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Abstract. Previous studies have demonstrated that online reviews play an important role in the 
purchase decision process. Though the effects of positive and negative reviews to consumers’ pur-
chase decisions have been analyzed, they were examined statically and separately. In reality, online 
review community allows everyone to express and receive opinions and individuals can reexamine 
their opinions after receiving messages from others. The goal of this paper is to study how poten-
tial customers form their opinions dynamically under the effects of both positive and negative re-
views using a numerical simulation. The results show that consumers with different membership 
levels have different information sensitivities to online reviews. Consumers at low and medium 
membership levels are often persuaded by online reviews, regardless of their initial opinion about 
a product. On the other hand, online reviews have less effect on consumers at higher member-
ship levels, who often make purchase decisions based on their initial impressions of a product.
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Introduction

The impact of online product reviews on e-commerce can be significant since potential on-
line customers often refer to online reviews from previous customers before making their 
purchase decisions (Banerjee, Bhattacharyya, & Bose, 2017; Liu, 2006). A survey showed that 
90% consumers read online reviews and 83% of them agree that online reviews affect their 
final decisions (Channel Advisor, 2011). 

Previous studies of the influence of online reviews on e-commerce focus on two aspects: 
market-level and individual-level (J. Lee & J. N. Lee, 2009; Ye & Li, 2017). Individual-level 
analysis emphasizes key variables (such as product attitude (Wang, Teo, & Wei, 2015; Kou, 
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Lu, Peng, & Shi, 2012; Lee, Park, & Han, 2008), product intention (J. Lee & J. N. Lee, 2009), 
adoption of online reviews (Cheung, Luo, Sia, & Chen, 2009; Park & Kim, 2008; Park & Lee, 
2008) and has attracted growing attention (Zhang, Zhao, Cheung, & Lee, 2014). Among 
these studies, dual-process theories (i.e., elaboration likelihood model (ELM) and heuristic-
systematic model (HSM)) discuss how individuals establish assessments and make decisions 
during information processing (Eagly & Chaiken, 1993; Cheung & Thadani, 2012; Zhang 
et al., 2014; Kou, Peng, & Wang, 2014a). The dual-process theories show that individuals 
consider all relevant information before forming a judgment and making a decision (Zhang 
et al., 2014; Ye & Li, 2017). 

However, ELM and HSM models have some limitations. First, the two models empha-
size the persuasion outcomes of online reviews on individuals, which are static information 
process. It is unclear how individual handles each piece of information during the decision 
making process. In fact, when consumers encounter the opinions of other consumers for 
a product they wish to purchase, their own initial opinions gradually changes dynamically 
(Park & Kim, 2008; Wu & Kou, 2016). Therefore, it is meaningful to study how do consumers 
form their opinions dynamically under the influence of online product reviews. The second 
limitation of the dual-process models is that they analyze the effects of positive and negative 
online reviews separately. In reality, individuals read both positive and negative comments 
simultaneously (Park & Kim, 2008; Kou & Lin, 2014b). It is interesting to analyze how indi-
viduals make purchase decisions with mixed online reviews. 

The goal of this paper is to study the dynamic information process of consumers and 
analyze what is an individual’s final attitude when affected by both positive and negative 
comments. This study revised the Receipt-accept-sample (RAS) model, which was developed 
to analyze the attitude change of voters (Zaller 2005), to examine individual’ attitude change 
under the influence of online product reviews. Through the experiment, we simulated dif-
ferent opinions of online reviews and individuals’ information processes. The findings of this 
study help us better understand online consumers’ behaviors and can be useful for designers 
of e-commerce web sites and marketers.

The rest of this paper is organized as follows. Section 1 reviews the literature of dual-
process theory, process of opinion evaluation, and the RAS model. Section 2 presents the 
proposed opinion evaluation methodology and model. Section 3 describes the computer 
simulation used to analyze consumer opinion evaluation and discusses the results. The final 
section concludes the paper.

