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Abstract. Multi criteria decision aid (MCDA) deals with the problem of evaluating a set of finite 
alternatives regard to a set of finite criteria. A remarkable volume of qualitative and quantitative 
researches are done on decision making methods and situations, indicating its important role for 
managers at different organizational levels. These types of problems are applied in many different 
fields of human life. A challenging feature of these problems is non-existence of an optimal solu-
tion due to considering multiple criteria and the proposed methods seeking to find a satisfactory 
solution called efficient of Pareto-optimal. In consideration of MCDA problem, in this paper a new 
method is proposed for solving DM problems, consisting three fundamental steps of initialization, 
orthogonalization, and comparison. Thus, a new MCDA method called total area based on orthogo-
nal vectors (TAOV) is introduced. This method is constructed on orthogonality of decision criteria. 
Application of TAOV method is illustrated in a decision problem and its performance is evaluated 
regard to other MCDA methods. Furthermore, its features are explained around the features of a 
desirable MCDA method. The obtained results indicate that the TAOV method can be considered 
as an acceptable method of handling multi-criteria decision making problems.

Keywords: decision making, Pareto-optimal, multi-criteria decision aid, orthogonality, principal 
component analysis, TAOV. 
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Introduction

Decision making (DM) problems differs from studying in various schools of selecting an 
appropriate supplier or a human resource manager. A remarkable volume of qualitative and 
quantitative researches are done on DM methods and situations, indicating its important role 
for managers at different organizational levels. Choosing the best way to assign resources 
reasonably and obtain benefits for corporate and the employees is the main function of DM 
for managers (Hashemi et al. 2016).

http://creativecommons.org/licenses/by/4.0/
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Selecting a solution based on one criteria is not sufficient and may lead to risky solutions. 
The real world problems are usually complex and it is impossible to achieve an optimal deci-
sion considering only a single criterion (Zavadskas et al. 2014). The Multi Attribute Decision 
Making methods (MADM) are developed to evaluate the decision alternatives considering 
several criteria simultaneously and selecting the best solution. The role of MADM methods 
has been approved during recent decades in various fields. MADM methods in general, are 
very useful in many problems such as project selection, supplier selection, risk assessment, 
contractor evaluation, etc. Many studies have been made on MADM methods and applica-
tions (Keshavarz Ghorabaee et al. 2015). Some valuable and extensive reviews on MADM 
techniques can be found in Hwang and Yoon (1981), Tzeng and Huang (2011), and Köksalan 
et al. (2011). 

MADM provides an effective tool for comparison, based on the evaluation of multiple 
conflict criteria. Different types of MADM methods have grown very fast among different 
areas of operational research by virtue of it is often found that many concrete problems can 
be represented by several conflicting criteria (Hashemi et al. 2016).

One of the first structured studies in the field of scientific decision theory is von Neu-
mann – Morgenstern utility theory (Neumann, Morgenstern 1953) introducing the notion of 
utility theory in human decisions. Later, multi attribute utility theory (MAUT) is proposed to 
capture decision makers’ utility about an alternative, upon different attributes (Keeney, Raiffa 
1976). MAUT applied extensively in DM problems (Torrance et al. 1982; Min 1994). Con-
sidering axioms of MAUT, several methods are proposed for approximating decision mak-
ers’ utilities. Hwang and Yoon (1981) called MAUT based techniques as scoring methods. 
Churchman and Ackoff (1954) introduced simple additive weighting (SAW), Saaty (1980) 
proposed analytic hierarchy process (AHP) for simple hierarchical problems and later ex-
tended it to network structures, known as analytic network process (ANP) (Saaty, Vargas 
2006). ANP is a generalization of AHP considering the dependence between the elements of 
hierarchy. Actually, it considers the interactions among decision elements while making deci-
sion. Therefore, it is proposed on the basis of a network rather than a hierarchy. It is useful for 
dealing with complex decisions involving interdependent elements including some feedbacks 
among them in the context of benefit, cost, etc. Furthermore, it leads to valid results in real 
practice (Saaty 2005). Sivilevicius et al. (2008) applied additive assessment as a multi-crite-
ria decision making method. Turskis et al. (2009) proposed a six step-algorithm including 
normalization, choosing an optimum criterion, and evaluating the alternatives for solving 
MADM problems. Peldschus et al. (2010) inspired game theory framework in solving multi-
criteria decision making problems. Zavadskas et al. (2012) introduced weighted aggregated 
sum product assessment (WASPAS) method for evaluating a number of alternatives in terms 
of a number of decision criteria. They applied a joint method of Weighted Product Model 
(WPM) and Weighted Sum Model (WSM), two well-known methods, to create WASPAS 
to increase the accuracy of decision making. Accuracy of two rather well known methods 
and the accuracy of aggregating both methods is analyzed, demonstrating that accuracy of 
aggregated method is larger, comparing to accuracy of single one (Zavadskas et al. 2012). 
Recently, Best-Worst Method (BWM) originated by Rezaei (2015), deriving the weights upon 
pairwise comparison of the best and worst alternatives regarding other alternatives. More-
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over, the resulted weights are more consistent than AHP results consequently combinable 
with other multi criteria decision making (MCDM) methods (Rezaei 2015). Beyond usual 
additive utility functions, Zavadskas et al. (2009) applied multiplicative utility function in 
decision making problems.

