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Abstract. The paper discusses the optimisation of complex management processes, which allows 
the reduction of investment costs by setting the optimal balance between product demand and 
supply. The systematisation of existing methods and algorithms that are used to optimise complex 
processes by linking stochastic discrete-event simulation and multi-objective optimisation is given. 
The two-phase optimisation method is developed based on hybrid combination of compromise 
programming, evolutionary computation and response surface-based methods. Approbation of 
the proposed method is performed on the multi-echelon supply chain planning problem that 
is widely distributed in industry and its solution plays a vital role in increasing the competitive-
ness of a company. Three scenarios are implemented to optimise supply chain tactical planning 
processes at the chemical manufacturing company based on using different optimisation methods 
and software. The numerical results prove the competitive advantages of the developed two-phase 
optimisation method.
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1. Introduction

Simulation-based optimisation of complex systems/processes is a central part of many scien-
tific and technological investigations (Merkuryev et al. 2007). As shown in Figure 1, a general 
scheme of a simulation optimisation approach can be represented in the form of interaction 
of a stochastic discrete-event simulation model and an optimisation module. The stochastic 
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discrete-event simulation model examines the behaviour of a system (i.e. the operation of 
a process) at separate and countable points of time, from one event to the next one. Accor-
dingly, the optimisation module aims at improving simulation model responses by means 
of adjusting its input parameters subject to specific constraints.
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Fig. 1. General scheme of a simulation optimisation approach

A lack of a single methodology in developing simulation optimisation models has resulted 
in a number of optimisation methods, which are restricted to specific problems. Once more 
complex problems are considered, other optimisation methods should be developed. There-
fore, there is a need to develop a new method that can deal with specific features of complex 
processes by using simulation models and is applicable to a wide range of such processes.

In this paper, the main emphasis is placed on the complex management processes, which 
are aimed at reduction of investment costs by setting the optimal balance between demand 
and supply. These processes are typical for supply chain tactical planning (SCTP) and for 
solving many similar optimisation problems in the separate stages of a supply chain, i.e., 
procurement, production, distribution and sales.

Important features of a complex management process refer to its representation as abstrac-
tion of a dynamic system that adapts to continuously changing and unpredictable environ-
ment. In general, this kind of system is characterised by the following features:

 – a hierarchical network-based structure;
 – a large number of decision variables including both discrete and continuous ones;
 – an emergent behaviour of the system as a whole;
 – a conflicting behaviour of system elements; and
 – a stochastic nature.

The definition of the hierarchical network-based structure relates to coordination of work 
activities within multiple levels so that decisions at a given level depend on decisions made 
at upstream and downstream levels.

A large number of continuous and discrete decision variables results from a system size 
and the number of links between system elements, which results in a multi-dimensional 
decision search space and increase the computational complexity of the simulation optimi-
sation problem.

The emergent behaviour of a system means that it cannot be predicted merely on the basis 
of understanding the behaviour of the system elements or from interactions between them. 
In opposite, all these elements working together should be investigated.

The conflicting behaviour of system elements can generate conflicting planning decisions.
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Multiple performance measures of a complex system encourage searching for a set of the 
compromise solutions called as Pareto-optimal solutions that provide the best trade-offs for 
a performance of all system elements instead of a global optimal solution.

Finally, the stochastic nature of a system comes from the dependence of a system per-
formance on uncertainty of the behaviour of its environment. This refers to unpredictable 
changes in values of environmental variables over time.

The above described features outline the class of SCTP processes that are widely distributed 
in industry. However, the known simulation-based optimisation methods are often unable 
to identify the optimal trade-offs between the conflicting objectives because of the following 
two major reasons:

 – high computational costs required to perform simulation optimisation experiments; and
 – slow convergence of multi-objective optimisation algorithms in case of mixed, i.e. 

continuous and discrete decision variables.
Therefore, powerful optimisation methods capable to control and optimise parameters of 

SCTP processes and solve the outline planning problem should be developed.

