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Abstract. Many real-world problems are complex and/or related to the manifestation of some form 

of uncertainty and/or prediction. Therefore the use of extended MCDM methods is more appropri-

ate than the use of the other classic decision making methods. These methods are improved by the 

use of a form of fuzzy or interval grey numbers.

In the field of operational research, during the previous period, numerous MCDM methods were 

formed, but one newly proposed, the MOORA method, is very specific and yet has no extension.

Therefore, in this paper we combine concept of interval grey numbers and MOORA method in 

order to propose extended MOORA method which will be more appropriate to solve many complex 

real-world problems.
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1. Introduction

Decision-making is the process of finding the best option from all of the feasible alternatives 

(Jahanshahloo et al. 2006, 2009; Liu 2009). In many cases finding, or more precisely deter-

mination, of the best option, is based on the impacts of multiple, often conflicting, criteria, 

which is why this decision-making type is called Multi-Criteria Decision Making (MCDM).

During the second half of the 20th century MCDM was one of the fastest growing areas 

of operational research and as a result many MCDM methods have been proposed. There are 
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many ways in which the classification of MCDM methods can be done, but, according to the 

useful classification proposed by many authors, the MCDM methods are classified into two 

main categories: Multi-Objective Decision Making (MODM) methods and Multi-Attribute 

Decision Making (MADM) methods.

Generally speaking, it can be said that MADM selects the best alternative among a finite 

number of choices, unlike MODM where the best alternative is designed with multiple 

objectives based on continuous decision variables subject to constraints (Bernroider, Stix 

2007), but often the terms MADM, MCDM, and MODM are mixed up or used with the 

same meaning and therefore the term criteria can be used to denote both objectives and 

attributes (Ganoulis 2003).

From many of proposed MCDM methods we shall state some of the most prominent, 

such as: Simple Additive Weighting (SAW) method (MacCrimon 1968), Analytic Hierarchy 

Process (AHP) method (Saaty 1980), Technique for Ordering Preference by Similarity to 

Ideal Solution (TOPSIS) method (Hwang, Yoon 1981), Preference Ranking Organisation 

Method for Enrichment Evaluations (PROMETHEE) method (Brans, Vincke 1985) and 

ELimination and Choice Expressing REality (ELECTRE) method (Roy 1991). An overview 

of these methods is presented in Hwang and Yoon (1981), Yoon and Hwang (1995) and 

Triantaphyllou and Lin (1996).

Besides the above mentioned methods in the literature some recent MCDM methods are 

often cited. For example, COmplex PRoportional ASsessment (COPRAS) method (Zavadskas 

et al. 1994, 2009a, b; Kaklauskas et al. 2010), VIKOR (VIsekriterijumska optimizacija i KOm-

promisno Resenje in Serbian, means Multicriteria Optimization and Compromise Solution) 

method (Opricovic 1998), Additive Ratio Assessment (ARAS) method (Zavadskas, Turskis 

2010; Zavadskas et al. 2010a; Turskis, Zavadskas 2010), Multi-Objective Optimization on the 

basis of Ratio Analysis (MOORA) method (Brauers, Zavadskas 2006) and Multi-Objective 

Optimization by Ratio Analysis plus Full Multiplicative Form (MULTIMOORA) method 

(Brauers, Zavadskas 2010).

These MCDM methods have been used to solve a variety of problems in different fields 

which are also published in a numerous of scientific journals. For example, the COPRAS 

method is successfully applied for defining the utility and market value of a real estate (Kak-

lauskas et al. 2007) and selecting apartment blocks maintenance contractors (Zavadskas et al. 

2009b), ARAS method is used to evaluate microclimate in office (Zavadskas, Turskis 2010).

Although the MOORA is a newly proposed method, it has been applied to solve many 

economic, managerial and construction problems. Chakraborty (2010) uses the MOORA 

method to solve different decision making problems in the real-time manufacturing envi-

ronment. Kracka et al. (2010) applies the MOORA method in construction in order to solve 

problems related to energy loss in heating buildings. The aim of his research is to create a 

technique for the selection of external walls and windows of buildings. In the mentioned 

field Brauers and Zavadskas (Brauers, Zavadskas 2009; Brauers et al. 2008b) use the MOORA 

method for evaluating contractors in the facilities sector. The MOORA method has also been 

successfully used for determining the best road design alternative (Brauers et al. 2008a).

The use of the MOORA method in the economy is proposed by Brauers and Zavadskas 

(2010, 2008) and Brauers and Ginevicius (2010, 2009). For example, Brauers and Zavadskas 
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(2010) use the MOORA method for project management in a transaction economy, and 

Brauers and Ginevicius (2009) use the MOORA method to define the economic policy for 

balanced regional development in Lithuania.

In the above mentioned MCDM methods the responses of objectives and their signifi-

cances are presented using the exact (crisp) values, and such methods are called classical, 

or ordinary, MCDM methods. However, in many real-world decision making problems 

the responses of objectives and/or their significances cannot be determined precisely. The 

inability to determine the exact values increases with problems that involve certain forms 

of predictions. This type of problems is often present in decision-making in economics and 

management, for example in the cases of financial and economic analysis for new investment.

For such type of problems, which are characterized by uncertainty and imprecision, the 

use of values which are expressed in the form of intervals instead of exact (crisp) values can 

be much more appropriate.

Deng (1982) proposed a grey system theory to study uncertain systems, and also introduces 

the concept of interval grey numbers. Grey system theory provides an efficient approach to 

solve problems with significant uncertainty, and therefore has been successfully applied in 

many fields for analysis, modeling and forecasting. For example Wu and Chang (2003) use 

Grey analysis for forecasting environmental cost allocations; Du and Sheen (2005) use Gray 

system theory for forming grey prediction model; Karmakar and Mujumdar (2006) develop 

grey fuzzy optimization model for water quality management of river system; and Haq and 

Kannan (2007) apply grey system theory for vendor selection in supply chain management.

Many classical MCDM methods are also extended for the use of interval grey numbers 

because these extensions allow the use of extended MCDM methods to solve far more 

problems. Some proposed extensions of classical MCDM methods are: Grey TOPSIS (Chen, 

Tzeng 2004; Lin et al. 2008), Grey AHP (Li et al. 2010), COPRAS-G (Zavadskas et al. 2008) 

and SAW-G (Zavadskas et al. 2010b; Medineckiene et al. 2010; Turskis, Zavadskas 2010).

In order to ensure the prerequisites that are necessary for the use of MOORA method 

with interval grey numbers in this paper we propose an extension of the MOORA method.

The remaining part of the paper is organized as follows: In section 2 some basic elements 

of the Grey system theory are presented. In section 3 original MOORA method is presented, 

and in subsection 3.4 the comparison of the MOORA method and some significant MCDM 

methods is given. In section 4 an extension of the MOORA adopted for the use of interval 

grey numbers is presented. In section 5 three numerical examples borrowed from literature are 

considered in order to verify the proposed approach. Finally, section 6 presents conclusions.

2. Basics of Grey system theory

The Grey systems theory is an effective methodology that can be used to solve uncertain 

problems with partially known information. The basic concept of grey system theory is that 

all information can be classified into three categories that are labeled with corresponding 

colors: known information is white, unknown information is black, and the uncertainty 

information is grey.

The following definitions are the basic related to Grey systems theory, taken from Deng 

(1985, 1989, 1992), Liu et al. (1999) and Liu and Lin (1998, 2006).
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A grey number, denoted as x , is such a number whose exact value is unknown, but a 

range within which the value lies is known. There are several types of grey numbers such as: 

grey numbers with only upper limits, grey numbers with only lower limits, black and white 

numbers and so on, but we will focus below on interval grey numbers.