During these decades, another type of MCDM methods called as Compromise program-
ming is introduced. In this regard, many methods are recommended. Zeleny (1974) proposed 
the notion of compromise programming to deal with multiple non-commensurable objec-
tives in order to find a set of non-dominated solutions. Following the concept of compromise 
solution, Hwang and Yoon (1981) developed the Technique for Order Preference by Simi-
larity to an Ideal Solution (TOPSIS) to identify solutions from a finite set of alternatives. In 
this method, the desired solutions should indicate the shortest distance from positive ideal 
solution and simultaneously the farthest distance from the negative ideal solution. Zavads-
kas et al. (1994) proposed the COPRAS method as a compromising method evaluating the 
alternatives on the ratio to the ideal solution and the ratio to the anti-ideal solution. The 
VIKOR method is another MCDM method introduced by Opricovic (1998) as a multicriteria 
optimization of complex systems based on ranking and selecting the options from a set of 
alternatives against conflicting criteria. This method is widely employed in DM problems. 
Zavadskas and Turskis (2010) developed the ARAS (Additive Ratio Assessment) method 
capable for dealing with problems encompassing qualitative and quantitative criteria being 
hinged on different units of measurement and a different optimization direction. Brauers and 
Zavadskas (2006) presented the MOORA (Multi-Objective Optimization by Ratio Analysis) 
method. Later, Brauers and Zavadskas (2010) presented the MULTIMOORA method includ-
ing MOORA plus the full multiplicative form. 

The Outranking methods create the third category of MADM methods arose from Eu-
ropean school of decision making techniques (Roy, Vanderpooten 1996). The problem is to 
build a preference relation on a set of multi-attribute alternatives on the basis of preferences 
expressed in each attribute and “inter attribute” information. Outranking methods were first 
developed in France in the late 60s. As a matter of fact, they were introduced following diffi-
culties experienced with the value function approach in dealing with practical problems. The 
most well-known outranking methods are ELECTRE, ORESTE, and PROMETHEE (Bozbura 
et al. 2007). The ELECTRE method is one of the main outranking methods. The ELECTRE 
approach was introduced in 1968 (Roy 1968). The origin of ELECTRE methods refers to 1965 
to the European consultancy company SEMA (Benayoun et al. 1966). Different versions of 
ELECTRE have been extended including ELECTRE I, IS, II, III, IV and TRI during recent 
decades, being comprehensively built on the same fundamental concepts (Marzouk 2011); 
however, might be different in way of defining the outranking relations between options and 
the way that they apply these relations to achieve the final ranking of the options (Wang, 
Triantaphyllou 2008). The ORESTE method was initially introduced by Roubens (1982). 
This method allows to rank the experiments in a complete order or in a partial order by 
considering incomparability. Abounding MCDM methods require some detailed information 
concerning different criteria’s consisting of weights, order relation, preference functions, etc. 
In the vast majority of cases, it is pretty difficult to obtain this information in real world stud-
ies (Givescu 2007). Nonetheless, ORESTE deals with this situation where the alternatives are 