2. Optimisation problem statement

Here, the problem of optimising SCTP processes is formulated as a multi-objective and sto-
chastic simulation-based optimisation problem with constraints and mixed decision variables:
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where f: X→Y’ is a vector of objective functions, which links values of a decision vector 
1( , , )Kx x X= ∈x   with corresponding expected values of an output vector ŷ ∈ Y’, where x 

defines a vector of K input parameters (i.e. decision variables), and ŷ defines vector of model re-
sponses (i.e. performance measures); X is a decision space; Y’ is an approximate objective space; 

⋅  E  denotesthe mathematical expectation; ( )1  , ,t t t
My y Y= … ∈y  is an output vector at t∈[1,T], 

where M is a number of objective functions, Y is the objective space, and T is the length of a 
simulation replication measured in time periods (hours, days, weeks, etc.); 1z (z , , z ) Zt t t

D= ∈  
is a vector of D environmental variables at t∈[1,T]; t

1s s (s , ,s ) St t t
R= = ∈  is a state vector at 

[1, ],t T∈  where R is a number of state variables; c is a vector of model parameters, i.e., constants; 
℘  is a probability density function of a random vector of environmental variables; ϕ represents 
a mapping that results from a simulation algorithm; g and h define vectors of inequality and 
equality constraints; w, γ and η represent vectors of stochastic sample response functions.

A set of optimal trade-off solutions x* is composed of those potential solutions such that 
all components of the corresponding objective vectors cannot be simultaneously improved. 
This is known as the concept of Pareto-optimality defined as follows:
The decision vector x* ∈ X is said to be Pareto-optimal iff there is no x ∈ X for which f(x) 
dominates f(x*).
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The concept of Pareto-optimality arises from other fundamental concept that is called 
the dominance relation. It is formally defined in the following way:
The decision vector x* ∈ X is said to dominate a solution x ∈ X if and only if  ∀I ∈ {1,…,M}: 
fi(x*) ≤ fi(x) and ∃j ∈ {1,…,M}: fj(x*) < fj(x).

As it follows from this definition, a solution x* is Pareto-optimal if it is not worse than any 
other solution for all criteria and is better for at least one criterion. For simplification, it is as-
sumed here that all objective functions are minimised.

3. Specifying the problem requirements

Based on the state-of-the-art of simulation optimisation and the problem statement, the 
following requirements to the optimisation method are specified:

R1.  minimise an Euclidian distance d between the true 
∗

  and approximate 
∗

  
Pareto-optimal fronts:

 min ( , );
∗∗ d  

R2.  maximise a diversity iδ  of the Pareto-optimal solutions i ∗
∈x   to have a wide 

range of variety:

 

�

1max ;
∗

=
δ∑ i

i
PF

 

R3.  minimise the number τρ  of non-dominated solutions that are lost during the transi-
tion from iteration τ to iteration τ+1:

 
2min ;

∗τ τ
τ=

ρ∑  

R4.  minimise computational costs defined as a total number of simulation optimisation 
iterations.

The following additional requirements are derived from the features of optimised com-
plex processes:

R5. generate discontinuous Pareto-optimal fronts;
R6. use both continuous and discrete decision variables;
R7. include the uncertainty of system environmental variables in the search process.
It is assumed that the search space of continuous decision variables is infinite, whereas 

discrete decision variables are specified typically in the finite search space. This fact clearly 
shows that the same method cannot be equally effective for both kinds of search spaces. From 
this follow two additional requirements, such as:

R6.1.  use global search methods for exploring the large space of discrete and con-
tinuous decision variables;

R6.2. use local search methods for exploring small regions around continuous deci-
sion variables to approach Pareto-optimal solutions as close as possible.

Thus, it becomes evident that flexible and powerful optimisation methods that are able 
to fulfil the above-mentioned requirements are highly valuable for efficient solving of the 
outline problem.
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4. Overview of approaches and methods

The well-known methods and algorithms of multi-objective simulation optimisation are 
not remarkable for variety. Most of them use traditional techniques of aggregating multiple 
objectives into a single objective, or optimising the most important objective while treating 
other objectives as constraints. Typically, they mimic processes found in nature, but remain 
extremely sensitive to computational time and problem complexity. In order to relax these 
shortcomings and to develop a more prominent optimisation technique satisfying the require-
ments R1 ÷ R7, it is important to study properties of known methods and algorithms such as:

 – RSM – Response surface-based method;
 – SA – Stochastic approximation method;
 – SPO – Sample path optimisation method;
 – R&S – Ranking and selection;
 – sH – Single-objective heuristics;
 – mEAs – Multi-objective evolutionary algorithms.