A grey number with known upper x , and lower x , bounds but unknown distribution 

information for x is called interval grey number (Deng 1989):

 ]|[],[ xxxxxxxx . (1)

The degree of greyness of an interval number is determined by distance between its 

bounds. When upper and lower bounds are equal, xx , interval grey number becomes 

a white number, i.e. deterministic number. Otherwise, when distance between bounds in-

creases and bounds tend to infinity, x  and x , interval grey number becomes 

a black number.

x x

xx =

−∞→x +∞→x

interval grey number

white number

black number

Fig. 1. White, black and interval grey numbers

Basic operations of interval numbers. Let 1 11[ ,   ]x x x  and 2 22[ ,   ]x x x be two 

interval grey numbers. The basic operations of grey numbers 1x  and 2x  are defined as 

follows (Deng 1992; Liu, Lin 2006):

 1 2 1 21 2[ ,   ]x x x x x x  addition; (2)

 1 2 2 11 2[ ,   ]x x x x x x  subtraction; (3)

 1 2 1 21 2[ ,   ]x x x x x x  multiplication; and  (4)

 1 2 11
22

1 1
[ ,   ] [ ,   ]x x x x

x x
division. (5)

Whitened value. The whitened value of an interval grey number, x , is a deterministic 

number with its value lying between the upper and lower bounds of interval x . For a given 

interval grey number [ , ]x x x  the whitened value ( )x  can be determined as follows (Liu, 

Lin 2006):

 ( ) (1 )x x x , (6)

with as whitening coefficient and [0,1] . Because of its similarity with a popular 

function formula (6) is often shown in the following form:

 ( ) (1 )x x x . (7)
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For 0.5  formula (7) gets the following form:

 ( 0.5)

1
( )

2
x x x . (8)

Signed distance. Let 1 11[ , ]x x x  and 2 22[ , ]x x x  be two positive interval grey 

numbers. Then, the distance between 1x  and 2x can be calculated as signed difference 

between its centers (Eberly 2007), as is shown below:

 1 21 2
1 2 1 21 2

1
( , ) [( ) ( )]

2 2 2

x x x x
d x x x x x x . (9)

3. The MOORA method

Multi-Objective Optimization by Ratio Analysis (MOORA) method is introduced by Brauers 

and Zavadskas (2006) on the basis of previous researches (Brauers 2004a, 2004b).

The method starts with a matrix of responses of different alternatives on different objectives:

 [ ]ij m nX x , (10)

with: x
ij
 as the response of alternative j on objective or attribute i; i = 1, 2, ..., n as the objec-

tives or the attributes; and j = 1, 2, ..., m as the alternatives.

The MOORA method consists of two parts: the Ratio system and the Reference point 

approach (Brauers, Zavadskas 2009).

3.1. The Ratio system approach of the MOORA method

Brauers and Zavadskas (2006) prove that the most robust choice for denominator is the square 

root of the sum of squares of each alternative per objective, and therefore the use of vector 

normalization method is recommended in order to normalize responses of alternatives. As 

a result, the following formula proposed by Van Delft and Nijkamp (1977) is used:

 *

2

1

ij
ij

m

ij
j

x
x

x

, (11)

with: x
ij
 as response of alternative j on objective i; j = 1,2, ..., m; m the number of alterna-

tives; i = 1,2, … n; n the number of objectives; *
ijx as normalized response of alternative j on 

objective i; and * [0, 1]ijx .

For optimization based on the Ratio system approach of MOORA method, normalized 

responses are added in case of maximization and subtracted in case of minimization, which 

can be expressed by the following formula:

 * * *

1 1

g i n

j ij ij
i i g

y x x , (12)
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with: *
ijx as normalized response of alternative j on objective i; i = 1, 2, ..., g as the objectives 

to be maximized; i = g + 1, g + 2, ..., n as the objectives to be minimized; j = 1, 2, ..., m as the 

alternatives; and *
jy  as the overall ranking index of alternative j, * [-1, 1]jy .

After that, the optimal alternative based on the ratio system part *
RSA  can be determined 

using the following formula:

 * * maxRS j j
j

A a y . (13)

3.2. The Reference point approach of the MOORA method

The Reference point approach of the MOORA method is based on the Ratio system and starts 

from already normalized responses of alternatives, obtained by formula (11). 

After considering the most important reference point metrics, Brauers and Zavadskas 

(2006, 2009), Brauers et al. (2008a) and Brauers (2008) emphasize that the min-max metric 

is the best choice among all of them. Therefore, for optimization based on the reference point 

approach Brauers and Zavadskas (2006) proposed the following formula:

 *min max i ij
j i

r x , (14)

with: r
i
 as i-th coordinate of the reference point; *

ijx  as the normalized response of alternative 

j on objective i; i = 1, 2, ..., n as the objectives; and j = 1, 2, ..., m as the alternatives. 

For further simpler presentations, we will mark distance from an alternative to the refer-

ence point with d and therefore formula (14) gets the following form: 

 min max ij
j i

d , (15)

where: 

 
*

ij i ijd r x ; and (16)

 

*

*

max for objectives to be maximized

min for objectives to be minimized

ij
j

i
ij

j

x

r
x

 (17)

with: *
ijx  as the normalized response of alternative j on objective i; r

i
 as i-th coordinate of the 

reference point; ijd as unsigned distance of alternative j to the i-th coordinate of reference 

point; i = 1, 2, ..., n as the objectives; and j = 1, 2, ..., m as the alternatives. 

Based on the Reference point approach of the MOORA method, the optimal alternative 
*
RPA  can be determined using the following formula:

 * min maxRP j ij
j i

A a d . (18)
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3.3. The importance given to objectives

When solving a real-world problems using MCDM methods, objectives do not always have 

the same importance, i.e. some objectives are more important than the others. In order to 

give more importance to an objective, it could be multiplied with a Significance Coefficient 

(Brauers, Zavadskas 2009). Importance given to objectives has influence on Ratio system 

and Reference point approach of the MOORA method. 

In the Ratio system approach importance given to objectives is included by modifying 

the formula (12) which gets the following form: 

 * * *

1 1

g i n

j i ij i ij
i i g

y s x s x , (19)

with: is as significance coefficient of objective i; i = 1, 2, ..., g as the objectives to be maximized; 

i = g+1, g+2, ..., n as the objectives to be minimized; j = 1, 2, ..., m as the alternatives; and *
jy  

as the overall ranking index of alternative j  with respect to all objectives with significance 

coefficients, * [-1, 1]jy .

After that, the formula (13) still remains to determine the most appropriate alternative 

based on Ratio system approach of the MOORA method.

As the most effective way to include importance given to objectives into Reference point 

approach of the MOORA method, we propose to adopt formula (16), which after adoption 

gets the following form:

 *
ij i i ijd s r x , (20)

with: is as significance coefficient of objective i; *
ijx  as the normalized response of alterna-

tive j on objective i; r
i
 as i-th coordinate of the reference point; ijd as distance of alternative 

j to the i-th coordinate of reference point; i = 1, 2, ..., n as the objectives; and j = 1, 2, ..., m 

as the alternatives. 

After that, the formula (18) still remains without changes for determining the most appro-

priate alternative based on the Reference point approach of the MOORA method.

3.4. Comparison of the MOORA and some prominent MCDM methods 

Researches in the field of MCDM are endless and searching for the best method is still ac-

tual. Therefore, in this subsection, after quick review of the most important characteristic 

of some prominent MCDM methods, we made comparison of the MOORA method and 

considered methods. 

SAW method. The SAW method is probably the simplest, best known and earlier often 

used MCDM method. Its basic principles are discussed in Churchman and Ackoff (1954) 

and Triantaphyllou and Lin (1996).

The basic idea of SAW method is that the overall ranking index for each alternative is 

calculated as the sum of products of its responses and corresponding significance coefficient 

of objectives, as shown in the following formula:

 *
1

 
n

j ij ii
S x s , (21)
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with: *
ijx as a normalized response of alternative j on objective i; is  as significance coefficient 

of objective i; i = 1,2, … n as the objectives; j = 1,2, ..., m as the alternatives; and jS  as overall 

ranking index of alternative j. 