1682 S. H. Razavi Hajagha et al. Total area based on orthogonal vectors (TAOV) as a novel method ...

ranked against to criterion ci, and the criteria themselves are ranked upon their importance 
(Dinçer 2011). PROMETHEE is different outranking method introduced by Brans (1982). 
A couple of years later, PROMETHEE I (partial ranking) and PROMETHEE II (complete 
ranking) were developed consequently. About ten years coming after, two other versions of 
this method; PROMETHEE III (ranking based on intervals) and PROMETHEE IV (con-
tinuous case) were extended in order to solve the decision making problems (Albuquerque 
2015). Some studies also applied hybrid methods including different techniques in real world 
applications (Zavadskas et al. 2013). Beyond the mentioned methods, there are a variety of 
different methods for solving MADM problems. Part of studies compared the performance 
of these methods. Saaty and Ergu (2015) reviewed the problem of choosing the best MADM 
method. They proposed a framework consist some features for a good MADM method in-
cluding simplicity of execution, comprehensive structure, logical and mathematical proce-
dure, justifiable axioms, scales of measurement, and ranking of tangibles and intangibles. 

Usually, the above methods suppose that decision criteria are independent to avoid any 
over or underestimation of the scores. However, some researchers considered the problem 
of criteria independence. Antuchevičiene et al. (2010) proposed using Mahalanobis distance, 
considering correlation among criteria, in TOPSIS method. Wang, Z. and Wang, Y. (2014) 
improved classic TOPSIS method by proposing an improved relative closeness and using 
weighted Mahalanobis distance when criteria are correlated. Zhu et al. (2015) applied prin-
cipal component analysis to eliminate correlation among criteria and transformed the initial 
decision matrix into an independent decision matrix. Then, the TOPSIS method is applied 
over the new obtained matrix. 

In consideration of MADM problem, in this paper a new method is proposed for solving 
DM problems, consisting three fundamental steps of initialization, orthogonalization, and 
comparison which will be detailed in the next sections. To this end, the proposed method, 
entitled total area based on orthogonal vectors is detailed in section 2. A numerical example 
is solved with the proposed method in section 3 and the obtained result is compared with 
different methods. Finally, the advantages of the method on conclusion remarks are explained 
in section 4. 

1. Total area based on orthogonal vectors (TAOV) method

Consider a multi-criteria decision making problem consist evaluating m discrete alternatives 
1 2, , , mA A A…  based on n finite criteria of 1 2, , , nC C C… . Furthermore, the criteria weight vec-

tor ( )1 2, , , nw w w w= …  can be determined by using different methods, incorporating pair-
wise comparison (Saaty 1980), Entropy (Hwang, Yoon 1981), LINMAP (Srinivasan, Shocker 
1973), SWARA (Kersuliene et al. 2010) or FARE (Ginevicius 2011).

Regarding the aforementioned situation, the problem can be formulated in the following 
form of a decision matrix:
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Where, xij is the performance of alternative , 1,2, ,iA i m= …  with regard to criterion 
, 1,2, ,jC j n= … . The first step of the proposed TAOV method, similar to many other MCDM 

methods, is to normalize decision matrix. Considering a monotonic increasing utility for 
decision criteria, the set of benefit criteria, B, i.e. the more is better, is normalized as:

 ,
max

ij
ij

iji

x
r j B

x
= ∈ .  (2)

For cost type criteria, C, i.e. the less is better, normalization is completed as below:

 
min

,
iji

ij
ij

x
r j C

x
= ∈ .  (3)

Subsequently, the normalized decision matrix R is constituted:
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The weighted normalized matrix ijWN r =    is afterwards constructed by multiplying 
each normalized element nij in its corresponding criterion weight wj, i.e. ij j ijn w n= ⋅ . There-
fore, 
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It is worth noting here that a critical question in this phase is whether to assure that 
columns of matrix WN are not correlated with each other. Considering any two columns 
of ( )1 2, , ,k k k mkr r r r= …  and ( )1 2, , ,l l l mlr r r r= …  of the above matrix, are they independent 
of each other or not? To assure this independency of weighted normalized decision matrix, 
since TAOV method acts on orthogonal vectors, the next step aims to transform current cri-
teria vectors of 1 2, , , nC C C…  to an orthogonal vector of 1 2, , , nY Y Y… . To find this orthogonal 
vector, principal component analysis (PCA) is applied on matrix WN. PCA finds a linear 
combination of vectors called principal components being independent. Each principal com-
ponent, yj, is a linear combination of vectors ( )1 2, , , nr r r…  (Jolliffe 2013), i.e.
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(6)