The comparative analysis revealed that RSM, SA and SPO are used for solving optimisa-
tion problems with the continuous decision space (see Table 1). These methods require mul-
tiple initialisations with a priori preference information to approximate the Pareto-optimal 
front, which usually results in computationally costly search process. R&S and sH methods 
have more appeal for solving the outlined problem as they are able to approximate Pareto-
optimal solutions by optimising both continuous and discrete decision variables. However, 
these advantages are often diminished through the misbalance between a high number of 
optimisation iterations and approximation accuracy. In contrast with the above-mentioned 
algorithms, mEAs directly apply the concepts of Pareto-optimality and dominance relation, 
and thus require only a single run for searching Pareto-optimal solutions. Most of these 
algorithms are able to generate discontinuous Pareto-optimal fronts by incorporating con-
straints handling techniques.

Table 1. Comparison of simulation optimisation methods

Requir.
Methods

RSM SA SPO R&S sH mEAs
R1, R2 – – – – – –
R3 – – – – – +
R4 + – – – + –
R5 – – – – – +
R6 – – – + + +
R7 + + – – – –

The comparison of the simulation optimisation methods and algorithms in Table 1 de-
monstrates that none of them satisfies the given requirements R1 ÷ R7. It also indicates that the 
most rational way of solving the problem (1) is to compose a method based on determining the 
best hybrid combination of mEAs with other optimisation methods and algorithms.
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5. Morphological analysis of multi-objective evolutionary algorithms

5.1. Parameters of hybrid algorithms

By definition, the hybridisation means the combination of the desirable properties of different 
methods to mitigate their individual weaknesses (Reidl 2006). This definition conforms to 
an idea of morphological analysis which consists in structuring and investigating a set of all 
possible configurations of hybrid algorithms. In this case, the morphological analysis starts 
from identifying the parameters of hybrid algorithms and assigning a range of relevant values 
to each of these parameters (see Fig. 2).

Fig. 2. The links between the parameters of hybrid algorithms

The first three parameters are identified from existing taxonomies of single-objective 
metaheuristics (Talbi 2002), while others are proposed for fitting the multi-objective optimisa-
tion area. Together, they provide the basis for construction of a morphological box. Detailed 
description of the parameters and their values can be found in Napalkova (2009). Thus, the 
total number of configurations in a morphological field resulted from these parameters is 
equal to L = l1 × l2… l7 = 128, where li is the number of relevant values for i-th parameter 
(i = 1, 2, …, 7). Each configuration Ak = (a1j

(k),…, a7j
(k)) defines a certain hybrid algorithm, 

where aij
(k) denotes the j-th value of i-th parameter in the k-th morphological configuration.

5.2. Selection of the morphological configuration required

In order to reduce the morphological field to a smaller set of consistent configurations and 
select the final configuration which satisfies the given requirements (R1 ÷ R7), the follo-
wing existing hybrid multi-objective evolutionary algorithms are examined: (1) the genetic 
algorithm running on the internet (GAIN), (2) the parallel single front genetic algorithm 
(PSFGA), (3) the divided range multi-objective genetic algorithm (DRMOGA), (4) the 
parallel strength Pareto multi-objective evolutionary algorithm (PSPMEA), (5) the parallel 
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multi-objective evolutionary algorithm with a hyper-graph represented population structure 
(pMOHypEA), (6) the multi-objective cellular genetic algorithm MOCell, (7) the simple 
multi-objective genetic local search algorithm (S-MOGLS), (8) the memetic Pareto-archived 
evolution strategy (M-PAES), (9) the hybrid EA (10) and hybrid NSGA-II (Stanley, Mudge 
1995; de Toro et al. 2004; Hiroyasu et al. 1999; Xiong, Li 2003; Mehnen et al. 2004; Ishibuchi, 
Kaige 2004; Knowles, Corne 2000; Talbi et al. 2001; Deb, Goel 2001).