1. Literature review 

This study analyzes how online reviews affect potential consumers’ purchase decision dynam-
ically from the perspective of opinion evaluation. This section introduces the dual-process 
theory, process of opinion evaluation in contemporary social psychologists, and the receipt-
accept-sample (RAS) model of opinion evaluation.

1.1. Dual-process theory 

Electronic word of mouth (eWOM) increases the power of peer-to-peer communication 
among individuals (Wu, 2017; Dellarocas, Zhang, & Awad, 2007; Eldomiaty, Rashwan, Din & 
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Tayel, 2016). The ELM and HSM are the theoretical foundations in studying the impact of 
eWOM communication (Cheung & Thadani, 2012). Previous studies employ the ELM and 
HSM models to analyze the effects of online reviews on consumers’ purchase decisions from 
two aspects (Zhang et al., 2014; Park, Lee, & Han, 2007; Chan & Ma, 2016):

1) What factors make important effects during the information processing? Identified 
factors of eWOM include quantity (Park et al., 2007), quality (Cheung & Lee, 2012; 
Park et al., 2007), credibility (Zhang et al., 2014; Wu, Wang, Ma & Ye, 2017), and the 
type of reviews (Floyd, Freling, Alhoqail, Cho, & Freling, 2014; Cheung & Thadani, 
2012; Park & Kim, 2008). These factors are divided into central route and peripheral 
route to analyze the effect of eWOM on consumers’ persuasion. The central route 
means that individuals with high elaboration tend to think about information care-
fully. This is a process of consumers consciously changing their attitudes. Individuals 
are usually quite rational and make a systematic use of available information (Ajzen 
& Fishbein, 1980). The peripheral route means that individuals with low elaboration 
tend to evaluate information with minimum effort (Lee et al., 2008). This is a sponta-
neous processing of consumers changing their attitudes. In this process, individuals’ 
attitude is largely a function of perception in the immediate situation (Kou, Ergu, & 
Shang, 2014c; Fazio, 1990). When consumers make purchase decisions using online 
reviews, their attitudes are often influenced by the perceived comments of online re-
views. Therefore, consumers’ attitudes are spontaneous process of change (Kou, Ergu, 
Lin, & Chen, 2016). At the same time, consumers process online reviews one at a 
time and form their opinions about products gradually. It is interesting to study how 
do consumers process each online review and reach their final decision dynamically. 

2) How do these factors affect an individual’s information process? Prior studies shows 
that quantity and quality of eWOM are positively related to the purchase intentions 
(Cheung & Thadani, 2012; Park et al., 2007; Xia & Hou, 2016) and eWOM credibil-
ity is positively related to the purchase decisions (Cheung & Thadani, 2012; Cheung 
et al., 2009). Online reviews are typically presented in three forms: positive, neutral, 
or negative reviews. Most consumers assume that a neutral review often reflects a 
negative view (Pang & Lee, 2008). Therefore, this paper considers neutral feedback as 
a negative review. Positive reviews often have positive effects on individuals’ attitudes 
toward products (Floyd et al., 2014; Mukhopadhyay, 2016). In contrast, negative re-
views usually negatively affect individual perception of products (C. Luo, X. Luo, Xu, 
Warkentin, & Sia, 2015; Cheng & Ho, 2015; Floyd et al., 2014; Berger, Sorensen, & 
Rasmussen, 2010). Though the effects of positive and negative reviews independently 
on individuals’ decision-making processes have been analyzed, no study, to the best of 
our knowledge, has considered the effects of positive and negative reviews simultane-
ously on consumer decisions. 

1.2. Process of opinion evaluation and attitude change

Attitude change usually starts from eWOM persuasion (Filieri, 2015) and is a part of the 
information processing. Processing information directly or indirectly affects individual at-
titudes (Petty & Cacioppo, 1984). In general, attitude change requires a 12-step sequence: ex-
posure, attention, interest, comprehension, acquisition, yielding, memory, retrieval, decision, 
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action, reinforcement, and consolidation (Petty & Cacioppo, 1984; Figure 1). Studies often 
describe the persuasion process using several steps from the whole process, while excluding 
other steps (Petty, Tormala, Briüol, & Jarvis, 2006).

