectors. The company’s market is divided into five different 
sectors A, B, C, D, and E that are evaluated based on four attributes: three attributes include 
(1) market size, (2) market growth and (3) consistency with company’s mission as profit 
attributes and a (4) structural risk attribute as cost attributes. The grey decision matrix is 
constructed as follows (see Table 1).

Table 1. Grey decision matrix (example 1)

4321
[6, 7][4, 5][3, 4][6, 7]A
[6, 7][5, 6][5, 6][4, 5]B
[3, 4][4, 5][6, 7.5][5, 7]C
[5, 6][6, 8][4, 5][7, 8]D
[7, 8][7, 9][5, 6][6, 8]E

Assume that decision makers have specified their preferences between alternatives as ( ) ( ) ( ) ( ){ }2,1 , 3,2 , 4,3 , 5,4Ω = . The first step is to normalize the decision matrix. Attributes 
1-3 are normalized based on Eq. (7) and the attribute 4 by Eq. (8). The normalized decision 
matrix is shown in Table 2.

Fig. 1. Decision making process by LIMAP-G model
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Table 2. Normalized grey decision matrix (example 1)

4321
[0.649, 0.699][0.207, 0.259][0.179, 0.239][0.295, 0.344]A
[0.598, 0.649][0.259, 0.311][0.299, 0.358][0.197, 0.246]B
[0.799, 0.849][0.207, 0.259][0.358, 0.448][0.246, 0.344]C
[0.699, 0.749][0.311, 0.414][0.299, 0.311][0.344, 0.394]D
[0.598, 649][0.362, 0.466][0.358, 0.362][0.295, 0.394]E

In the next step, the grey LINMAP-G method is developed according to Eq. (24) as fol-
lows. Assume that decision maker wants that none of the attributes weights be more than 
three times greater than the others. Note that 1h =  and 0.001ε = .

 

( )
( )

( )

21 32 34 54

1 2 3 4

2 3

1 2 3 4

1 2 3 4

1 2 3 4

1

1 0.0363 0.1285 0.2386 0.1302
2 0.1195 0.1553

2 0.0492 0.1195 0.2071 0.0502 0
0.1065 0.1285 0.0536 0.1302
2 0.098 0.119 0.052 0.05

2 0.098 0.119

Max
w w w w

v v

v v v v
w w w w

v v v v

v v

λ + λ + λ + λ
+ + + −

+ − −

+ − − − + ≤

− + + −

+ − − +

+ − −( )

( )
( )

( )

2 3 4 21

1 2 3 4

1 2 3 4

1 2 3 4 32

1 2 3 4

1 2 3 4

0.052 0.05 0
0.0799 0.1115 0.0536 0.5814

2 0.049 0.06 0.052 0.201

2 0.098 0.09 0.0521 0.201 0
0.0944 0.1829 0.1582 0.3108
2 0.098 0.119 0.104 0.1

2 0

v v
w w w w

v v v v

v v v v
w w w w
v v v v

− + + λ ≤

+ − +

+ − − + −

+ − − + − + λ ≤

− + − +

+ − + −

+ ( )

( )
( )

1 2 3 4 34

1 2 3 4

1 2 3 4

2 3 4 54

21 32 34 54

.049 0.149 0.155 0.1 0
0.0315 0.0714 0.0804 0.2705

2 0.049 0.6 0.052 0.1

2 0.06 0.052 0.1 0
3, , 1,2, , ,

, , , 0
1,2,3,4

0.001 1,2,3,4

k j

jj

j

v v v v
w w w w

v v v v

v v v
w w k j n k j

v v j

w j

− + − + λ ≤

+ + −

+ − − +

+ − − + + λ ≤

≤ = ≠

λ λ λ λ ≥
≤ =

≥ =



 
The optimal solution of the above model is as follows:

 

( ) ( )
( ) ( ) ( ) ( )( )

1 2 3 4, , , 0.35,1.05,1.05,0.35

0.299,0.299 , 0,0 , 0,3.54 , 0.713,0.713

W w w w w

V

∗

∗

= = ,

= .
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Now, the PIS A∗  can be derived as A V W∗ ∗ ∗=

 ( ) ( ) ( ) ( )( )0.854,0.854 , 0,0 , 0,3.37 , 2.037,2.037A∗ = .  

Now, the square distances is  from PIS A∗  are 1 211.813, 11.816s s=  = ,  3 411.813, 10.810s s=  =  
and 5 10.813s = . Therefore, the ranking order of alternatives are D   E   A = C   B.

5.2. Contractor ranking

This example is solved in (Jahanshahloo et al. 2006) through grey TOPSIS method. The 
problem is to rank 15 bank branches based on four financial attributes. Grey decision matrix 
is shown in Table 3. Assume that the decision maker determines his/her preferences between 
branches as follows:

 
( ) ( )( )( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )
1,2 , 3,2 1,3 3,4 , 4,5 , 6,4 , 6,7 , 8,7 ,

.
9,8 , 9,10 , 10,11 , 12,11 , 13,12 , 13,14 , 15,14

  Ω =  
  

 

Table 3. Grey decision matrix (example 2)