In accordance with the above parameters these algorithms were divided into subsets cor-
responding to five morphological configurations A1 ÷ A5.The first configuration A1 = (a12, a31, 
a42, a51, a62, a71) relates to the GAIN (Stanley, Mudge 1995) and PSFGA (de Toro et al. 2004) 
algorithms and employs so called master-slave approach (see Fig. 3). A single computer (called 
the master) takes control of the selection for mating, whereas the other computers (called the 
slaves) execute fitness evaluation, crossover and mutation operators independently. The com-
munication between computers is usually set-up through the internet. Each slave computer 
requires a copy of a simulation model to be installed. It may lead to the difference between 
execution times of the evolutionary algorithms in particular slave computers. As a result, the 
master computer will be forced to wait for the slowest slave computer to perform the selection 
operation, which can negatively affect on the execution time. In order to speed up the optimi-
sation process, a critical number of computers with identical processing times is selected. In 
this case, these algorithms may outperform classical multi-objective EAs by a lower execution 
time. Nevertheless, because of the implementation complexity, there is a risk of getting worse 
results than ones previously expected.

…

Master computer
Approximate
Pareto-optimal 
front

Simulation model Simulation model

Slave computer Slave computer

Multi-objective 
evolutionary

algorithm

Multi-objective 
evolutionary

algorithm

Fitness
evaluation
Crossover
Mutation

Selection
for mating

Fig. 3. General scheme of the algorithm based on A1

The configuration A2 = (a12, a31, a42, a52, a62, a71) lies in the kernel of algorithms denoted as 
DRMOGA (Hiroyasu et al. 1999), PSPMEA (Xiong, Li 2003) and pMOHypEA (Mehnen et al. 
2004). In this approach, a population of candidate solutions is divided into sub-populations 
called the islands, each of which is associated with a particular objective function or a certain 
range of the Pareto-optimal front. In each island, the multi-objective EA or another heuristic 
method is performed for several iterations, and non-dominated solutions are copied to the 
external archive. Periodically, each island randomly selects some solutions from its popula-
tion and sends them to the neighbouring island defined by a ring topology. This process is 
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called the migration. After it, the worst solutions are replaced by the immigrants according 
to the ranking in each island, and the optimisation is continued. Finally, all Pareto-optimal 
solutions are collected from the islands to obtain the Pareto-optimal front. However, if this 
approach is applied to solving simulation optimisation problems, simultaneous running of 
multiple simulation models on a single computer will require powerful computers and ad-
ditional parallelisation techniques (see Fig. 4).

Extemal archive
Approximate
Pareto-optimal 
front

Randomly selected
solutions

Simulation model

�e optimisation 
algorithm

Sub-population

Simulation model

�e optimisation 
algorithm

Simulation model

�e optimisation 
algorithm

Simulation model

�e optimisation 
algorithm

Non-dominated
solutions

Fig. 4. General scheme of the algorithm based on A2

The configuration A3 = (a11, a21, a31, a61, a71) specifies recent developments concerning the 
replacement of computationally expensive simulation models with artificial neural networks 
(ANNs) (Fig. 5). The ANNs play the role of metamodels that are used to approximate black-
box objective functions over the range of interest. On this way, Knowles and Corne (2000) 
proposed a metamodel-assisted multi-objective evolutionary algorithm, wherein the fitness of 
chromosomes is pre-evaluated by using a radial basis function network in order to filter the 
poorly performing chromosomes and direct only non-dominated ones to the exact evaluation.

However, the role undertaken by the metamodels in multi-objective optimisation is 
considerably harder than in single-objective optimisation. The reason is that the population 

Fig. 5. General scheme of the algorithm based on A3
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Pareto-optimal 
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Simulation model Metamodel
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remains spread over a relatively extended area of the search domain throughout the evolu-
tion. Additionally, metamodels require learning process and, for this purpose, an adequate 
set of already evaluated solutions must be available. Moreover, for ANN-based metamodels 
a large training data set (usually more than 100 data points) must be collected.