On the basis of jS , the best alternative is determined using the following formula:

 * maxSAW j j
j

A a S . (22)

The SAW method was used with different normalization procedures. Linear scale trans-

formation - max method is the most frequently used normalization, but there are also other 

approaches. For example Ginevicius presented the use of SAW method with linear scale 

transformation - sum method (Ginevicius 2008; Ginevicius, Podvezko 2001, 2006).

In the aggregating function used by the SAW method there is no difference between ob-

jectives to be maximized and objectives to be minimized. Therefore, during normalization, 

the values of objectives to be minimized also must be transformed into the corresponding 

values of objectives to be maximized. The need for such type of transformations was affected 

with the formation of numerous normalization procedures and as a result of this still actual 

question appeared: Which normalization procedure allows to find the best ranking order 

of alternatives?

TOPSIS method. The TOPSIS method is one of the most widely used multi-criteria 

method. The basic principle of TOPSIS method is that the best alternative should have the 

shortest distance from the (positive) ideal solution (PIS) and the farthest distance from the 

negative-ideal solution (NIS). A relative distance of each alternative from an ideal one is 

obtained as:

 j
j

j j

d
C

d d
, (23)

with: jd and jd  are separation measures of alternative j from the ideal and negative-ideal 

solution, respectively; jC  as relative distance of alternative j to the ideal solution, [0, 1]jC ; 

and j = 1,2, ..., m as the alternatives. After determining the relative distance for each alterna-

tive the best alternative is determined by using the following formula:

 * maxTPS j j
j

A a C . (24)

In the TOPSIS method, the separation measures of each alternative from the PIS and from 

the NIS are computed using following formulas:

 
0.5

* 2
1
( )

n
j ij i ii

d x s r ; and (25)

 
0.5

* 2
1
( )

n
j ij i ii

d x s r
, (26)
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where: 

 

*

*

max

min

i ij i
j

i ij i
j

r x s

r x s
 for objectives to be maximized; and  (27)

 

*

*

min

max

i ij i
j

i ij i
j

r x s

r x s
 for objectives to be minimized,  (28)

with: *
ijx as normalized response of alternative j on objective i; is  as significance coefficient of 

objective i; ir  and ir as i-th coordinate of PIS and NIS, respectively; jd and jd as separation 

measures of alternative j from the PIS and NIS, respectively; i = 1,2, … n as the objectives; 

and j = 1,2, ..., m as the alternatives. 

In the ordinary TOPSIS method vector normalization procedure is used and during per-

forming normalization process there are no need to transform objectives to be minimized 

into objectives to be maximized. In many extended variants of the TOPSIS method, using 

fuzzy or interval gray numbers, vector normalization procedure is often replaced by a simpler 

normalization procedure, usually with linear scale transformation - max method (Wang, 

Elhag 2006), but there are also some other approaches (Yang, Hung 2007). 

In the literature, these are also cases where, in addition to replacement of normalization 

procedure, transformation of objectives to be minimized into objectives to be maximized 

is also done. This modification is done in order to provide easier determination of PIS and 

NIS and does not represent a significant modification which has influence to rank order of 

alternatives.

VIKOR method. The VIKOR method is based on the idea of ideal and compromise solution 

and the overall ranking index for each alternative is calculated using the following formula:

 
* *

* *

( ) ( )
(1 )

( ) ( )

j j
j

S S R R
Q v v

S S R R
, (29)

where: * min j
j

S S ; max j
j

S S ; * min j
j

R R ; max j
j

R R , (30)

with: jQ as overall ranking index of alternative j; v  as significance of the strategy of the ma-

jority of criteria (objectives) whose value is usually set to be 0.5 ; jS  and jR  as the average 

and the worst (reagent) group score for “the majority of criteria” of alternative j, respectively; 
*S and *R  as a maximum of average and worst group scores, respectively; and S and R  

as a minimum of average and worst group scores, respectively.

After determining overall ranking index for each alternative, the alternative with smallest 

overall ranking index has higher priority (rank) and is the most acceptable alternative, as 

shown in the following formula: 

 * minVKR j j
j

A a Q . (31)

339Technological and Economic Development of Economy, 2012, 18(2): 331–363



Before explaining the meaning of S and R  we consider that development of the VIKOR 

method started with the following form of pL metric:

 
1

, 1
[ ( ) ( )]

i

p
n p

p j i i ij ii
L s x x x x , (32)

with1: ijx as response of alternative j on objective i; ix  as the most preferable and ix  the 

worst response of all alternatives on objective i; is  as significance coefficient of objective i; 

p  as metric,1 p ; i = 1,2, … n as the objectives; and j = 1,2, ..., m as the alternatives. 

The VIKOR method uses two characteristic metrics to formulate ranking measure, 1p  
and p , for which the formula  gets the following s eci c forms

 
1

( ) ( )
n

j i i ij i ii
S s x x x x ; for 1p , and  (33)

 max  [ ( ) ( )]j i i ij i i
i

R s x x x x ; for p ,  (34)

where:

 

max

min

i ij
j

i ij
j

x x

x x
 for objectives to be maximized; and  (35)

 

min

max

i ij
j

i ij
j

x x

x x
 for objectives to be minimized, (36)

with: ijx as response of alternative j on objective i; ix  as the most preferable and ix  the worst 

response of all alternatives on objective i; is  as significance coefficient of objective i; p  as 

metric; jS  and jR  as the average and the worst group score of alternative j.

The VIKOR method is similar to the TOPSIS method but there are some significant 

differences that reflect themselves in the normalization and aggregation phases, i.e. way of 

determining the overall ranking index. As previously stated, the TOPSIS method uses Vector 

normalization while the VIKOR method uses linear scale transformation - max min method. 

However, the main difference appears in the aggregation approaches. 

The TOPSIS method introduces the ranking index in formula (23), including the dis-

tances from the ideal point and from the negative-ideal point. These distances in TOPSIS are 

simply summed in formula (23), without considering their relative importance (Opricovic, 

Tzeng 2004).

The VIKOR method introduces an aggregating function representing the distance from 

the ideal solution. This ranking index is an aggregation of all criteria (objectives), the relative 

importance of the criteria (objectives) and a balance between total and individual satisfaction 

(Opricovic, Tzeng 2004).

1 Some labels used in the formulas proposed by authors of the VIKOR method are changed and harmonized with 

labels that are used in previously discussed methods and according to Ginevicius (2008). 
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COPRAS method. In the COPRAS method the priority order of compared alternatives 

is determined on the basis of their relative weights. The relative weight jQ  of alternative j is 

calculated by using the following formula:

 
min 1

min1
( / )

m
jj

j j m
j jj

S S
Q S

S S S
, (37)

where: *
1

g
j i iji

S s x ; *
1

n
j i iji g

S s x ; min min j
j

S S , (38)

with2: jS and jS  as sums of weighted normalized responses of alternative j for objectives 

to be maximized and objectives to be minimized, respectively; is as significance coefficient 

of objective i; *
ijx as normalized response of alternative j on objective i; 1,  2, ,i g  as the 

objectives to be maximized; 1,  g 2, ,i g n  as the objectives to be minimized; and 

j = 1,2, ..., m as the alternatives. After determining the relative weight for each alternative, 

the best alternative is determined by using the following formula:

 * maxCPS j j
j

A a Q . (39)

In order to normalize responses of alternatives, COPRAS method uses a linear scale 

transformation - sum method. Aggregation procedures used in the COPRAS method does 

not require transformation of responses of alternatives for objectives to be minimized dur-

ing the normalization process. In order to determine the overall rankings index, weighted 

normalized ratings of objectives to be maximized are summed while impact of objectives to 

be minimized, jR , is included using the second part of formula (37), which is:

 
min 1

min1
( / )

m
jj

j m
j jj

S S
R

S S S
. (40)

The presented procedure of COPRAS method indicates that it can be easily applied for 

evaluating the alternatives and selecting the most efficient one, with decision maker being 

completely aware of the physical meaning of the process (Ustinovichius et al. 2007). 

For more comparison of some of the mentioned MCDM methods see Podvezko (2011), 

Ginevicius (2008), Ginevicius et al. (2008) and Opricovic and Tzeng (2004).