The persuasion process often occurs when an individual is exposed to some new infor-
mation, which may or may not attract an individual’s attention. If the individual pays atten-
tion to the information and finds it interesting, the next two stages of comprehension and 
acquisition ensure that the individual learns and understands the information. The change 
of attitude mostly occurs in the yielding stage. General information processing suggests that 
a change early in the sequence would inevitably lead to a change later in the sequence (Petty 
et al., 2006). Over time individuals often develop their personal knowledge about the tactics 
used in persuasion process. This knowledge called persuasion knowledge, usually helps in-
dividuals adaptively respond to persuasion attempts and achieve their own goals (Friestad & 
Wright, 1994). The development of persuasion knowledge depends on some basic cognitive 
skills and individuals accumulated experience in social encounters. Simultaneously, persua-
sion knowledge development can increase individuals’ information processing capabilities 
(Deborah, John, & Whitney, 1986; Tee & Ong, 2016).

This study uses this theory to discuss the effect of online review valence (positive re-
view and negative review) on individual opinion evaluation and attitude formation toward 
a product.

Figure 1. Process of persuasion and attitude change (Petty & Cacioppo, 1984) 

Message, so rc ,...u e

Ex o urep s

Comm n ation u ic
i pun t

A ntiontte

In restte

C mp ehensiono r

Acquis t ni io

Y inield g

Memory

Retr aliev

Decision

Ac onti

R i f rcemente n o

Consolidation

P asersu ion A i de to behaviortt tu



Technological and Economic Development of Economy, 2018, 24(5): 2045–2064 2049

1.3. Receipt-accept-sample (RAS) model

When presidential candidates are running for election, they utilize a variety of campaigns. 
Zaller (2005) analyzes the attitude change of voters under RAS model during an election. He 
found that when people receive various messages regarding a candidate and often have three 
reactions: either in favor of, opposed to, or neglecting. These reactions can be interpreted 
as receiving and accepting the information, receiving but not accepting the message, and 
neglecting the message (Deng, Liu, & Zeng, 2012).

In Zaller (2005), When an individual agrees with the presented opinion, the reception 
probability of an individual is defined as follows:

 
( )0 1

0 1 *
11 ,

1
( )

i
r i m m W

P m m W
f e +

= −
+ +

， ，   (1)

where f represents the floor level of reception; in most cases, f equals 0. m0 denotes the 
intensity of the given message, and m1 denotes the strength of the relationship between the 
individual’s awareness and the reception probability of the message. Wi describes the indi-
vidual’s awareness level, which is often affected by his/her own knowledge and experience 
of the information. With more knowledge of the information, the individual usually has a 
higher degree of awareness.

When receiving information, the probability of an individual accepting it is defined as:

 ( )0 1  2  
0 1 2 * *

1, ; ,  ( )
1 i i

a i i n n W n L
P W L n n n

e − − −
=

+
， ，   (2)

where n0 is the credibility of the given message, n1 is the resistance of the individual’s aware-
ness to persuasion of the given message, and n2 is the resistance of the individual’s predis-
position to persuasion. Li is the individual’s predisposition to accept the given information, 
which defines the distance of predisposition and acceptation of information. Wi retains the 
same meaning.

When an individual receives a message and then accepts the opinion, the probability is 
as follows:

 0 1 0 1 2* , ; .( ) ( )s r i a i iP P m m W P W L n n n= ， ， ， ，  (3)

Receiving and accepting information means that individual is persuaded by the message. 
The Zaller model describes the process of receipt message by individuals of accepting the 
message or not and captures individuals-level differences in both reception of and persuasive 
information. Meanwhile, it accommodates opinion change over time periods (Kulakowski, 
2009).