The configuration A4 = (a11, a22, a32, a41, a51, a61, a71) refers to genetic local search algorithms, 
such as S-MOGLS (Ishibuchi, Kaige 2004) and M-PAES (Knowles, Corne 2000). They are 
based on hybridisation of genetic operators of multi-objective EA with one of the local search 
algorithms. The local search can be performed by hill climbing, tabu search, simulated an-
nealing, response surface-based methodology, etc. These methods apply the local search to 
every candidate solution generated by EA so that an improved solution is competing with 
the population for survival to the next population.

In using the S-MOGLS algorithm, the local search is probabilistically applied to candidate 
solutions found by NSGA-II (Deb et al. 2001). In this connection, multiple objective func-
tions are aggregated by introducing weight coefficients that are randomly generated. Instead, 
more sophisticated the M-PAES algorithm includes two phases, such as local search phase 
at which a classical PAES algorithm is applied and the recombination phase. To maintain a 
finite set of non-dominated solutions found, a global archive is introduced, whereas a local 
archive is used as the comparison set in each of the local search phases.

These algorithms benefit from the overall perspective of EAs and good convergence of 
local search algorithms to the local optimal solutions. Such approach can significantly in-
crease the approximation accuracy of the Pareto-optimal front, while keeping the diversity 
of solutions along the front. However, running the local search after each generation of EA 
is computationally expensive (see Fig. 6).

In case of simulation optimisation, these algorithms are able to increase the approxima-
tion accuracy of the Pareto-optimal front at relatively low computational costs, because they 
apply the local search only after the genetic search is completed. Besides, these algorithms 
don’t require multiple computers and can be easily implemented on a single computer. At 
the same time, they require modification for optimising mixed decision variables (a71) and 
operating with stochastic objective functions.

Fig. 6. General scheme of the algorithm based on A3
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The configuration A5 = (a12, a32, a41, a51, a61, a71) is associated with the hybrid EA developed 
by Talbi et al. (2001) and the hybrid NSGA-II developed by Deb and Goel (2001). Here, the 
difference is that the multi-objective EA is used at the first phase to obtain the approximate 
Pareto-optimal front and to keep the uniform distribution among the Pareto-optimal solu-
tions, whereas the local search algorithm is aimed at improving the approximation accuracy 
of this front at the second phase (see Fig. 7).

Fig. 7. General scheme of the algorithm based on A5
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By this reason, the configuration A*
5 = (a12, a32, a41, a51, a61, a72) that is the nearest to the 

configuration A5 is selected for the development of the hybrid algorithm required. While 
selecting this configuration, it is taken into account that hybrid analogues such as hybrid EA 
and hybrid NSGA-II have additional disadvantages as follows:

 – a fixed number of optimisation iterations, which is defined as a termination criterion 
in the hybrid EA, doesn’t permit to measure the algorithm’s convergence level;

 – local search algorithms used in both hybrid algorithms are not powerful enough to 
perform a local improvement of Pareto-optimal solutions in condition of simulation 
optimisation;

 – local search algorithms require aggregating multiple objective functions into a weighted 
sum, which can cause a search in wrong directions.

Thus, the modification of the selected hybrid analogues and a removal of the above-
mentioned disadvantages can provide a new framework resulting in new method of solving 
the problem. Below, this method is called as the two-phase optimisation (TPO) method.

6. Two-phase optimisation method

The TPO method (Merkuryeva, Napalkova 2010) simulates processes of natural evolution 
and linear approximation in solving the considered problem. Thus it works on a population 
of individuals each of which represents a search point in the space of solution candidates. 
Using strong simplifications the set of solution candidates is subsequently modified by means 
of two basic principles: selection and variation. While selection mimics the competition 
for reproduction among these solutions, the other principle, variation, imitates the natural 
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capability of creating new solutions by means of crossover and mutation. Implementation 
of linear approximation aimed at a local search of better solutions enhances a speed and ac-
curacy of convergence of search process to true optimal solutions.