Where, A includes the weights used in PCA to transform correlated criteria into in-
dependent ones. The PCA also can be fixed easily by SPSS package. Performing PCA, 
the values of each alternative can be found easily in the corresponding components. 
i.e. for an alternative Ai, its score in component yj, illustrated as yij, can be calculated as 

1 1 2 2ij j i j i jn iny a x a x a x= + +…+ , where ( )1 2, , ,j j jna a a…  are the coefficients of variables in 
jth component.
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Now, suppose that PCA is applied on WN matrix, using SPSS package, and the orthogo-
nal decision matrix Y is computed:
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Remark that columns of matrix Y are orthogonal; thus, distance between different cri-
teria can be calculated by Euclidean distance (according to Pythagorean Theorem). Con-
sider an alternative Ai, whose coordinate in two orthogonal components yk and yl are 
( )0,0, ,0, ,0, ,0iky… …  and ( )0,0, ,0, ,0, ,0ily… … . Then the distant between these two points is:

 2 2
,

i
k l ik ild y y= + .  (8)

Figure 1 illustrates the geometric interpretation of ,
i
k ld .

Suppose that performance of an alternative on criteria is ordered according to indices of 
criteria. i.e. for alternative Ai as ( )1 2, , ,i i iny y y… . Next, total area of alternative Ai is com-
puted as:
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Later, alternatives can be ranked according to their corresponding total area measure. 
If decision maker intends to a desirability measure, the normalized total area measure is 
defined as:
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1.1. TAOV algorithm

In this subsection, an algorithmic scheme is presented for TAOV method of MCDM. The 
TAOV algorithm is organized in three phases of (1) initialization, (2) orthogonalization, and 
(3) comparison.

Phase 1. Initialization

Step 1. Identify decision alternatives 1 2, , , mA A A… .
Step 2. Identify decision criteria 1 2, , , nC C C… .

Figure 1. Geometric interpretation of ,
i
k ld

yil

yik

dk,l
i
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Step 3. Construct decision matrix ijX x =    as shown in Eq. (1).
Step 4. Determine the criteria weight vector ( )1 2, , , nw w w w= …  using one of the men-
tioned methods.
Step 5. Normalize decision matrix applying Eq.  (2) for benefit criteria and Eq.  (3) for 
cost criteria.
Step 6. Compute the weighted normalized decision matrix ijWN r =    as shown in 
Eq. (5).

Phase 2. Orthogonalization

Step 7. Applying principal component analysis, transforms the WN matrix to the equiva-
lent matrix of components Y as shown in Eq. (7).

Phase 3. Comparison

Step 8. Find the total area of each alternative using Eq. (9).
Step 9. Determine the alternatives desirability base on their normalized total area using 
Eq. (10). Figure 2 describes the proposed method. 

2. Numerical example

In this section, a numerical example is solved employing TAOV method and the results are 
compared with other methods.

2.1. Problem description

Zavadskas and Turskis (2010) analyzed the following decision matrix in evaluating 14 rooms 
based on six criteria about appraising microclimate of rooms. The considered criteria’s com-
prise:

X1: The amount of air per head (benefit);

Figure 2. TAOV algorithm

Identify decision 
alternatives

 

Identify decision 
criteria 

Construct decision 
matrix Eq. (1) 

Determine criteria 
weight vector 

Normalize decision 
matrix Eq. (2&3) 

 Find the total area Eq. (8) Determine alternatives 
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normalized DM Eq. (5) 
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ORTHOGONALIZATION 

INITIALIZATION 
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X2: Relative air humidity (benefit);
X3: Air temperature (benefit);
X4: Illumination during work hours (benefit);
X5: Rate of air flow (cost);
X6: Dew point (cost).
The weight vector of criteria are determined as ( )0.21,0.16,0.26,0.17,0.12,0.08w =  using 

pairwise comparisons. Table 1 illustrates the constructed decision matrix.