Thus, researchers consistently discuss opinion evolution based on RAS model. For ex-
ample, using a free parameter, presented correlations between previously and newly received 
messages, Kulakowski (2009) argues that individuals’ political awareness increase with time 
first exponentially, later linearly. Then, Deng et al. (2012) investigate the process of opinion 
evolution, based on different factors of public opinion. The method gives a connection be-
tween macroscopic dynamics and microscopic behavior.
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This paper proposes an integrated model of opinion evaluation based on the RAS model 
to investigate the process of individuals receiving and re-examining their opinions. Using the 
integrated model, we can know more the dynamic impact of online reviews on consumer 
decision-making.

2. Integrated model of opinion evaluation

Though RAS model describes individual’ information process, it does not analyze how in-
dividuals handle positive and negative online reviews. This study redefines the rules of in-
dividual’s opinion evaluation underling positive and negative reviews based on RAS model. 
Through the integrated model, we can better understand the effect of online reviews on 
individual’ purchase decision in dynamic information process. 

Online forums provide numerous communication opportunities to consumers (Kim, 
Jang, & Adler, 2015) and allow everyone to express their views and receive opinions from 
others (Libai et al., 2010). As a result, individuals often re-examine his/her opinions after 
receiving messages from others (Deng et al., 2012). Before consumers make a purchase de-
cision, they often pay attention to online reviews and have three basic reactions to online 
messages (Deng et al., 2012): 

1) Receive and accept the opinion of a message.
2) Receive a message, but do not accept the opinion.
3) Ignore a message, indicating a neutral opinion of the message.
When consumers refer to an online community before making a purchase decision, they 

often encounter positive, neutral, and negative reviews. Since most consumers assume that 
neutral reviews reflect a negative view (Pang & Lee, 2008), this study treats neutral reviews 
as negative. Therefore, we can describe consumers’ reactions using one of the following cat-
egories (Figure 2):

1) Individuals will re-evaluate opinions to strengthen their initial opinions assuming re-
ceiving and accepting supporting information (the opinion of information is consistent 
with initial information) in time t, although they initially retain a positive (negative) 
or no opinion.

2) Assume individual accepts an opposing information, having received it, and cannot ac-
cept supporting information (whether received or not) in time t, they will re-evaluate 
their initial opinions to support the opposing opinion (the opinion of information 
is inconsistent with initial information.), despite holding a positive (negative) or no 
opinion initially.

3) Individuals will re-evaluate toward no opinion (neutral) assuming that they ignore 
all incoming information (positive or negative messages), or accept both positive and 
negative information in time t. 

Based on the equations (1) and (2) in the RAS model, we define consumers’ reactions 
dynamically as follows:

1) If an individual i receives a positive review in period t, the probability is defined as 
follows:
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where m0tp is the intensity of the incoming positive review in period t, and f, m1, Wi 
have the same meaning as in Eq. (1).

2) If an individual i accepts a positive review in period t, the probability is defined as
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where n0tp is the credibility of the incoming positive review in period t, n1t is the 
resistance of the individual’s awareness to persuasion of the message in period t, and 
n2t is the resistance of the individual’s predisposition to persuasion in period t. Li has 
the same meaning as in Eq. (2).

In period t, if the individual receives a negative review, it is defined as Rint and accepts a 
negative review is Aint. 

If the individual ignores all incoming information (positive or negative), or accepts both 
positive and negative information in time t, the individual will decay toward having no 
opinion in a fixed probability d (Zaller, 2005).

Thus, assuming a positive opinion in period t, the probability of holding a negative opin-
ion in period t + 1 is:

 
( )1  * (1 ) *   *  1 .Nt int ipt int ipt int int iptP R R A R R A A+ =   − + −  

  (6)

Figure 2. Three consumer reactions to online reviews
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Assuming a negative opinion in period t, the probability of transforming to a positive 
opinion in period t + 1 is:

 
( )1 * (1 ) *   * 1 .Pt ipt int ipt ipt int ipt intP R R A R R A A+    = − + −   

  (7)

Suppose an individual has an opinion in time t, the probability that the individual chang-
es to have no opinion in period t + 1 is:

  1 1 1* 1No t Pt NtP d P P+ + + = − −   

.  (8)