After reviewing most important characteristics of some of the most prominent MCDM 

methods, we will make some conclusions about the complexity of ranking procedure and 

approaches applied in the MOORA method.

Complexity. Compared with the previously discussed methods, the MOORA method 

has slightly complex ranking procedure in comparison with the SAW method but is still less 

complex in comparison with TOPSIS method. Procedures used to rank the alternatives in the 

MOORA method are also simpler than procedures used in some other MCDM methods, for 

example in the VIKOR method.

2 Labels used in formulas are adopted form Kaklauskas et al. (2007) and Ginevicius (2008).
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Approach. In comparison with other MCDM methods the MOORA method is very spe-

cific because it provides two different approaches for ranking alternatives: the Ratio system 

and the Reference point approach.

Based on the characteristics of the Ratio system approach the MOORA method can be 

classified as performance-based method, similar as the SAW and COPRAS methods. In 

comparison with SAW method the MOORA method does not require transformation of 

objectives to be minimized into objectives to be maximized. As the COPRAS method, the 

MOORA method differently treats objectives to be maximized and objectives to be mini-

mized in the aggregation stage. Many other MCDM methods also have different treatment 

of these tupes of objectives, but COPRAS and MOORA methods have relatively simple to 

use aggregation procedures.

These are not all specific characteristics of the MOORA method. The MOORA method 

characterizes clear separation between objectives to be maximized and objectives to be 

minimized, which is particularly evident when the overall ranking index of each alternative 

is determined by a difference between sums of ratings obtained on the basis of objectives 

to be maximized and objectives to be minimized. Such approach for determining ranking 

index of any considered alternative is precise, logically based, relatively easy to use and un-

derstandable to decision makers.

Second approach provided by the MOORA method, the Reference point approach, clas-

sifies the MOORA method into distance-based methods, similar to the well-known TOPSIS 

method.

The distance based approach of the MOORA method is based on Minkowski distance 

metric which can be expressed using the following formula:

 
1

*
1

min | |
p

n p
j i iji

M r x ; or (41)

 
1

*
1

min | |
p

n p p
j i i iji

M s r x , (42)

when the objectives have different significances, with: ir as the i-th coordinate of the reference 

point; *
ijx as normalized response of alternative j on objective i; is as significance coefficient 

of objective i; p as a parameter that allows different spatial metrics to be used, [1, ]p ; and 

jM  as Minkowski metric for alternative j in n-dimensional space.

The parameter p can take values from the interval [1, ], but the most commonly used 

values are: 1, 2, and . The case when p = 1 is known as the “city-block” or the Manhattan 

distance. In the case when p = 2, we have a well-known and probably the most commonly 

used form of distance metrics, the Euclidean distance. The last special case of Minkowski 

metrics is when p = , or more precisely, when p tends to infinity, and then we have the so-

called “dominant metric” or max-min metric.

There are many discussions in the literature about which metric gives better results and 

many discussions about it come from psychological theory. We will not discuss it this time. 

We will just mention that the TOPSIS method uses p = 2 metric, and that there are some 

attempts to use TOPSIS methods with p = 1 metric (Yoon, Hwang 1980; Dasarathy 1976). 
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We will also mention that the MOORA method uses p =  metric which is why the ranking 

of alternatives based on the Reference point approach is also precise, logically based, relatively 

easy to use and understandable to decision makers.

With respect to all the facts mentioned above, we conclude that the MOORA method is 

the most effective and perspective MCDM method and therefore in the remaining part of 

the paper we proposes an extension of the MOORA method.

4. The Grey MOORA

The procedure of selecting the most appropriate alternative using the MOORA method in-

volves several important stages that should be considered before an extension of the MOORA 

method with interval grey numbers, and these are:

stage 1:  transforming responses of alternatives into dimensionless values;

stage 2:  determining overall ranking indexes for considered alternatives based on Ratio 

System part of MOORA method; and

stage 3:  determining distances between considered alternatives and reference point based 

of the reference point part of MOORA method.

4.1. Stage 1: Transformation into dimensionless values

The first step that should be considered is a way of transforming responses of alternatives 

into dimensionless values. Compared with other normalization methods, vector normaliza-

tion method is the most complex. Therefore, in some proposed extensions of other MCDM 

methods, vector normalization is often replaced by a simpler, usually with a linear transfor-

mation - max method (Wang, Elhag 2006). However, this approach does not represent gen-

erally adopted rule. For the normalization of responses of alternatives expressed in the form 

of interval numbers, Jahanshahloo et al. (2006) suggested the use of the following formula:

 *

2 2

1

ij
ij

m

ijij
j

x
x

x x

. (43)

Formula (43) provides the appropriate form for normalizing responses of alternatives 

expressed by interval grey numbers. However, in cases of multi-criteria optimizations which 

require simultaneously the use of crisp and interval grey numbers, the previously mentioned 

formula give unsatisfactory results. Therefore, we suggest the use of the following formula:

 *

2 2

1

1

2

ij
ij

m

ijij
j

x
x

x x

. (44)

Based on the formula (44), upper and lower bounds of an interval grey number can be 

determined using the following formulae:
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 *

2 2

1

1

2

ij
ij

m

ijij
j

x
x

x x

; and (45)

 
*

2 2

1

1

2

ij
ij

m

ijij
j

x
x

x x

. (46)

Appendix A proves that the formula (44) is a better solution for the normalization of 

interval grey numbers.

4.2.  Stage 2: Determining overall ranking index based on Ratio system  
approach of the MOORA method

For optimization based on the Ratio system part of the MOORA method we start from the 

formula:

 *
j j jy y y , (47)

where:

 * *

C G

j i ij i ij
i i

y s x s x ; (48)

 * *

C G

j i ij i ij
i i

y s x s x , (49)

with: *
jy  as the overall ranking index of alternative j; jy  and jy  as total sums of maximizing 

and minimizing responses of alternative j to objectives respectively; is as significance coef-

ficient of objective i; *
ijx  and *

ijx  as the normalized responses of alternative j on different 

objectives, which are expressed in the form on crisp or interval grey numbers; C  and G

as sets of objectives to be maximized expressed in the form on crisp or interval grey num-

bers; C  and G are sets of objectives to be minimized expressed in the form on crisp or 

interval grey numbers. By replacing formulas (48) and (49) in the formula (47), we get the 

following formula:

 * * * * *

C GC G

j i ij i ij i ij i ij
i i i i

y s x s x s x s x . (50)

Based on the formulas (50), (7) and (9) we get the final and complete formula form:

 * ** * * * *1  

C G GC G G

j i ij i ij i i i ij i ijij ij
i i i i i i

y s x s x s x s x s x s x , (51)

with: is as significance coefficient of objective i; *
ijx  as the normalized responses of alternative 

j on objective i and Ci ; 
*
ijx and *

ijx  as the normalized bounds of interval grey number 

which represents response of alternative j on objective i and Gi , respectively; C  and 
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G as sets of objectives expressed in the form of crisp or interval grey numbers, respectively; 

 as the whitening coefficient; *
jy  as the overall ranking index of alternative j; C  and G as 

sets of objectives to be maximized expressed in the form on crisp or interval grey numbers; 

C  and G are sets of objectives to be minimized expressed in the form on crisp or interval 

grey numbers; i = 1,2, … n as the objectives; and j = 1,2, ..., m as the alternatives. 

The proposed formula (51) is quite complex but it enables selection of more appropriate al-

ternative, i.e. optimization, in the cases of solving many complex real-world problems such as:

 – decision making problems where responses of alternatives can be more appropriately 

expressed by simultaneous use of crisp and interval grey numbers;

 – decision making problems where responses of alternatives can be more appropriately 

expressed with interval grey numbers, such as problems that require certain estimates 

and predictions; and 

 – problems that require investigation of more options in order to choose the most ap-

propriate alternative, i.e. check variants resulting from the optimistic, realistic and 

pessimistic attitude of decision makers.