C1 C2 C3 C4

A1 [500.37, 961.37] [2696995, 3126798] [26364, 38254] [965.97, 6957.33]
A2 [873.7, 1775.5] [1027546, 1061260] [3791, 50308] [2285.03, 3174]
A3 [95.93, 196.39] [1145235, 1213541] [22964, 26846] [207.98, 510.93]
A4 [848.07, 1752.66] [390902, 395241] [492, 1213] [63.32, 92.3]
A5 [58.69, 120.47] [144906, 165818] [18053, 18061] [176.58, 370.81]
A6 [464.39, 955.61] [408163, 416416] [40539, 48643] [4654.71, 5882.53]
A7 [155.29, 342.89] [335070, 410427] [33797, 44933] [560.26, 2506.67]
A8 [1752.31, 3629.54] [700842, 768593] [1437, 1519] [58.89, 86.86]
A9 [244.34, 495.78] [641680, 696338] [11418, 24108] [1070.81, 2283.08]
A10 [730.27, 1417.11] [453170, 481943] [2719, 2955] [375.07, 559.85]
A11 [454.75, 931.24] [309670, 642598] [2016, 2617] [936.62, 1468.45]
A12 [303.58, 630.01] [286149, 317186] [14918, 27070] [1203.79, 4335.24]
A13 [658.81, 1345.58] [321435, 347848] [6616, 8045] [200.36, 399.8]
A14 [420.18, 860.79] [618105, 835839] [24425, 40457] [2781.24, 4555.42]
A15 [144.68, 292.15] [119948, 120208] [1494, 1749] [282.73, 471.22]

The next step according to Figure 1 is to normalize the grey decision matrix. Table 4 
shows the normalized decision matrix (while all attributes are as maximizing type, Eq. (7) 
is used here). Then, the grey model (24) is constructed and solved. In this model 1h =  and 

0.01ε =  are considered. The obtained solution is as follows:

 ( ) ( ) ( ) ( ) ( )( )0.086,0.086,0.173,0.173 , 0,0 , 0.1332,0.385 , 0,0.1 , 0,0W V∗ ∗= = . 
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Table 4. Normalized grey decision matrix (example 2)

C1 C2 C3 C4

A1 [0.0856, 0.1645] [0.5176, 0.6001] [0.1974, 0.2865] [0.0706, 0.5086]
A2 [0.1495, 0.3038] [0.1972, 0.2037] [0.0283, 0.3768] [0.1670, 0.2320]
A3 [0.0164, 0.0336] [0.2198, 0.2329] [0.1720, 0.2010] [0.0152, 0.0373]
A4 [0.1451, 0.2999] [0.0750, 0.0758] [0.0036, 0.0090] [0.0046, 0.0067]
A5 [0.0100, 0.0206] [0.0278, 0.0318] [0.1352, 0.1352] [0.0129, 0.0271]
A6 [0.0794, 0.1635] [0.0783, 0.0799] [0.3036, 0.3643] [0.3403, 0.4300]
A7 [0.0265, 0.0586] [0.0643, 0.0787] [0.2531, 0.3365] [0.0409, 0.1832]
A8 [0.2999, 0.6211] [0.1345, 0.1475] [0.0107, 0.0113] [0.0043, 0.0063]
A9 [0.0418, 0.0848] [0.1231, 0.1336] [0.0855, 0.1805] [0.0782, 0.1669]
A10 [0.1249, 0.2425] [0.0869, 0.0925] [0.0203, 0.0221] [0.0274, 0.0409]
A11 [0.0788, 0.1593] [0.0594, 0.0657] [0.0151, 0.0196] [0.0684, 0.1073]
A12 [0.0519, 0.1078] [0.0549, 0.0608] [0.1117, 0.2027] [0.0880, 0.3169]
A13 [0.1127, 0.2302] [0.0616, 0.0667] [0.0495, 0.0602] [0.0146, 0.0292]
A14 [0.0719, 0.1473] [0.1186, 0.1604] [0.1829, 0.3030] [0.2033, 0.3330]
A15 [0.0247, 0.0500] [0.0230, 0.0230] [0.0111, 0.0131] [0.0206, 0.0344]

Now, the PIS A∗  can be derived as ( ) ( ) ( ) ( )( )0,0 , 1.54,4.47 , 0.0.578 , 0,0A∗ = . Table 5 
shows the square distances and ranking of alternatives by proposed.

Table 5. Square distances and ranking of alternatives (example 2)

Si ranking
A1 1.4479 1
A2 1.7515 3
A3 1.7240 2
A4 1.9107 11
A5 1.9279 14
A6 1.9199 13
A7 1.8733 7
A8 1.8732 6
A9 1.8251 5
A10 1.8899 8
A11 1.9162 12
A12 1.9081 9.5
A13 1.9081 9.5
A14 1.8185 4
A15 1.9544 15
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6. Conclusions

Constructing project selection is an important issue, according to high risks and costs of 
mistakes. Therefore decision making based on multiple attributes eases it to prevent these 
likely problems. In construction evaluation problems, the decision maker selects some 
alternatives among different ones and it is necessary to consider different qualitative and 
quantitative criteria.

Evaluation of a set of alternatives regard to a set of quantitative or qualitative attributes 
is the main concentration of multi attribute decision making problems. In crisp MADM al-
gorithms, subjective judgments and qualitative measures are translated into crisp numbers. 
This transformation means that decision maker ignores the uncertainty and ambiguity of 
his/her thinking and believes. Therefore some frameworks are presented to handle these un-
certainties. According to uncertainty in the real world, we tried to calculate these parameters 
by uncertain data and in this paper, a new version of LINMAP method, originally presented 
in (Srinivasan, Shocker 1973), where decision maker’s judges are expressed as grey number 
is proposed. The proposed method ranks alternatives by solving a linear programming that 
determines the attributes weight vector and an ideal solution. Then, the alternatives are ranked 
regard to their distances from PIS by specified weights. Application of the developed method 
is shown in two constructing examples that one of them was about ranking a set of various 
constructing projects for a developer company and another example was about ranking a 
set of constructing contractors. This suggests that the proposed method can be applied in 
different multi attribute decision making problems which contain uncertainty and ill-defined 
data and decision maker has not determined attributes weights priori.
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