The probability of opinion evaluation is a simple Markov system. Considering any past 
time (…, t–2, t–1), assuming the value of ( ) X t denotes an individual’s state in time t, an 
individual’ state in time t + 1 is:

 ( ) ( ) ( ) ( ) ( ) ( )1 1 , 1 1 , )P X t x t X t x t X t x t + = + = − = − … = │

                  ( ) ( ) ( ) ( )1 1 .P X t x t X t x t + = + = │
                                                     

 (9)

Under the Markov system, if 1NtP +

 is larger than 1 PtP +

 and  1No tP +

, individual i will 
change his/her opinion to negative in state ( )1X t + . Assuming 1PtP +

 is larger than 1 NtP +

 
and  1No tP +

, individuals will evaluate their opinion with positive information. Otherwise, if 
 1No tP +

 is larger than 1 NtP +

 and 1PtP +

, individuals will hold no opinion with incoming 
information.

Therefore, assuming that an individual’s opinion is ( )X t  in period t, the opinion in 
( )1X t +  is defined as follows:

 ( ) { }1 1  11  ,  , .Pt Nt No tX t Max P P P+ + ++ =
    

 (10)

3. Numerical simulation and discussion

When individuals receive opinions and re-examine their own, the dynamics of opinion in-
teractions cannot be directly measured in observational outcomes (Muchnik, Aral, & Taylor, 
2013). Therefore, this study uses simulation to describe the dynamic information process. We 
designed an experiment to analyze the opinion evaluation process of individuals under the 
influence of online reviews. Section 3.1 gives research design, 3.2 describes the parameter 
settings in the simulation, and 3.3 analyzes the results.

3.1. Research design

Positive and negative online product reviews are usually random. The simulation assumes 
that online review opinions are random values and range from –2 to 2. A value of 2 means 
the highest positive review of a product and –2 indicates the most negative review (Deng 
et al., 2012). Initial opinions of individuals were 0.5, 0, or –0.8, which indicate a positive 
opinion, no opinion, or negative opinion about a product at the beginning (Deng et al., 2012). 

To study the dynamic process of consumers’ opinion evaluation, we set the number of 
messages from 0 to 2000, and their values were randomly distributed between –2 and 2. 
The simulation was conducted using Mat Lab 8.0 (Matlab, 2013) on computer of i5-4200H 
(4CPU, 2GHz), 4GB RAM.
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3.2. Parameter assignment

Membership is defined as individuals’ identification in a community (Hsu & Liao, 2014). 
Prior study shows that membership is the key determinant of virtual community’ cohesion 
(Luo et al., 2015). Membership levels at online shopping sites describe the degree of engage-
ments and the amount of money of online shopping consumers. It also reflects consumers 
own involvement and expertise experience (persuasion knowledge), which significantly affect 
how eWOM information is processed (Luo et al., 2015). Previous study indicates individuals’ 
characteristics (e.g., persuasion knowledge) significantly affect their evaluation criteria for 
the received eWOM information (Luo et al., 2015). Individuals with high membership levels 
may evaluate information using different criteria, compared with other low membership level 
individuals (Ridings, Gefen, & Arinze, 2002). 

Prior study shows that a higher membership level means more awareness of products 
and platforms (Fu & Wang, 2013). For instance, 360BUY.com, a large integrated network 
of retailers, divides membership levels into 10 groups and each level ranges from 0 to 10 
(Fu & Wang, 2013). Thus, in Eq. (1) and (2), this study assumes that the awareness is lin-
early related to membership levels, namely, Wi = k1 × Ri, Ri is the membership level and k1 
is the correlation coefficient. We assume that membership levels are numerical values and 
Ri ranges from 0 to 10. At the same time, we assumed that the Ri is generally related to Wi, 
and set k1 = 0.3, Ri ∈ (0,10).

More often than not, individuals cannot read every online review. Rather, they read only 
part of the reviews that they consider important. A prior study found that the ratio of positive 
reviews has positive effect on the product sales (Babic, Sotgiu, De Valck, & Bijmolt, 2016). 
Thus, this study redefines information intensity as the ratio of positive reviews over online 
reviews in Eq. (1):

 Intensity = 1

1

positive reviews

 reviewsonline

M

i
N

j

=

=

∑
∑

  (i =1, 2, 3 … j = 1, 2, 3…).  (11)

where M is the total number of positive reviews, N is the total number of online reviews of 
the product.