6.1. Outline view of the TPO method

A general scheme of the TPO method is represented in Figure 8. The scheme operates 
starting from the global search in Phase 1 of the search stage, in which the multi-objective 
simulation-based genetic algorithm (MOSGA) is used to find near-optimal values of discrete 
and continuous decision variables in order to optimise multiple objective functions subject 
to specific constraints and assumptions. During the local search in Phase 2, the RSM-based 
linear search algorithm improves the values of continuous decision variables found in Phase 
1. An output of Phase 2 is the approximate Pareto-optimal front 

∗
  (its mapping into the 

decision space results in the Pareto-optimal set ∗
 ). In the selection stage a single Pareto-

optimal solution ∗x  is determined by using the compromise programming method that 
measures deviations of all found Pareto-optimal solutions from an ideal (utopian) point 
predefined by decision maker.

Fig. 8. General scheme of the TPO method
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6.2. Formalised description of the MOSGA algorithm

Being a modified version of NSGA-II (Deb et al. 2001), the MOSGA algorithm (Napalkova, 
Merkuryeva 2008) contains both standard elements and problem-specific features to satisfy 
the requirements. Formally, it can be described as follows.

Let 1 2{ , | 1, }MOSGA n nP a a n Nτ = =  be a population that consists of N diploid chromosomes. 
Each diploid chromosome in MOSGAPτ  is represented by two binary strings, such as:

 ( ) { } 1
1 1

1 1 1 1 1
1 2 1 0 0,1 ,n n n n na a a a a− −= … ∈



 

 (2)

 ( ) { } 2
2 2

2 2 2 2 2
1 2 1 0 0,1 ,n n n n na a a a a− −= ∈



 

  (3)

where 1  and 2  are lengths of strings; 1n
ka  and 2n

ka  are genes at locus k.
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Binary strings 1na  are used in order to encode discrete decision variables ,n discr
ix  mea-

sured on a time scale by using a modified binary encoding, such as:

 
,

1
2(log ),

n discr
in x

a
t

 
= ϕ   

 
 (4)

where ϕ is an encoding algorithm; t is a basic period or the minimal available value of ,n discr
ix .

Binary strings 2na  are intended for continuous decision variables ,n cont
ix , and they are 

developed by using classical binary encoding procedure.
The performance of the MOSGA algorithm is controlled by the operator   that imple-

ments iterative transitions between populations according to:

 1 ~ ( ).τ + τMOSGA MOSGAP P  (5)

This operator is comosed of four parts, such as the crowded-two tournament selection 
( ),s  the uniform crossover ( ),c  the mutation ( )m  and the reproduction ( )r  so that:

 .=   s c m r      (6)

The crowded-two tournament selection operator s  maps the n-th string into multiple 
copies of itself according to its dominance depth rn and crowding distance δn. The dominance 
depth rn defines a dominance degree of a certain solution, where the value “1” corresponds 
to non-dominated solutions. The crowding distance δn estimates the density of solutions 
surrounding the n-th solution, where the value “∞” indicates the less crowded area.

The values of rn and δn are estimated based on the values of performance measures ˆny  
that are obtained from simulation experiments. In order to reduce a computational time, 
the evaluation of solution feasibility is performed after the first simulation replication based 
on ( )   ,n

j jf <γx  where jγ  is a lower bound of the j-the objective function. If the solution nx  
is infeasible, then simulation process is terminated.

After applying the uniform crossover c  and mutation m  operators, the new population 
1MOSGAPτ +  is replaced by the union of the best parents MOSGAPτ  and mating pool MOSGAτ  to 

avoid the loss of non-dominated solutions during the evolution process. Dominance depths 
of chromosomes are updated in the combined population MOSGA MOSGAPτ τ∪M . First N solu-
tions are gathered for the next population 1,MOSGAPτ +  and so on. The MOSGA algorithm 
is automatically terminated, when a number MOSGAτ  of populations with a stagnant non-
dominated set is equal to the predefined value MOSGA

∗τ .
Since the MOSGA is a stochastic algorithm, it could produce different solutions for differ-

ent random number seeds. This is supported by performing several independent optimisation 
experiments based on using unique random number seeds. Then, a composite set of best 
non-dominated solutions is created.

6.3. Local search using the RSM-based linear search algorithm

The RSM-based linear search algorithm (Merkuryeva 2005) applied to simulation optimisa-
tion presents an iterative procedure that in each iteration includes the following steps:

 – a local approximation of a response surface function;
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 – checking the fit of a metamodel;
 – a linear search in steepest descent direction.