Table 1. Decision matrix of the problem

Room No.
Criteria

X1 X2 X3 X4 X5 X6

1 7.6 46 18 390 0.1 11
2 5.5 32 21 360 0.05 11
3 5.3 32 21 290 0.05 11
4 5.7 37 19 270 0.05 9
5 4.2 38 19 240 0.1 8
6 4.4 38 19 260 0.1 8
7 3.9 42 16 270 0.1 5
8 7.9 44 20 400 0.05 6
9 8.1 44 20 380 0.05 6

10 4.5 46 18 320 0.1 7
11 5.7 48 20 320 0.05 11
12 5.2 48 20 310 0.05 11
13 7.1 49 19 280 0.1 12
14 6.9 50 16 250 0.05 10

2.2. Solving with TAOV method

In this subsection, the above problem is solved based on new TAOV method.
Phase 1. Initialization. The first three steps of this phase are summarized at the above de-
cision matrix and the criteria weight vector w is also represented. At the 4th step, decision 
matrix in Table 1 is normalized applying Eq. (2) on benefit criteria X1, X2, X3 and X4 and 
Eq. (3) on cost criteria of X5 and X6. Subsequently, the constructed normalized matrix ele-
ments are multiplied in the corresponding criterion weight. The weighted normalized matrix 
is formed and presented in Table 2.
Phase 2. Orthogonalization. At this step, principal component analysis is applied on Table 
2. The principal component coefficients are demonstrated in Table 3 for each variable, ap-
plying SPSS package.

The orthogonal decision matrix Y is obtained by multiplying two matrices illuminated in 
Tables 2 and 3. This matrix is constructed as follows (Table 4).
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Table 2. Weighted normalized matrix

Room No.
Criteria

X1 X2 X3 X4 X5 X6

1 0.1970 0.1472 0.2229 0.1658 0.0600 0.0364
2 0.1426 0.1024 0.2600 0.1530 0.1200 0.0364
3 0.1374 0.1024 0.2600 0.1233 0.1200 0.0364
4 0.1478 0.1184 0.2352 0.1148 0.1200 0.0444
5 0.1089 0.1216 0.2352 0.1020 0.0600 0.0500
6 0.1141 0.1216 0.2352 0.1105 0.0600 0.0500
7 0.1011 0.1344 0.1981 0.1148 0.0600 0.0800
8 0.2048 0.1408 0.2476 0.1700 0.1200 0.0667
9 0.2100 0.1408 0.2476 0.1615 0.1200 0.0667

10 0.1167 0.1472 0.2229 0.1360 0.0600 0.0571
11 0.1478 0.1536 0.2476 0.1360 0.1200 0.0364
12 0.1348 0.1536 0.2476 0.1318 0.1200 0.0364
13 0.1841 0.1568 0.2352 0.1190 0.0600 0.0333
14 0.1789 0.1600 0.1981 0.1063 0.1200 0.0400

Table 3. Component coefficient matrix

Component
Variable

1 2 3 4 5 6

X1 0.709 0.589 –0.078 –0.026 –0.335 0.180
X2 –0.038 0.847 –0.397 0.050 0.343 0.060
X3 0.720 –0.566 0.079 –0.209 0.240 0.232
X4 0.748 0.343 0.403 –0.302 0.084 –0.250
X5 0.726 –0.185 –0.078 0.649 0.050 –0.089
X6 –0.309 0.323 0.847 0.244 0.072 0.134

Table 4. Orthogonal decision matrix

Room No.
Criteria

X1 X2 X3 X4 X5 X6

1 0.4509 0.1721 0.0368 –0.0466 0.0575 0.0541
2 0.4747 0.0656 0.0519 –0.0124 0.0712 0.0481
3 0.4488 0.0524 0.0403 –0.0033 0.0705 0.0546
4 0.4289 0.0857 0.0346 0.0070 0.0664 0.0548
5 0.3463 0.0741 0.0406 –0.0256 0.0768 0.0573
6 0.3564 0.0800 0.0436 –0.0283 0.0758 0.0561
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Room No.
Criteria

X1 X2 X3 X4 X5 X6

7 0.3139 0.1154 0.0638 –0.0135 0.0782 0.0489
8 0.5118 0.1574 0.0633 –0.0072 0.0642 0.0585
9 0.5091 0.1575 0.0595 –0.0048 0.0617 0.0616

10 0.3653 0.1212 0.0486 –0.0305 0.0834 0.0499
11 0.4548 0.1132 0.0233 –0.0022 0.0826 0.0535
12 0.4425 0.1041 0.0227 –0.0006 0.0866 0.0522
13 0.4162 0.1486 0.0135 –0.0350 0.0640 0.0665
14 0.4177 0.1559 0.0055 0.0175 0.0603 0.0559

Ideal 0.5118 0.1721 0.0638 0.0175 0.0866 0.0665

Phase 3. Comparison. Subsequently, by applying Eq. (9), the TA measures are figured out. 
As a case in point, TA1 is calculated as:

( ) ( )2 22 2 2 2 2 2 2 2
1 0.4509 0.1721 0.1721 0.0368 0.0368 0.0466 0.0466 0.0575 0.0575 0.0541 0.8710.TA  = + + + + + − + − + + + =  

( ) ( )2 22 2 2 2 2 2 2 2
1 0.4509 0.1721 0.1721 0.0368 0.0368 0.0466 0.0466 0.0575 0.0575 0.0541 0.8710.TA  = + + + + + − + − + + + =  

Similarly, TA measures are performed for all alternatives. The final ranking of alternatives 
is obtained by arranging TA values in a decreasing manner. Table 5 illustrates the values of 
TA measure, along with the obtained ranking of alternatives.

Table 5. Total area measure

Room No. TAi NTAi Ranking 

1 0.8710 0.8823 3
2 0.7745 0.7845 6
3 0.7181 0.7274 10
4 0.7179 0.7273 11
5 0.6634 0.6721 14
6 0.6836 0.6925 13
7 0.7030 0.7121 12
8 0.9203 0.9323 1
9 0.9102 0.9220 2

10 0.7588 0.7687 9
11 0.7888 0.7991 5
12 0.7716 0.7816 7
13 0.7937 0.8041 4
14 0.7652 0.7752 8

Ideal 0.9872 1.0000

End of Table 4
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2.3. Analyzing the results

To verify the acceptability of the TOAF method, in this subsection the aforementioned prob-
lem is solved with a variety of models. Table 6 illustrates the obtained rankings of different 
methods.

Table 6. Ranking of alternatives with different methods

Room No. TAOV ARAS SAW TOPSIS COPRAS VIKOR WASPAS ELECTREE

1 3 4 3 3 3 6 4 3
2 6 6 5 7 7 5 6 4
3 10 10 8 10 10 8 10 6
4 11 9 10 9 9 9 9 9
5 14 14 13 13 13 13 14 12
6 13 13 12 12 12 12 12 13
7 12 12 14 14 14 14 13 14
8 1 2 1 1 1 1 1 1
9 2 1 2 2 2 2 2 2

10 9 11 11 11 11 10 11 10
11 5 3 4 4 4 3 3 5
12 7 5 6 8 5 4 5 7
13 4 8 7 6 8 7 8 8
14 8 7 9 5 6 11 7 11

First of all, the Kendall’s coefficient of concordance for the above results is equal to 0.935 
indicating a great amount of concordance among different ranking. Additionally, the pairwise 
correlation coefficients are computed for different methods. Since the considered values are 
equal to ranks of alternatives, the Spearman’s rank correlation is gauged between each pair 
in Table 7. The numbers in parenthesis delineate the percentage of matched rank between 
each pairs.

Table 7. Ranking similarity for different methods

TAOV ARAS SAW TOPSIS COPRAS VIKOR WASPAS ELECTREE

TAOV – 0.92 0.94 0.93 0.91 0.88 0.92 0.87
ARAS – 0.95 0.94 0.97 0.92 0.99 0.88
SAW – 0.93 0.96 0.96 0.96 0.96
TOPSIS – 0.97 0.84 0.95 0.85
COPRAS – 0.90 0.99 0.87
VIKOR – 0.93 0.93
WASPAS – 0.89
ELECTREE –
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Considering TAOV, its correlation with other methods seems acceptable. Afterwards, 
the results in Table 4 are aggregated using Copeland method. The obtained result is: 
8 9 1 11 2 12 13~14 3~ 4 10 6 5 7> > > > > > > > > > > . The Spearman’s correlation among 
different methods with this aggregated one is presented at Table 8.

Table 8. Similarity with aggregated ranking method

TAOV ARAS SAW TOPSIS COPRAS VIKOR WASPAS ELECTREE

Aggregated 0.94 0.96 0.98 0.96 0.97 0.93 0.97 0.93

In view of the results of Tables 7 and 8, it implies that the results of new TAOV method 
have a great concordance with previous methods. According to Table 7, the least correlation 
of the TAOV method points 87% (with ELECTREE), while this method exhibits a correla-
tion more than 90% with other methods. Moreover, TAOV method has a correlation of 94% 
with aggregated decision. All in all, it can be concluded that the TAOV method results can 
be considered acceptable.