For example, Philips Shaver has 107267 reviews on 360BUY.com, a large network of 
retailers (Fu & Wang, 2013). Among the reviews, 103391 are positive and 3876 are negative. 
The positive intensity of this product is 0.96 and the negative intensity is 0.04. We also cal-
culate the intensity of other intended products with this equation. The simulation assumes 
that the information intensity of positive reviews is 0.96 and that of negative intensity is 0.04 
(Deng & Liu, 2011).

In Eq. (1), m1 is the relationship between awareness and reception, which is distinct for 
each individual. In many cases, individuals tend to “suddenly realize” having a certain aware-
ness (Kulakowski, 2009). We assume the value of m1 as a truncated exponential function 
from [0, 2] (Deng et al., 2012).

Many researchers are interested in the credibility of online review valence. Most studies 
find that negative reviews are more important than positive ones in consumers purchase de-
cisions (Ullah, Amblee, Kim, & Lee, 2016; Pietri & Shook, 2013; Lee & Koo, 2012; Lee et al., 
2008). Therefore, we assume the information credibility of negative and positive reviews as 
0.6 and 0.4, respectively.
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In Eq. (2), n1 measures the effect of awareness on resistance to persuasion by an incoming 
message (Deng et al., 2012). As we cannot foresee an individual’s situation, we assume that 
n1 follows a random even distribution in [–2, 0] (Deng et al., 2012).

In Eq. (2), n2 is the stubbornness level of an individual. Existing research discovered that 
higher the level of stubbornness, the more persistent an individual’s views are (Deng et al., 
2012; Khare, Labrecque, & Asare, 2011). Thus, we assume that individual stubbornness levels 
follow a normal distribution from [0, 5].

In Eq. (2), Li measures the distance between an individual’s opinion and an incoming 
message. The value of Li is usually coded from –1 to 1 (Deng et al., 2012). –1 indicates a huge 
difference between two opinions and 1 describes a perfect consistency between two opinions.  

Table 1. The change of RAS model to integrated opinion evaluation

RAS model Condition of model Integrated model of opinion evaluation
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1) Self-awareness is linearly 
related to the membership 
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2) The definition of message 
intensity is as follows:
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3) If Xi(t) – Xj(t)| ≤ 0.5, then 
Li = 1,otherwise, Li = –1. 

If an individual i receives a positive review 
in period t, the probability is defined as 
follows:
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If an individual i accepts a positive review 
in period t, the probability is defined as
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If the individual receives a negative review, 
it is defined as Rint and accepts a negative 
review is Aint. 

Then the probability of holding a negative 
opinion in period t + 1 is:
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=  

.

The probability of transforming to a 
positive opinion in period t + 1 is:

( )1 * (1 ) *   * 1Pt ipt int ipt ipt int ipt intP R R A R R A A+    = − + −   

( )1 * (1 ) *   * 1Pt ipt int ipt ipt int ipt intP R R A R R A A+    = − + −   

.

The probability that the individual changes 
to have no opinion in period t + 1is:

 1 1 1* 1No t Pt NtP d P P+ + + = − −   

.

The opinion in ( )1X t +  is:

( ) { }1 1  11  ,  , Pt Nt No tX t Max P P P+ + ++ =
  

.
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We introduce the Deffuant model to measure two opinions (Deffuant, Neau, Amblard, & 
Weisbuc, 2000). In this model, for n (n ≥ 2) individuals of group, individual i holds an opin-
ion Xi(t) in time t, who will change their opinion to individual j’s Xj(t) in period t + 1 if the 
following holds true: 
 |Xi(t) – Xj(t)| ≤ e (e ∈ (0,1)).  (12)

The opinion of individual i in period t + 1 will change to:

 Xi(t + 1) = Xi(t) + j[Xj(t) – Xi(t)] (j ∈ (0, 0.5)).  (13)

Using the Deffuant model, we assume e = 0.5, and j = 0.4. Therefore, if | Xi(t) – Xj(t)| ≤ 
0.5, then Li = 1; otherwise, Li = –1.