In the case of solving complex real-world problems that require simultaneous use of 

crisp and interval grey numbers, formula (51) provides adequate ability to rank and select 

the most appropriate alternative.

In the case of solving well-structured problems, the second part of formula (51) which 

includes the impact of objectives whose responses are expressed using interval grey num-

bers, has no influence on ranking index and therefore formula (51) can be transformed into 

following forms:

 * * *

CC

j ij ij
i i

y x x ; or (52)

 * * *

CC

j i ij i ij
i i

y s x s x , (53)

when objectives have different significances. The formulae (52) and (53) have the same mean-

ings as formulae (12) and (19), respectively, in original MOORA method.

On the other hand, in the case of solving semi-structured problems, the first part of formula 

(51) which represents the impact of objectives whose responses are expressed using crisp 

numbers, has no influence to the overall ranking index and therefore it can be transformed 

into one of three following forms:

 i. when objectives have the same significance:

 
* ** * *1  

G G G G

j ij ijij ij
i i i i

y x x x x ; (54)

 ii. when the decision maker has no preferences ( 0.5) :

 
* ** * *1 1

2 2
G G G G

j i i i ij i ijij ij
i i i i

y s x s x s x s x ; (55)
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 iii.  and when the decision maker has no preference and objectives have the same significance:

 
* ** * *1 1

2 2
G G G G

j ij ijij ij
i i i i

y x x x x . (56)

During problem solution, i.e. ranking of alternatives, the attitude of the decision makers 

can lie between pessimistic and optimistic, and the whitening coefficient  , allows expres-

sion of decision makers degree of optimism or pessimism. 

In the cases of particularly expressed optimism, the whitening coefficient , in accordance 

with the formula (7), takes higher values ( 1)  and ranking order of alternatives is mainly 

based on the upper bounds of intervals with which overall response of each alternative is 

expressed, *
( 1)  j jy y . On the other hand, in the cases of particularly expressed pessimism, 

the whitening coefficient  takes lower values ( 0) and ranking order of alternatives is 

mainly based on lower bounds of the intervals, 
*

( 0)  j j
y y . 

4.3.  Stage 3: Determining overall ranking index based on Reference point  
approach of the MOORA method 

The most appropriate alternative based on the Reference point approach of the MOORA 

method when ratings of alternatives are expressed using exact values can be obtained by the 

formula (15). However, this formula should be adopted in cases when the Reference point 

approach of the MOORA method is used to solve complex real-world problems. To explain 

our approach in details, we start from the min-max metric expressed by the formula: 

 min max ij
j i

d , (57)

with: ijd as distance of alternative j to the i-th coordinate of reference point. 

In the course of solving many complex real-world problems, responses to the objectives 

are simultaneously expressed using crisp and interval grey numbers. In this case, the reference 

point cannot be expressed adequately with “simple” point in n-dimensional space. We believe 

that the reference grey point is a more appropriate solution, where coordinates of grey refer-

ence point may be crisp or interval grey numbers, depending on type of values which is used 

to express ratings of alternatives to the corresponding objectives. Therefore, for determining 

ijd and ir  for objective i in different cases, we propose the following:

 i.  For objective i with crisp responses, the correspondent coordinate of the reference 

grey point is calculated using the formula (17) and distance to the reference point 

using formula (16) or (20) when objectives have different significances.

 ii.  For objectives whose responses are expressed using interval grey numbers formulae 

are more complex, especially when decision makers have opportunity to express their 

attitudes about optimism or pessimism. For these reasons, we start from the following 

formulae:

 (1 )  ij ijijd d d ; or (58)

 (1 )   ijij i ijd s d d , (59)
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when objectives have different significances, where:

 
*

 iij ijd r x ; and (60)

 * ij i ijd r x , (61)

with: as whitening coefficient; ijd and ijd as distances of alternative j to the i-th coordinate 

of reference grey point; is as significance coefficient of objective i; i = 1, 2, ..., n as the objec-

tives; and j = 1, 2, ..., m as the alternatives. 

In the proposed approach every coordinate of reference grey point is represented by appro-

priate interval grey numbers which bounds are determined by using the following formulae:

 

*

*

max

min

i ij
j

iji
j

r x

r x
 for objectives to be maximized; and (62)

 

*

*

min

max

i ij
j

iji
j

r x

r x
 for objectives to be minimized.  (63)

Depending on decision makers’ preferences, i.e. whitening coefficient value, the formulae 

(58) and (59) may have the following specific forms:

 i. in the case of extremely pessimistic decision maker attitude, ( 0):

 ( 0)
 

when objectives  have  the same  significance; or

when objectives have different significances.

ij
ij

i ij

d
d

s d
 (64)

 ii.  in the case of moderate optimism or when the decision maker has no preference, 

( 0.5) :

 ( 0.5)
 

( ) / 2 when objectives  have  the same significance; or

( ) / 2 when objectives have different significances.

ijij
ij

i ijij

d d
d

s d d
 (65)

 iii. and finally in the case of extremely optimistic decision maker attitude, ( 1 ):

 ( 1)
 

when objectives  have  the same significance; or

when objectives have different significances.

ij
ij

i ij

d
d

s d
 (66)

Appendix B proves that the formula (59) is a better solution for determining distances of 

alternatives to the reference point in Reference point approach of the MOORA when interval 

grey numbers are used.
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5. Numerical examples

In this section we consider three numerical examples in order to perform a detailed and 

precise demonstration of the proposed approach. These examples are taken from literature 

for the purpose of comparison results obtained by using proposed approach and early pub-

lished results.

The first example shows the use of proposed approach with interval grey numbers. The 

second example is used to demonstrate application of proposed approach with simultane-

ous use of crisp and interval grey number. Finally, the third example is used to demonstrate 

the use of whitening coefficient , and highlights the advantages which may be obtained 

by using whitening coefficient.

5.1. Example I – The use of the MOORA method with interval grey numbers

To demonstrate the use of the MOORA method with interval grey numbers, we choose one 

well-known example of selection of the effective dwelling house walls using COPRAS-G 

method, presented in Zavadskas et al. (2008). The selected objectives, significance coefficients, 

optimization directions and responses of considered alternatives are shown in Table 1.

Table 1. Initial decision-making matrix with values expressed using intervals grey numbers

Objectives

C
1

C
2

C
3

C
4

C
5

Durability  
of walls

Thermal 
transmittance

The estimated 
cost of m2 walls

Weight of m2 
walls

Human work 
expenditures

cycles W/m K LTL kg hour/m2

Significance 0.21 0.33 0.26 0.09 0.11

Optimization max min min min min

Alternatives 1 jx 1 jx 2 jx 2 jx 3 jx 3 jx 4 jx 4 jx 5 jx 5 jx

A
1

75 100 0.22 0.25 72.08 94.71 590 652 4.60 4.60

A
2

75 100 0.22 0.25 89.01 100.93 596 625 4.60 4.60

A
3

75 100 0.21 0.25 80.32 96.42 581 604 4.60 4.60

A
4

25 25 0.24 0.27 67.76 98.1 455 479 4.55 5.01

Objectives used in this example have different units of measures and therefore responses 

of alternatives must be transformed into non-dimensional values before aggregation proce-

dure is used. This transformation, i.e. normalization, is done by using formula (44), or more 

precisely: values which represent the upper bounds of interval grey numbers are normalized 

using formula (45) while values which represents the lower bounds of interval grey numbers 

are normalized using formula (46). Then normalized decision-making matrix is presented 

in Table 2. 
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Table 2. Normalized decision-making matrix

Objectives

C
1

C
2

C
3

C
4

C
5

Significance 0.21 0.33 0.26 0.09 0.11

Optimization max min min min min

Alternatives
*
1 jx *

1 jx *
2 jx *

2 jx *
3 jx *

3 jx *
4 jx *

4 jx *
5 jx *

5 jx

A
1

0.488 0.651 0.460 0.523 0.411 0.540 0.512 0.566 0.495 0.495

A
2

0.488 0.651 0.460 0.523 0.508 0.576 0.517 0.542 0.495 0.495

A
3

0.488 0.651 0.439 0.523 0.458 0.550 0.504 0.524 0.495 0.495

A
4

0.163 0.163 0.502 0.565 0.387 0.560 0.395 0.416 0.490 0.539

On the basic of data shown in Table 2, the use of formula (55) generates the results shown 

in Table 3.