The algorithm starts from a local approximation of the simulation response surface by 
a linear regression metamodel in a small region of independent factors. In order to fit the 
metamodel, the Plackett-Burman experimental design is created, in which response values 
are received from simulation experiments.

If the metamodel is adequate, then a local response surface is sequentially investigated 
by using a linear search in the steepest descent direction in order to improve the values of 
continuous input factors. The local search is performed for input factors that correspond to 
significant regression coefficients. If the metamodel is not adequate or further improvement 
is impossible, then RSM-based linear search algorithm is terminated.

Thus, the approximation accuracy of the Pareto-optimal front MOSGA
∗

 is increased by 
substituting some solutions by better ones found during the local search.

6.4. Compromise programming method for selecting a single solution

The obtained Pareto-optimal front ∗
 is analysed in order to select a single solution that 

could be most suitable for the implementation in practice. For that, compromise programming 
method proposed by Zeleny (1982) is used. The basic idea of this method is to identify an 
ideal trade-off solution, for which optimal values of objectives are usually given by decision 
maker. Then, the task is to find a solution that is closest to the ideal one.

There are various metrics to calculate the degree of closeness. In this work, the distance 
metric Lp defined as the p-root of the sum of deviations of the j-th normalised objective norm

jf  
from its normalised ideal value norm

jz , which are raised in the p power, is used:

 1/

1
( , ) ( ( ) ): ,

M pnorm norm norm norm p
p i i

i
L d f z

=

= −∑f z x  (8)

where d is the distance between the ideal and Pareto-optimal solution measured on the 
objective space; p is a power parameter ranging from 1 to ∞.

7. Case study

The case study is aimed at evaluating the performance of the developed simulation-based 
hybrid optimisation algorithm and TPO method by solving the multi-echelon cyclic planning 
problem for a chemical manufacturing company (Merkuryeva et al. 2011). The problem is 
to optimise parameters of cyclic plans in order to minimise inventory holding, ordering and 
production costs, and maximise end-customers fill rate. These parameters include process 
cycles and order-up-to levels, where cycles are synchronised to schedule reorder decisions 
along the planning horizon, and order-up-to levels (target levels) are required to define the 
replenishment order quantities.

7.1. Assumptions and input data

The main operations in the manufacturing supply chain are following. First, raw materials are 
converted to the liquid based raisin in the plant CH. Then, they are either delivered to direct 
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customers in Frankfurt and Pamplona or shipped to the plant DE, where other components 
are added to make different chemical products. At last, the end-products are shipped to direct 
customers connected with this plant.

The layout of supply chain simulation model is shown in Figure 9. The model is generated 
automatically using a simulation-based environment described in Merkuryev et al. (2007). 
The correspondent simulation model is described as follows. It is represented by 42 stages 
decomposed into 42 stock points (represented by triangles) and 41 processes (represented 
by rectangles). The end-customer demand is normally distributed; and cycles are defined 
according to the power-of-two policy. Cycles are presented in weeks as follows, 7, 14, 28, 56, 
where 56 days is the maximal cycle, which corresponds to one full turn of a ‘planning wheel’. 
Initial stocks at end-customer echelons are equal to order-up-to levels plus average demand 
multiplied by cycle delays. Stock point 1 has infinite on hand stock and is not controlled by 
any policy. Backorders are delivered in full. The detailed description of supply chain simula-
tion model can be found in Merkuryeva and Napalkova (2009).

Fig. 9. Layout of supply chain simulation model

Supplier

Pamplona

Frankfurt

Plant CH62 Plant DE63

Plant DE63

7.2. Multi-echelon cyclic planning problem statement

Two objective functions are introduced in the problem. The first one is to minimise the average 
total cost represented by the sum of inventory holding, production and ordering costs, i.e.:

 
1 1 1 1

Min [ ] ( )
T J I I

jt it it
t j i i

E TC CP CO CH
= = = =

= + +∑ ∑ ∑ ∑ , (9)

where TC is the total cost, CPjt is production cost in process j per period t, COit is ordering cost 
at stock point i per period t, and CHit is inventory holding cost at stock point i per period t; 
I and J correspond to the number of stock points and processes, and T defines the number 
of periods in the planning horizon.