In addition, we assume the value for the fixed probability d is 0.2 in Eq. (8).
For a better understanding, the change in the RAS model is summarized in Table 1.

3.3. Simulation results

To investigate consumer’s opinion evaluation with continuous messages, we set the number 
of messages from 0 to 2000 to represent the whole process. In Figure 3, the x-axis represents 
the time steps, every time step represents a randomly message. The y-axis is the opinion 
value, which ranges from –2 to 2. Figures on the left show time steps from 0 to 100, and the 
figures on the right show time steps range from 0 to 2000. The initial opinions of individual 
are 0.5, 0, and –0.8, respectively, in Figure 3 a), b), and c). 

In Figure 3, with a lower membership level (Ri = 1), individual’s opinion fluctuates sub-
stantially, regardless of their initial opinions. In 100 time messages, individuals examine their 
opinions with every incoming message and without a stable opinion. When the number 
of messages increased to 2000, we see that an individual’s opinion fluctuates with incom-
ing online reviews. This indicates that individuals with low membership levels are easily 
persuaded by incoming online reviews, regardless of the number of online reviews. With 
low membership level, individuals’ involvement and expertise experience are not rich, while 
persuasion knowledge is not enough. Therefore, they are always in adaption opinion of others 
to establish own judgments.

In Figure 4, the initial opinions of individual are 0.5, 0, and –0.8, respectively, in a), b), 
and c). Opinions of individuals with medium membership levels (Ri = 5) become stable after 
reading sufficient online reviews. In 100 time messages scenario, individuals always keep 
their previous opinions for a period time. However, they will examine their opinions if they 
accept a new message, whether it is positive or negative. In 2000 time messages, individuals 
examine their opinions in a stable situation with a great number of messages. Interestingly, 
the stable state of an individual’s opinion can be negative or positive, regardless of whether 
their initial opinion was positive or negative. If individual only accept positive opinion of 
messages in a certain period time before the stable state, and then the individual will evaluate 
a positive opinion in the stable state, otherwise for the negative opinion stable state. However, 
once individuals are in a stable situation and have an extreme opinion of a product, online 
reviews will not affect them. 
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Figure 3. Process of opinion evaluation (Ri = 1): a) Original opinion is 0.5;  
b) Original opinion is 0; c) Original opinion is –0.8
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Figure 4. To be continued
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In Figure 5, opinions of individuals with high membership levels (Ri = 9) are not affected 
by incoming online reviews. Their initial opinions remain stable, regardless of the number 
of online reviews. This shows that online reviews have little effect on individuals with higher 
membership-levels, who often make purchase decisions according to their original impres-
sion of a product. 

To show the different effects of online product reviews on individuals with different mem-
bership levels, Figure 6 selected 30 random online reviews with different opinion values. The 
reason to choose 30 reviews is that consumers usually read only the first or last page of online 
reviews (about 30) before making a purchase decision (Cheung & Lee, 2012). 

Figure 6 shows how individuals’ purchase decisions were affected by online reviews. There 
are 30 randomly selected online reviews with different opinion values (range from –2 to 2) 
and 10000 randomly generated individuals with different membership levels, whose initial 
opinion is −0.8. The results show that at lower membership levels, individual opinion fluctu-
ated depending on the contents of the online reviews, and will not remain in a stable state. 
Individual opinion will also fluctuate at medium membership levels but will remain stable 
and consistent with extreme opinion. Further incoming messages did not persuade them. 
Individual opinion fluctuates at high membership levels depending on the content of origi-
nal opinions, which is slightly persuaded by the incoming message. With a low membership 
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Figure 4. Process of opinion evaluation (Ri = 5): a) Original opinion is 0.5;  
b) Original opinion is 0; c) Original opinion is –0.8
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Figure 5. The process of opinion evaluation (Ri = 9): a) Original opinion is 0.5;  
b) Original opinion is 0; c) Original opinion is –0.8

Figure 6. Individual opinion evaluations of 30 random online reviews
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level, individual’ persuasion knowledge is little, thus, individual can receive any informa-
tion. However, with a medium or high membership level, individuals have more persuasion 
knowledge; they will subconsciously begin to accept a point of view that is consistent with 
the information, and ignore the messages that depart from their own point of view. Such 
behavior more easily leads to an opinion polarization (Deng et al., 2012).