Table 3. The ranking results obtained using extended Ratio system part of the MOORA method

Gi Gi Results

Alternatives i ijs x
i ijs x i ijs x

i ijs x

GG

i iij ij
i i

s x s x

GG

i ij i ij
i i

s x s x *
( 0.5)jy Rank

A
1

0.103 0.137 0.359 0.418 –0.257 –0.282 –0.269 1

A
2

0.103 0.137 0.385 0.426 –0.282 –0.289 –0.286 3

A
3

0.103 0.137 0.364 0.417 –0.261 –0.281 –0.271 2

A
4

0.034 0.034 0.356 0.429 –0.321 –0.394 –0.358 4

In order to verify obtained ranking results, the comparative review of ranking results 

obtained using COPRAS-G method (adopted from Zavadskas et al. 2008) and ranking results 

obtained by proposed approach is shown in Table 4.

Table 4. Ranking results obtained using COPRAS-G method  
and proposed approach

COPRAS-G MOORA

Alternatives jQ Rank
*
jy Rank

A
1

0.528 1 –0.269 1

A
2

0.512 3 –0.286 3

A
3

0.526 2 –0.271 2

A
4

0.434 4 –0.358 4

As can be seen, the rank order obtained using COPRAS-G method and extended Ratio 

system approach of the MOORA method are the same.

Ranking results obtained using formula (51) for characteristic values of whitening coef-

ficient , are shown in Table 5.
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Table 5. Ranking results obtained using extended Ratio system part  
of the MOORA method and different values of 

0 0.5 1
*
jy Rank

*
jy Rank

*
jy Rank

A
1

–0.257 1 –0.269 1 –0.282 2

A
2

–0.282 3 –0.286 3 –0.289 3

A
3

–0.261 2 –0.271 2 –0.281 1

A
4

–0.321 4 –0.358 4 –0.394 4

The remaining part of this consideration shows the use of extended Reference point ap-

proach of the MOORA method. Extended Reference point approach of the MOORA method 

starts from normalized responses of alternatives on objectives.

Using data shown in Table 2 and formulae (62) and (63), we determine coordinates of 

reference grey point, which are shown in Table 6 where are also shown distances of any al-

ternative to reference grey point obtained using formulae (60) and (61).

Table 6. Reference grey point and distances to reference grey point

Objectives

C
1

C
2

C
3

C
4

C
5

Significance 0.21 0.33 0.26 0.09 0.11

Optimization max min min min min

r 1r
1r 2r

2r 3r
3r 4r

4r 5r
5r

Reference point 0.488 0.651 0.439 0.523 0.387 0.540 0.395 0.416 0.490 0.495

Alternatives 1 jd
1 jd 2 jd

2 jd 3 jd
3 jd 4 jd

4 jd 5 jd
5 jd

A
1

0.000 0.000 0.021 0.000 0.025 0.000 0.117 0.150 0.005 0.000

A
2

0.000 0.000 0.021 0.000 0.121 0.035 0.122 0.127 0.005 0.000

A
3

0.000 0.000 0.000 0.000 0.072 0.010 0.109 0.108 0.005 0.000

A
4

0.325 0.488 0.063 0.042 0.000 0.019 0.000 0.000 0.000 0.044

After the use of formula (59), we can determine resulting distance of alternative j from 

the i-th coordinate of reference point. For example, the resulting distances of any alternative 

to the reference point for 0.5  have values shown in Table 7. The resulting distance with 

highest value for any alternative and rank order is also shown in Table 7. 

Table 7. Distances of any alternative to reference point, for 0.5

Objectives

C
1

C
2

C
3

C
4

C
5

Alternatives 1 jd 2 jd 3 jd 4 jd 5 jd max ij
i

d Rank

A
1

0.000 0.003 0.003 0.012 0.000 0.012 2

A
2

0.000 0.003 0.020 0.011 0.000 0.020 3

A
3

0.000 0.000 0.011 0.010 0.000 0.011 1

A
4

0.085 0.017 0.003 0.000 0.002 0.085 4
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Ranking results obtained using formula (59) for characteristic values of whitening coeffi-

cient , are shown in Table 8.

Table 8. Ranking results obtained using extended Ratio system approach  
of the MOORA method and different values of 

0 0.5 1

Alternatives max ij
i

d Rank max ij
i

d Rank max ij
i

d Rank

A
1

0.011 1 0.012 2 0.116 1

A
2

0.032 3 0.020 3 0.116 1

A
3

0.019 2 0.011 1 0.116 1

A
4

0.068 4 0.085 4 0.129 4

5.2.  Example II – The use of the MOORA method with simultaneous use  
of crisp and interval grey numbers

The second example which will be considered is borrowed from Medineckiene et al. (2010). 

This example is chosen because it combines the use of crisp and interval grey numbers for 

representing responses of considered alternatives on objectives. This example is also char-

acteristic because it use SAW-G method, i.e. extended SAW method adopted for use of grey 

interval numbers.

The initial data that is required for ranking alternatives is shown in Table 9.

Table 9. Initial decision-making matrix with values expressed using crisp and intervals grey numbers

Objectives

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

Significance 0.078 0.038 0.3900 0.143 0.022 0.015 0.008 0.252 0.053

Optimization min min max min min min min min min

Alternatives 1 jx 2 jx 2 jx 3 jx 3 jx 4 jx 5 jx 6 jx 7 jx 8 jx 8 jx 9 jx

A
1

46400 6 8 70 80 84400 188 16.04 4.86 58000 78300 6810

A
2

43500 6 8 70 80 56600 126 10.76 3.26 63800 75400 5680

A
3

40600 3 6 60 80 69600 155 13.23 3.99 58000 74500 9340

Normalized responses, shown in Table 10, are obtained by using formula (11) when rat-

ings are expressed using exact values and formulae (45) and (46) when ratings are expressed 

using interval grey numbers.
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Table 10. Normalized decision-making matrix

Objectives

C
1

C2 C3 C
4

C
5

C
6

C
7

C8 C
9

Significance 0.078 0.038 0.3900 0.143 0.022 0.015 0.008 0.252 0.053

Optimization min min max min min min min min min

Alternatives *
1 jx *

2 jx *
2 jx *

3 jx *
3 jx *

4 jx *
5 jx *

6 jx *
7 jx *

8 jx *
8 jx *

9 jx

A
1

0.615 0.542 0.723 0.548 0.627 0.685 0.685 0.685 0.686 0.489 0.660 0.529

A
2

0.576 0.542 0.723 0.548 0.627 0.460 0.459 0.460 0.460 0.538 0.635 0.441

A
3

0.538 0.271 0.542 0.470 0.627 0.565 0.565 0.565 0.563 0.489 0.628 0.725

The ranking results obtained using extended Ratio system approach of the MOORA 

methods are shown in Table 11. Rank order shown in Table 11 is equal to rank order in 

Medineckiene et al. (2010), and it is 2 3 1A A A .

Table 11. The ranking results obtained using extended Ratio system approach of the MOORA method

Crisp Grey

I II III IV V VI VII VIII IX X

Alternatives Ci Ci I-II Gi Gi 0.5 III+VIII

i ijs x i ijs x *
Cjy i ijs x i ijs x i ijs x i ijs x *

Gjy * *
Cj Gjy y Rank

A
1

0.000 0.205 –0.205 0.214 0.244 0.144 0.194 0.060 –0.144 3

A
2

0.000 0.155 –0.155 0.214 0.244 0.156 0.188 0.057 –0.097 1

A
3

0.000 0.187 –0.187 0.183 0.244 0.133 0.179 0.058 –0.129 2

For determining rank order based on extended Reference point approach of the MOORA 

method, using data shown in Table 10 and formulae (62) and (63), we determine coordinates 

of reference grey point, which are shown in Table 12. Table 12 also shows distances of any 

alternative to reference grey point obtained using formulas (60) and (61).