The second objective function is to maximise the average product fill rate:

 
1 1 1 1 1 1

Max [ ] [100 * ],
T I K T I K

ikt kit
t i k t i k

E FR E QC D
= = = = = =

= ∑∑∑ ∑∑∑  (10)
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where QCikt is the sum of orders delivered by stock point ito end-customer k in time period t, 
Dkit is actual demand of end-customer k to stock point i in period t. Controlled in simulation 
experiments, this performance measure is introduced to avoid unconstrained minimisation 
of the total cost.

The decision variables are lengths of cycles Cyi and order-up-to-levels Si, which are 
interpreted as discrete and continuous type variables, respectively. In the problem, specific 
constraints are introduced that define cycles by the power-of-two policy, in which cycles are 
integers and multiples of two.

7.3. Comparison of the computational costs and solutions

The case study includes three optimisation scenarios in order to evaluate computational 
costs in order to solve the problem using optimisation software, and the proposed method 
and optimisation algorithms:

 – Scenario 1: SimRunner® optimisation software is applied;
 – Scenario 2: OptQuest® optimisation software is applied;
 – Scenario 3: TPO method is applied.

SimRunner® and OptQuest® are commercial simulation-based optimisation software, 
which are add-on compatible with discrete-event simulation tools. They automatically seek 
a course of actions to optimise performance of a simulated system by means of intelligent 
searching of a near-optimal solution. For this, SimRunner® combines the genetic algorithm 
with the evolution strategy, whereas OptQuest® is based on tabu search and scatter search. 
In both SimRunner® and OptQuest® software, artificial neural network-based metamodels 
are applied to substitute time-consuming simulation optimisation experiments in order to 
evaluate a model performance.

Computational costs are defined in terms of the number of optimisation iterations τ and 
selected as performance indicators (see Table 2). In first two optimisation scenarios, 100 and 103 
iterations were required in order to find a single solution instead of the Pareto-optimal front. 
But, the TPO method generated the approximate Pareto-optimal front in only 67 iterations.

Table 2. Comparison of results for experiments conducted

Scenarios Solution ID E[TC], € E[FR], % τ
Scenario 1 1 904.261 86.76 100
Scenario 2 1 869.192 85.32 103
Scenario 3 1 787.431 100.00 67

2 756.178 98.88
3 752.300 93.76

Table 3. Summary of the distance values for Scenarios 1–3

Scenarios
Solutions

1 2 3
Scenario 1 1.036 – –
Scenario 2 0.881 – –
Scenario 3 0.428 0.276 0.286
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The compromise programming method is used to define which of three scenarios provides 
the solution that is closest to the ideal solution normz . In this case, the average total cost and 
average fill rate of the ideal solution z  are defined by € 700.000 and 100%, correspondingly. 
As follows from Table 3, the minimal distance value d , ) 0.276norm norm =(f z  is provided by 
the second solution of the TPO method.

8. Conclusions

The paper investigated multi-objective simulation-based optimisation methods and al-
gorithms that can be applied to solving the multi-objective constrained and stochastic 
simulation-based optimisation problem. Analysis showed that multi-objective evolutionary 
algorithms fulfil the most of requirements imposed on the improved search of Pareto-optimal 
solutions. However, these algorithms, cannot simultaneously ensure high approximation 
accuracy and diversity of the Pareto-optimal front, and require high computational costs to 
generate the front. Therefore, morphological analysis of hybrid multi-objective evolutionary 
algorithms was conducted to determine the best combination of parameters that satisfy the 
formulated problem requirements.

The TPO method was developed based on using the hybrid optimisation scheme. In the 
method, multi-objective simulation-based genetic and response surface-based linear search 
algorithms were sequentially used to perform the global and the local search while optimi-
sing discrete and continuous parameters of supply chain cyclic plans. In order to prove the 
competitive advantages of the proposed TPO method, a case study with three optimisation 
scenarios was performed. The results showed increase of approximation accuracy of the 
Pareto-optimal front, while decreasing a number of simulation optimisation iterations. 
Further research on multi-objective simulation-based optimisation of complex processes 
will include application of the proposed method to a wider range of problems related to the 
optimisation of complex management processes.
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