Conclusions 

Considering the importance of decision making in social and professional life, and necessity 
of making non-risky and well decisions in these areas, it can be justified the presence of a 
wide range of MADM methods in the literature. With this fact in mind, a new method called 
TAOV is introduced in this paper. This method is based upon the notion that for perform-
ing Pythagorean Theorem in computing distance between two points, their vectors should 
essentially act orthogonal to each other. Hence, employing principal component analysis, 
the classic decision matrix converted to an orthogonal decision matrix. Next, the total area 
of each alternative was computed as its overall performance over other alternatives. Conse-
quently, A numerical example consists of evaluating 14 alternatives with regard to 6 criteria 
was solved with TAOV method and the obtained results were compared with seven differ-
ent and well-known methods. The performance of TAOV method related to those methods 
indicated acceptable results.

Considering the features of a prominent decision making method, as proposed by Saaty 
and Ergu (2015), the following conclusions can be made regarding TAOV. 

1) Simplicity of execution. Considering ease of use as a criterion for choosing an 
MADM method, the TAOV method’s procedure can be simply performed for deci-
sion making.

2) Comprehensive structure: breadth and depth. Saaty and Ergu (2015) called an 
MADM method as broad if it contains a number of distinct criteria and deep if cri-
teria can broke down to sub-criteria. It is clear that the TAOV method is broad since 
it contains several distinct criteria. Besides, using factor analysis method along with 
PCA, the structure of method can be broke down into sub-criteria. 

3) Comprehensive structure consisting of merit substructures. A decision structure is 
said to be comprehensive if it represents a decision problem considering different 
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political, social, economic, legal, and etc. criteria. Considering the TAOV method, 
there isn’t any limitation to define different criteria.

4) Logical, mathematical procedure. The TAOV method follows a logical procedure for 
solving the MADM problem. 

5) Justification of the approach  – justifiable axioms. The main axiom of the TAOV 
method declares that decision criteria must be independent of each other, since the 
additive utility function can be employed. Thus, it uses PCA to assure that decision 
criteria are independent. 

6) Scales of measurement. The TAOV method doesn’t have any limitation regarding the 
scale used for quantification of problem’s criteria. 

7) Synthesis of judgments with merging functions. For group decision making, the in-
dividual decision matrices can be synthesized by weighted averaging method. Hence, 
according to Saaty and Ergu (2015), the TAOV method ranked medium in this cri-
terion.

8) Ranking of tangibles. Since the TAOV method provides a cardinal ranking of alterna-
tives, it ranked high in this criterion.

9) Generalization to ranking of intangibles. The TAOV method rated low in this crite-
rion since the intangible factors are simply assigned by arbitrary ordinal numbers.

10) Rank preservation and reversal. As illustrated in the numerical example, the TAOV 
method has an acceptable consistency with different methods.

11) Sensitivity analysis. The TAOV method includes criteria weighting vector and al-
ternatives performance as its input parameters. Therefore, it rated medium in this 
criterion.

12) Validation of decision problems. The TAOV method is applicable in real-world situ-
ations with tangible and intangible factors. 

13) Generalizability to dependence and feedback. Since the TAOV method used PCA to 
transform the initial decision matrix to an orthogonal decision matrix without any 
dependence; therefore, any form of dependence and feedback can be analyzed with 
this method.

14) Applicability to conflict resolution. By reason of TAOV method used weighted av-
eraging to aggregate individual decision matrices, the method rated low in this cri-
terion.

15) Trustworthiness and validity of the approach. The TAOV method deals with cardinal 
measurements with a mathematical logical procedure. Accordingly, it rated medium 
in this criterion.

Table 9 summarizes the performance of TAOV method regarding aforementioned cri-
teria’s.

In summary, the main advantage of the proposed method is that since current decision 
making methods usually are developed based on additive utility function, the independence 
of criteria is required for a better performance of these methods. While other methods sup-
pose that this independency is established, the proposed method provides a formal method 
which guarantees this independency. This can be considered as the main advantage of the 
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proposed method that adjusts its application. In fact, using PCA, any interrelationship among 
criteria is eliminated and neither over- nor underestimation of overall performance of alter-
natives is occurred. Considering the above table and examination of the numerical example 
results, it seems that TAOV method is an acceptable MADM method both practically and 
theoretically. Therefore, the method can be used as an MADM method for solving the real 
world problems without any concern regarding the dependence of decision criteria. 
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