Table 12. Reference grey point and distances to reference grey point

Objectives

C
1

C2 C3 C
4

C
5

C
6

C
7

C8 C
9

Significance 0.078 0.038 0.39 0.143 0.022 0.015 0.008 0.252 0.053

Optimization min min max min min min min min min

r 1 jr jr 2 2 jr jr3 3 jr 4 jr 5 jr 6 jr 7 jr 8 jr
8 jr 9 jr

Reference point 0.538 0.271 0.542 0.548 0.627 0.460 0.459 0.460 0.460 0.538 0.271 0.542

Alternatives 1 jd 2 jd 2 jd 3 jd 3 jd 4 jd 5 jd 6 jd 7 jd 8 jd 8 jd 9 jd

A
1

0.077 0.271 0.181 0.000 0.000 0.226 0.226 0.226 0.226 0.000 0.032 0.088

A
2

0.038 0.271 0.181 0.000 0.000 0.000 0.000 0.000 0.000 0.049 0.008 0.000

A
3

0.000 0.000 0.000 0.078 0.000 0.106 0.106 0.106 0.103 0.000 0.000 0.284

352 D. Stanujkic et al. An objective multi-criteria approach to optimization ...



Resulting distances of any alternative to i-th coordinate of the reference grey point ob-

tained by formula (59) and 0.5 are shown in Table 13. Table 13 also shows the resulting 

distance with highest value for any alternative and rank order obtained on them. 

Table 13. Distances of any alternative to reference point, for 0.5

Objectives

C
1

C2 C3 C
4

C
5

C
6

C
7

C8 C
9

Alternatives 1 jd 2 jd 3 jd 4 jd 5 jd 6 jd 7 jd 8 jd 9 jd max ij
i

d Rank

A
1

0.006 0.009 0.000 0.032 0.005 0.003 0.002 0.004 0.005 0.032 3

A
2

0.003 0.009 0.000 0.000 0.000 0.000 0.000 0.007 0.000 0.009 1

A
3

0.000 0.000 0.015 0.015 0.002 0.002 0.001 0.000 0.015 0.015 2

As can bee seen from Table 12 rank order of alternatives again is equal to rank order in 

Medineckiene et al. (2010), and hi is 2 3 1A A A .

5.3.  Example III – The use of the MOORA method with interval grey numbers  
and whitening coefficient

Finally, our proof of the proposed approach ends with using the third example which is also 

adopted from literature. The example borrowed from Zavadskas et  al. (2009a) is chosen 

because it clearly shows a very important feature which interval grey numbers provides. By 

giving more importance to lower or upper bounds of interval grey numbers, decision mak-

ers may express their preferences. In the case of solving many real-world problems which 

is usually characterized with some form of uncertainty this feature may be very important. 

In some cases decision maker can analyze the problem and choose the most appropriate 

alternative simple by varying values of whitening coefficient.

Table 14 shows the data required for demonstration of the mentioned characteristics of 

interval grey numbers. 

Table 14. Initial decision-making matrix

Objectives

C
1

C
2

C
3

C
4

Significance 0.15 0.4 0.2 0.25

Optimization max max max min

Alternatives 1 jx
1 jx 2 jx

2 jx 3 jx
3 jx 4 jx

4 jx

A
1

64 85 50 55 60 80 75 80

A
2

57 81 52 56 62 76 70 75

A
3

61 78 55 58 53 61 70 80

A
4

59 93 54 62 55 72 80 90

A
5

63 89 61 68 54 63 65 75
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In this example we start from weighted normalized decision making matrix, which is 

shown in Table 15 where initial data from Table 14 are normalized using formulae (45) and 

(46) and then multiplied with appropriate significance coefficients.

Table 15. Weighted-normalized decision-making matrix with values expressed using intervals grey 
numbers

Objectives

C
1

C
2

C
3

C
4

Optimization max max max min

Alternatives
*

1 1 js x *
1 1 js x *

2 2 js x *
2 2 js x *

3 3 js x *
3 3 js x *

4 4 js x *
4 4 js x

A
1

0.058 0.077 0.156 0.172 0.084 0.111 0.110 0.117

A
2

0.052 0.073 0.162 0.175 0.086 0.106 0.103 0.110

A
3

0.055 0.071 0.172 0.181 0.074 0.085 0.103 0.117

A
4

0.053 0.084 0.169 0.193 0.077 0.100 0.117 0.132

A
5

0.057 0.081 0.190 0.212 0.075 0.088 0.095 0.110

Table 16 shows ranking results based on extended Ratio system approach of the MOORA 

method, obtained on the basis of data from Table 15, formula (55) and characteristic values 

of whitening coefficient.

Table 16. The ranking results obtained using extended Ratio system approach of the MOORA method

Gi Gi 0 0.5 1

Alternatives i ijs x i ijs x i ijs x i ijs x *
jy Rank

*
jy Rank

*
jy Rank

A
1

0.298 0.360 0.110 0.117 0.188 4 0.216 3 0.243 4

A
2

0.300 0.354 0.103 0.110 0.197 3 0.221 2 0.244 3

A
3

0.301 0.337 0.103 0.117 0.198 2 0.209 5 0.220 5

A
4

0.299 0.377 0.117 0.132 0.182 5 0.214 4 0.245 2

A
5

0.322 0.381 0.095 0.110 0.227 1 0.249 1 0.271 1

In order to verify proposed approach, Table 17 shows comparative review of ranking 

results obtained by using COPRAS-G method (adopted from Zavadskas et al. 2009a) and 

by using extended Ratio system approach of the MOORA method.

As can be seen, the best and the worst ranked alternatives obtained using COPRAS-G 

method and extended Ratio system approach of the MOORA method are the same in all 

cases of ranking (pessimistic, moderate and optimistic). 

Rank order of other ranked alternatives is not equal, but it is quite understandable be-

cause values of ranking indexes are obtained by the use of aggregation procedures which 

have significant differences.
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Table 17. Ranking results obtained using COPRS-G method and proposed approach

Rank

Pessimistic Moderate Optimistic

Alternatives COPRAS-G MOORA COPRAS-G MOORA COPRAS-G MOORA

A
1

4 4 3 = 4 4 4 3

A
2

2 3 2 3 3 2

A
3

3 2 5 5 5 5

A
4

5 5 3 = 4 2 2 4

A
5

1 1 1 1 1 1

6. Conclusion

Many MCDM methods have been proposed and successfully applied for the solution of nu-

merous problems during past decades. However, many real-world decision making problems 

are related with uncertainties and/or some form of predictions and therefore their solutions 

can be much better determined using an extended MCDM method which is adapted for the 

use of fuzzy or interval grey numbers.

The MOORA method is newly proposed MCDM method but it provides two logically 

based, relatively easy to use and understandable to decision maker approaches for selecting 

the most appropriate alternative. It still has no extension and therefore, in this paper, we pro-

pose an extension of the MOORA method. In our extension both approaches of the ordinary 

MOORA method, the Ratio system and the Reference point approach, are adapted for the 

use of interval grey numbers. Proposed extension of the MOORA method enables relatively 

simple and effective solution of complex real world problems, which presented procedure, 

results obtained from considered numerical examples and comparison with known results 

adopted from literature also proves.
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Appendix A: Is the square root of the one half of the sums of squares  

of the lower and upper limits of the grey interval numbers that represent 

performances of each alternative per objectives the best choice  

for the denominator in the MOORA method?

In order to prove the proposed approach we will start from 

the very simple example. Suppose that it is necessary to rank two 

alternatives, denoted by A
1
 and A

2
, based on two criteria, C

1
 and 

C
2
, which have the equal significance. Suppose also that both 

objectives are benefit type and therefore the optimization direc-

tion is maximization. 

The initial data required for ranking mentioned alternatives 

are shown in Table 18. Data obtained after normalizing responses 

using formula (11) and ranking alternatives based on the Ratio 

system and Reference point approaches of the MOORA method 

are shown in Table 19.