4. Discussions

Online product reviews have important impacts on potential consumers’ purchase decisions. 
Until now, no study has examined how consumers form their opinions dynamically under 
the influence of both positive and negative online product reviews.

This study proposes an opinion evaluation model based on the RAS model to analyze 
how online review valences affect individuals’ opinion evaluation. The proposed model was 
utilized in the simulation to investigate the effects of online reviews on consumers with 
different membership levels. This study shows whole dynamic information processing in 
consumers purchase decision. Compared with previous study (using ELM (Park & Kim, 
2008; Park & Lee, 2008) or HSM (Zhang et al., 2014)), only show the effect of eWOM on 
individuals purchase decision. This paper is better to understand the process of individuals’ 
decision making affected by eWOM.

The findings of this paper can be summarized as follows: 1) Individuals with different 
membership levels often interact with online reviews differently. This result is similar to the 
Park and Kim (2008), Park and Lee (2008). 2) Though individuals with lower membership 
levels may be easily persuaded by incoming messages, they rarely achieve stable opinions, 
regardless the number of online reviews. Therefore, they cannot make easy and quick deci-
sions when referencing online reviews. Prior study found that low involvement consumers 
are more likely to make their decisions based on the popularity of a product than reading 
reviews elaborately (Park & Lee, 2008). 3) Online reviews can persuade individuals at me-
dium membership levels and they will reach stable states with extreme opinions after reading 
certain number of reviews. This stability enables them to make quick purchase decisions. 
4) For consumers at higher membership levels, online reviews do not affect their opinions. 
They usually make purchase decisions based on their original impression of a product. Prior 
study shows that consumers with high involvement may use first several reviews to form 
their purchasing intention, and not use additional new reviews for their purchase decisions 
making (Park & Lee, 2008; Park & Kim, 2008). 

There are three managerial implications of these results for e-commerce websites. First, 
classifying membership levels with the information sensitivity of potential consumers can 
be useful. The findings show that individuals with different membership levels have differ-
ent sensitivities to product information. For instance, consumers with high expertise are 
likely early-adopters in the introduction stages of a product (Park & Kim, 2008). Businesses 
can target specific market segments and develop advertising strategies by considering these 
sensitivities appropriately.

Furthermore, as Park and Kim (2008), Park and Lee (2008) indicate potential consumers 
have different levels of expertise in product information. Our findings show that online re-
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views usually persuade individuals with low membership levels; however, they do not develop 
stable opinions of products. At medium membership levels, individuals often have extreme 
opinion of products. Therefore, businesses can mix positive and negative online reviews and 
render the latest positive reviews on priority. This can help consumers form positive opinions 
and make a quick purchase decision than they would otherwise.

Third, highlighting the ratio of positive and negative reviews for products can be ben-
eficial. For medium level consumers, high positive to negative ratios can accelerate their 
process to form positive extreme opinions. Consumers with higher membership levels often 
make purchase decisions based on their initial opinions of products. Highlighting the ratio 
of positive to negative reviews can provide a comprehensive view of products in the intro-
duction stage. 

There are a couple of future research directions. First, this paper only considers the devel-
opment of persuasion knowledge in membership level. In fact, there is always a development 
of persuasion knowledge in adoption of online reviews. Future study can further explore the 
impact of consumer persuasion knowledge on the adoption of online reviews. Second, this 
paper discusses the influence of online review with opinion evaluation. Future study can 
further explore individual preferences on online reviews using text analysis or sensitivity 
analysis.
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