Table 19. The rank order of alternatives on the basis of Ratio System  
and Reference Point approaches 

Data Results

Initial Normalized Ratio System Reference Point

C
1

C
2

C
1

C
2

* *
1 2j jx x Rank

* *
1 2max( , )j jx x Rankmax max max max

1 jx 2 jx *
1 jx *

2 jx

A
1

3 5 0.51 0.86 1.37 1 0.86 1

A
2

5 3 0.86 0.51 1.37 1 0.86 1

Norm 5.83 5.83

As can be seen from the Table 19, the results, i.e. rank order of alternatives obtained on 

the basis of Ratio System and Reference Point parts of the MOORA method is equal.

To provide evidence that the formula (44) is more appropriate for normalization we will 

make a slight modification of the initial data and responses of alternatives on objective C
2
 

are presented with interval grey numbers, where the upper and lower bounds of the interval 

are equal. These data are shown in Table 20.

Table 18. The initial data

C
1

C
2

max max

A
1

3 5

A
2

5 3
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Table 21 contains two calculations that vary according 

to the formula that was used in order to normalize initial 

data presented with interval gray numbers.

In the Case I responses of alternatives expressed us-

ing crisp numbers are normalized using the formula (11) 

while responses expressed with interval grey numbers is 

normalized using the formula (43). The overall ranking 

index of any of considered alternative, based on Ratio 

System part of the MOORA method, is calculated ac-

cording to the formula (51) and 0.5.

In the Case II instead of the formula (43) the formula 

(44) is used.

Table 21. The rank order of alternatives on the basis of Ratio System and Reference Point approaches3

Data Results

Initial Normalized
Ratio 

System
Reference Point

C
1

C
2

C
1

C
2

(51) Rank C
1

C
2

max ij
i

d Rank

1 jx 2 jx
2 jx *

1 jx *
2 jx *

2 jx max 1 jd 2 jd
2 jd min

Case I

A1 3 5 5 0.51 0.61 0.61 1.12 2 0.34 0.25 0.25 0.34 1

A2 5 3 3 0.86 0.36 0.36 1.22 1 0.00 0.49 0.49 0.49 2

Norm – RP3 5.83 8.25 8.25 0.86 0.36 0.36

Case II

A1 3 5 5 0.51 0.86 0.86 1.37 1 0.34 0.00 0.00 0.34 1

A2 5 3 3 0.86 0.51 0.51 1.37 1 0.00 0.34 0.34 0.34 1

Norm – RP 5.83 5.83 5.83 0.86 0.86 0.86

As can be seen from the Table 21 Formula (44) provides more appropriate way of nor-

malization when the decision problem requires the simultaneous use of crisp and interval 

grey numbers.

Appendix B: How to measure the distance between an interval grey number  

and the reference point?

The procedure for determining the distance between an interval grey number and refer-

ence point is more complex than the procedure used for determining distance between an 

crisp number and reference point and it also initiates three dilemmas. The first dilemma is 

3 Table rows that contains the norms in columns with initial data and the reference points in columns with normal-

ized data.

Table 20. The modified initial data

C
1

C
2

1 jx 2 jx
2 jx

max max max

A
1

3 5 5

A
2

5 3 3
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which characteristic of an interval grey number in the Reference Point part of the MOORA 

method best represents the interval grey number: its upper or lower bound, mean, or other 

characteristics.

The second dilemma is how to determine the reference point when responses of alterna-

tives on objectives are expressed using interval grey numbers or when responses are expressed 

with simultaneous use of crisp and interval grey numbers? This dilemma also initiates the 

third, very important, dilemma: What is really reference point in cases of using interval grey 

numbers? Just crisp point in an n-dimensional space or gray reference point, i.e. grey body - 

ellipsoid, in n-dimensional space?

The use of only one bound of an interval grey number do not allows adequate representa-

tion of interval in all possible cases of optimization. In order to prove this we will start with 

following simple example. 

In this example we do not start from responses of alternatives on objectives because those 

have impact to the denominator used in formula applied for its normalization, that is why 

such example may be complex and impractical for further explanation. Therefore we start 

from the normalized decision-making matrix shown in the Table 22.

Table 22. The initial data and rank results rank obtained by using Reference Point Part of the MOORA method

Data Results

Normalized Reference Point

C1 C2
C

1
C

2
max ij

i
d Rank

max max

Case I

*
1 jx *

2 jx *
mx 1 jd 2 jd

A
1

0.3 0.5 0.5 0.2 0.0 0.2 1

A
2

0.5 0.3 0.3 0.0 0.2 0.2 1

max j 0.5 0.5

Case II

*
1 jx *

2 jx *
2 jx *

mx 1 jd
2 jd

A
1

0.3 0.2 0.8 0.5 0.2 0.0 0.0 0.2 2

A
2

0.5 0.2 0.4 0.3 0.0 0.0 0.4 0.4 1

max j 0.5 0.8 0.5

Case III

*
1 jx *

2 jx *
2 jx *

mx 1 jd 2 jd
2 jd 2 ( 0.5)jd

A
1

0.3 0.2 0.8 0.5 0.2 0.0 0.0 0.0 0.2 1

A
2

0.5 0.2 0.4 0.3 0.0 0.0 0.4 0.2 0.2 1

max j 0.5 0.2 0.8 0.5

Shown example in the Table 22 is composed of three basic parts in which two alternatives, 

A
1
 and A

2
, are ranked under different conditions based on two criteria C

1
 and C

2
, with equal 

significance and the same direction of optimization.
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In the Case I responses of alternatives to the objectives C
1 

and C
2
 are represented by 

crisp numbers. In the Case II and Case III responses of alternatives to the objective C
2
 are 

represented by interval grey numbers, where interval bounds are formed in a manner that 

ensures that interval mean is the same as corresponding exact value in Case I of our example.

Ranking results of the alternatives obtained in Case I and Case II are not equal. It is ex-

pected because changes of interval bounds can (may) affect the reference point coordinates.

Probably the easiest way to rank alternatives is to represent interval grey numbers with its 

mean values and to perform the remaining part of the optimization procedure as in the case 

of applying crisp numbers. But in this approach advantages of using interval grey numbers 

significantly decreases. Interval grey numbers may be used for more adequate representation 

of decision making problems but their use will not be reflected on optimization based on 

Reference point approach of the MOORA method. 

Application of interval numbers is also investigated with other methods, especially with 

TOPSIS method. One of the characteristic approaches to the application of interval grey 

numbers and TOPSIS methods may be approach used in Jahanshahloo et al. (2006).

Unfortunately, results of research obtained with interval grey numbers and other MCDM 

methods can not be directly applied to the MOORA method. For example, MOORA method 

uses the min-max metric and distances to the reference point while TOPSIS method uses 

Euclidean distances to the ideal and anti-ideal points.

To ensure effective use of interval grey numbers and MOORA method for determining 

distances of each alternative to the reference point, we will start from the formula (58) or 

formula (59) when the objectives have different significances. 

In proposed approach instead the use of classical 

reference point4, we suggest the use of “reference grey 

point”, i.e. reference ellipsoid whose coordinates are 

represented by appropriate interval grey number with 

bounds determined using the formulas (62) or (63). 

Figure 2 shows three characteristic reference point 

theory approaches. The first approach (a) shows dis-

tance between a point (an exact value) to the reference 

point. Next approach (b) shows the distance between 

an interval grey number and classical reference point, 

and the last approach (c) shows distance between 

interval grey number and the reference grey point.

The approach (b) in our example gives inadequately 

rank results. But using the proposed approach, which is 

graphically shown on Figure 2, we get adequate results. 

For 0.5 obtained results is the same as in the Case 

I. And finally, the  coefficient provides opportunity 

to decision maker to give more importance to lower 

or upper bounds.

4 When combine crisp and interval grey numbers, crisp numbers are represented with interval grey number with 

same upper and lower bounds.

Fig. 2. Characteristic reference point 
approaches
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